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Abstract: In mathematics and classical mechanics, the Poisson bracket is an important binary operation in Hamiltonian 

mechanics, playing a central role in Hamilton's equations of motion, which govern the time evolution of a Hamiltonian 

dynamical system. The Poisson bracket also distinguishes a certain class of coordinate transformations, called canonical 

transformations, which map canonical coordinate systems into canonical coordinate systems. In this work we study some 

examples from the classical mechanics of particles and apply mathematical method for building the equation of motion. In the 

present paper Poisson Brackets and their properties are presented, by using Poisson brackets and their properties we calculate 

some brackets. We use the Poisson bracket with Hamiltonians to express the time dependence of a function u (t), the main idea 

Taylor series is taken as the required solution for equation of motion using the properties of the Poisson Brackets, We have 

examined examples from the classical mechanics to illustrate the idea such as motion with a constant acceleration, simple 

harmonic oscillator, freely falling particle. The solutions are compatible with what is known in classical mechanics. The work 

is fundamental and sheds new light onto classical mechanics. Poisson brackets are a powerful and sophisticated tool in the 

Hamiltonian formalism of Classical Mechanics. They also happen to provide a direct link between classical and quantum 

mechanics. 
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1. Introduction 

Poisson brackets are of great importance in physics: An 

important binary operation in Hamiltonian mechanics, play a 

central role in Hamilton's equations of motion, distinguishes 

a class of coordinate transformations (canonical 

transformations), very useful tool in quantum mechanics and 

field theory. [1, 2]. A technique that uses the Poisson bracket 

is supposed to allow us to derive all the differential 

equations of motion of a system from the just one piece of 

information, namely from the expression of the total energy 

of the system, i.e., from its Hamiltonian [3-5]. 

The Poisson brackets definition for the dynamics of a 

position-dependent mass particle was establishing, which is 

laid out in harmony with the classical mathematical portrait 

of analytical mechanics [6]. The Poisson bracket was used to 

find the integrals of motion. A numerical and analytical 

method was suggested to solve Navier-Stokes equations in 

Helmholtz form [7]. In mathematics, the Taylor series of a 

function is an infinite sum of terms that are expressed in 

terms of the function's derivatives at a single point. For most 

common functions, the function and the sum of its Taylor 

series are equal near this point. Taylor's series are named 

after Brook Taylor, who introduced them in 1715 [8-10]. 

The Poisson bracket appears often in classical mechanics 

and translates itself to quantum mechanics as the 

commutator. The total time derivative of a function u that 

depends on the canonical variables q and p, and can also 

depend on the time t [1, 2]: 

du u u u
q p

dt q p t

 ∂ ∂ ∂= + + ∂ ∂ ∂ 
∑ ɺ ɺ                          (1) 

As we know that 
H

q
p

∂=
∂

ɺ

 

and 
H

p
q

∂= −
∂

ɺ  
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Using the canonical equations of motion, the total time 

derivative becomes 

du u H u H u

dt q p p q t

 ∂ ∂ ∂ ∂ ∂= − + ∂ ∂ ∂ ∂ ∂ 
∑                    (2) 

which can be written using the following shorthand notation 

{ },
du u

u H
dt t

∂= +
∂

                                         (3) 

where we define the Poisson bracket as 

{ },
u H u H

u H
q p p q

 ∂ ∂ ∂ ∂= − ∂ ∂ ∂ ∂ 
∑                    (4) 

In the present paper Poisson Brackets and their properties 

are presented. The main idea Taylor series is taken as the 

required solution for equation of motion using the properties 

of the Poisson Brackets, We have discussed physical 

applications and treated some examples with Taylor series 

using Poisson brackets. 

2. Poisson brackets 

For any two functions on phase space, f(q, p) and g (q, p). 

The Poisson bracket associates to any such pair a third 

function, denoted { },f g , which can be evaluated usually 

faster by the following formula: [1, 2] 

( ) ( ){ }, , ,
f g f g

f q p g q p
q p p q

 ∂ ∂ ∂ ∂= − ∂ ∂ ∂ ∂ 
∑               (5) 

Consider a particle (or system of particles) with 

generalized coordinates q and generalized momenta p. To 

motivate the idea of Poisson brackets, let us use Hamilton's 

equations, the time derivatives of coordinates and momenta 

may be expressed in terms of partial derivatives of the 

Hamiltonian [11, 12] 

H
q

p

∂=
∂

ɺ and 
H

p
q

∂= −
∂

ɺ  

H isn't explicitly dependent on time, then time does not 

appear explicitly on the RHS of Hamilton's equations. Then, 

we have 

{ }

{ }

,

,

i i

i i

q q H

p p H

=

=

ɺ

ɺ

                                           (6) 

These are Hamilton’s equations by using Poisson brackets; 

that is, the time derivative of the coordinates is the Poisson 

bracket for the coordinates and Hamilton function and the 

time derivative of the momenta is the Poisson bracket for the 

momenta and Hamilton function. 

Properties of Poisson brackets  

Let us begin by recording some fundamental properties of 

the Poisson bracket: Given two functions f and g that depend 

on phase space and time, their Poisson bracket { },f g is 

another function that depends on phase space and time. The 

following rules hold for any three functions f, g and h of 

phase space and time [13-15]: 

(a) anti-symmetric: the Poisson bracket is anti-symmetric 

in the dynamical variables f 

{ } { }, ,f g g f= −                                        (7) 

In particular, the Poisson bracket of any observable with 

itself vanishes{ }, 0f f =  

(b) linearity: 

{ } { } { }, , ,f g h f h g hα β α β+ = +            (8) 

Where α and β are constants. 

(c) Leibniz rule: since the above formula for the Poisson 

bracket involves only first order derivatives of f, the Poisson 

bracket satisfies the Leibnitz/product rule of differential 

calculus. 

{ } { } { }, , ,fg h f g h f h g= +                (9) 

which follows from the chain rule in differentiation 

(d) Jacobi identity: More generally, Poisson's theorem is a 

consequence of the Jacobi identity. 

For any three dynamical variables f; g and h, the 

following cyclic sum of `double' Poisson brackets vanishes: 

{ }{ } { }{ } { }{ }, , , , , , 0f g h g h f h f g+ + =   (10) 

Using anti-symmetry we could write the Jacobi identity 

also as 

{ }{ } { }{ } { }{ }, , , , , , 0f g h g h f h f g+ + =   (11) 

What we’ve seen above is that the Poisson bracket {,} 

satisfies the same algebraicstructure as matrix commutators 

[,] and the differentiation operatord. This is related to 

Heisenberg’s and Schrodinger’s viewpoints of quantum 

mechanics respectively. 

(e) Also, if a function k is constant over phase space (but 

may depend on time), then { }, 0f k =  for any f. 

(f) The fundamental Poisson brackets are between the basic 

dynamical variables, namely coordinates and momenta. The 

above formulae give for one degree of freedom 

{ }, 0,i jq q = { }, 0 ,i jp p =  

{ },i j ijq p δ=                             (12) 

where ijδ is the Kronecker delta. 

The three properties of linearity, anti-symmetric and the 

Jacobi identity play such a fundamental role in many areas 



 World Journal of Applied Physics 2021; 6(3): 47-51 49 
 

of mathematics that they have been given a name: an 

algebraic structure involving a “product” that is bilinear, 

anti-symmetric and satisfies the Jacobi identity is called a 

Lie algebra. 

Example: 

By using Poisson brackets and their properties we can 

calculate the following brackets: 

(a) { },q p  

{ } { } { }, , ,q p q q p q p q= +  

{ },q p = 2q  

(b) { },q p q p+ +  

{ } { } { }, , ,q p q p q q p p q p+ + = + + +  

{ } { } { } { }, , , ,q q q p p q p p= + + +  

= 0+1-1+0 

=0 

(c) { }2,qp q  

{ } { } { }2 2 2, , ,qp q q p q q q p= +  

{ } { }2, , 0q p q q q p q= + +  

2 2q q= − −  

22q= −  

3. Taylor Series and Getting the General 

Solutions for the Equations of Motion 

We can also use the Poisson bracket with Hamiltonians to 

express the time dependence of a function u(t), since H 

describes an infinitesimal translation in time. We first 

expand u(t) around t=0 using the Taylor series [16], we have 

2 3

0

0
0 0

( )
2 3

2 3

2 3

t t
u t u t

l l

du d u d u

dt dt dt• •

= + + + +⋯             (13) 

Now, express the time derivatives as Poisson brackets, 

and we find that: 

{ },i j

du
u H

dt
=  

then 

{ } { }{ }
2

2
, , ,i j

d u d
u H u H H

dtdt
= =  

and 

{ }{ } { }{ }{ }
3

3
, , , , ,

d u d
u H H u H H H

dtdt
= =  

Substituting these three terms and similar ones into our 

Taylor’s expansion for u(t) Eq. (13), we have 

{ } { }{ }
2

0 0 0
( ) , , ,

2

t
u t u t u H u H H

l
•

= + +  

{ }{ }{ }
3

0
, , ,

3

t
u H H H

l
•

+ +⋯     (14) 

So, one can formally write down the time evolution of u(t) 

as a series solution in terms of the Poisson brackets 

evaluated at t = 0 

The Hamiltonian is the generator of the system’s motion 

in time [17]. 

4. Illustrative Examples 

4.1. Motion with a Constant Acceleration 

A particle of mass m is moving in a straight line with a 

constant acceleration, the Hamiltonian's function is 

2

max
2

p
H

m
= −                                   (15) 

By using the Eq. (14) 

{ } { }{ }
2

0 0 0
( ) , , ,

2

t
x t x t x H x H H

l
•

= + +  

{ }{ }{ }
3

0
, , ,

3

t
x H H H

l
•

+ +⋯       (16) 

{ }

{ }

2

0

0

, , max ,
2

,

p p
x H x

m m

x H
m

p

  = − = 
  

=

       (17) 

{ }{ }

{ }{ }

2

0

, , , max ,
2

, ,

p p
x H H a

m m

x H H a

  = − = 
  

=
    (18) 

{ }{ }{ } { }, , , , 0x H H H a H= =         (19) 

The rest of the terms are equal to zero, we will get 

20
0

1
( ) 0 0

2

p
x t x t at

m
= + + + + +⋯  

But, 

0
0

p
v

m
= , 

Hence; 
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2
0 0

1
( )

2
x t x v t at= + +                          (20) 

It is the known solution to this problem 

4.2. Simple Harmonic Oscillator 

Considering the Hamiltonian for a harmonic oscillator: 

2
21

2 2

p
H kq

m
= +                             (21) 

The equation of motion 

{ }

2
2

,

1
,

2 2

iq q H

p
q q kq

m

=

  = + 
  

ɺ

ɺ

                 (22) 

By using the properties for Poisson brackets : 

{ } { }

{ }

2 21 1
, ,

2 2

1
2 ,

2

q q p k q q
m

p
p q p

m m

= +

= =

ɺ

               (23) 

Also, 

{ }

{ } { }

2
2

2

,

1
,

2 2

1
, ,

2

i ip p H

p
p kq

m

k p q kq p q kq

=

  = + 
  

= = = −

ɺ

       (24) 

Then the displacement is 

0
0( ) cos sin

p
q t q wt wt

mk
= +                 (25) 

Where,

 
k

w
m

=  

4.3. A freely Falling Particle 

A simple example in applying to a freely falling particle: 

u=z 

The familiar Hamiltonian for this system is 

2

2

p
H mgz

m
= +                            (26) 

We can solve for z(t) using Poisson brackets to 

demonstrate that this method will give a familiar result. 

First, by using Taylor series, we note that 

( ) { } { }{ }
2

0 0
( ) 0 , , ,

2

t
z t z t z H z H H

l
•

= + +

{ }{ }{ }
3

0
, , ,

3

t
z H H H

l
•

+ +⋯                   (27) 

Now, we evaluate the different terms: 

{ },
z H z H

z H
z p p z

∂ ∂ ∂ ∂= −
∂ ∂ ∂ ∂  

{ },
p

z H
m

=                                (28) 

{ }{ } { } { }, ,
, ,

z H z HH H
z H H

z p p z

∂ ∂∂ ∂= −
∂ ∂ ∂ ∂

 

{ }{ } 1
, ,z H H mg

m
= − ⋅  

{ }{ }, ,z H H g= −                        (29) 

At t=0, we have initial conditions: 

z(0) = z0, 

p(0) = p0 

{ } 0

0
,

p
z H

m
=

, 

{ }{ }
0

, ,z H H g= −
 

{ }{ }{ }
0

, , , 0z H H H =  

Then inserting this into the Taylor expansion Eq. (27), we 

see that 

2
0

0( )
2

p gt
z t z t

m
= + −                          (30) 

5. Conclusion 

In this work, we are presented the definition of Poisson 

brackets and their properties and used Taylor series to get 

the general solutions for the equations of motion using 

Poisson bracket relations. We are examined examples to 

illustrate the idea, such as motion with a constant 

acceleration, simple harmonic oscillator, freely falling 

particle. The solutions are compatible with what is known in 

classical mechanics. 
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