
 

World Journal of Applied Physics 
2020; 5(4): 43-48 

http://www.sciencepublishinggroup.com/j/wjap 

doi: 10.11648/j.wjap.20200504.11 

ISSN: 2637-5990 (Print); ISSN: 2637-6008 (Online)  

 

An Approach to Quantum Gravitodynamics and Some 
Important Results 

Bakul Kumar Chakravorti
*
, Md Sakibul Islam, Syed Badiuzzaman Faruque 

Department of Physics, Shahjalal University of Science and Technology, Sylhet, Bangladesh 

Email address: 
 

*Corresponding author 

To cite this article: 
Bakul Kumar Chakravorti, Md Sakibul Islam, Syed Badiuzzaman Faruque. An Approach to Quantum Gravitodynamics and Some Important 

Results. World Journal of Applied Physics. Vol. 5, No. 4, 2020, pp. 43-48. doi: 10.11648/j.wjap.20200504.11 

Received: November 15, 2020; Accepted: December 1, 2020; Published: December 8, 2020 

 

Abstract: We present in this article a new approach to the theory of gravitation. Here, the gravitational field of a gravitating 

body is assumed to be four fold. The gravitating body of mass M possesses gravitoelectric mass M, gravitomagnetic mass -2M. 

The test particle possess electric and magnetic masses that are algebraically of the same sign of that of the source body, i.e., m 

and -2m. Based on the electrostatic force formula, we find four forces acting on the test particle. The sum of these forces gives 

exactly the Newtonian gravitation force and gravitational potential energy. The classical theory of this approach yields four sets 

of Maxwellian equations and thus, four spin 1 bosons convey the complete force of gravity. The quantum version of this 

approach to gravity is illustrated here by presenting the fundamental Feynman diagrams that issue from the new theory. We 

work out scattering cross-section of interaction of an electron with a fixed gravitating mass partially. Of the four Feynman 

diagrams, we work out cross-section of scattering for only the simplest diagram. The non-relativistic limit of the cross-section 

is found and compared with that of electric Rutherford scattering. It is found that the electromagnetic cross-section is 10
17

 

times larger than the gravitational cross-section for the one process we considered. The work is fundamental and sheds new 

light onto quantum gravitodynamics. 
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1. Introduction 

Linearized gravity stands in between Newtonian gravity 

and general relativity [1, 2]. Linearized gravity leads a 

theory of gravity which is parallel to electromagnetism. 

Thus, we get Gravitoelectromagnetism [3]. In this theory, 

the source of gravity field and the test body are assumed to 

have opposite masses [4]. And a gravitomagnetic mass (or 

charge) is attributed to both the source and the test mass. 

Thus, a body of mass � has gravitoelectric charge �and a 

gravitomagnetic charge 2� , if the body is the source of 

gravitational field. On the other hand, for a test particle of 

mass � , the gravitoelectric charge is ����  and the 

gravitomagnetic charge ��2�� . This prescription is 

adopted to ensure that gravity is always attractive [3, 4] 

Now, we all know that there are no evidences in favor of 

differences between source and test bodies regarding their 

that property which is called mass. 

To avoid the seemingly justified, but conceptually 

unbearable convention of the opposite changes for source and 

test body, it has been proposed by Faruque [5] that the source 

body and test body should be treated alike. Therefore, it is 

conjectured [5] that a source of gravity of ordinary mass � 

has gravitoelectric charge �� 	 �  and a gravitomagnetic 

charge �� 	 �2�. In the same fashion, a test body of mass 

m has gravitoelectric charge �� 	 �  and gravitomagnetic 

charge�� 	 �2�. It is also conjectured that the source body 

produce four fields: 

�
��� 	 ��
�� �̂,                                 (1) 

�
��� 	 � ���
�� �̂,                              (2) 

�
��� 	 �
�

��
�� �̂,                               (3) 

�
��� 	 � ���
�� �̂.                             (4) 
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Hence, it is assumed that �
���  has the electric charge as its 

source and it acts on the electric charge of the test particle. 

Similar concept applies to �
���. For �
���, its source is electric 

charge and it acts on magnetic charge. The force is given by 

the simple electrostatic formula [5] 

�� 	 ��
�                                      (5) 

Hence, ��� 	 ����
��� , ��� 	 ��2���
��� , ��� 	 ��2���
��� , 

��� 	 ����
���. Then, it can be shown that the resultant force 

on a test mass ��� due to a source mass ��� is given by 

�������� !� 	 ��� " ��� " ��� " ��� 	 � ��#
��  �̂ 	 ��$�%�&!' !  (6) 

The resulting potential energies [6] of the test particle is 

given by the prescription �� 	 �(

�) , where )  being the 

potential energy, as )� 	 ��#
� , )� 	 ���#

� ,  )� 	 � ���#
�  

and )� 	 � ���#
�  and their sum, )������ !� 	 � ��#

� 	
 )$�%�&!' !. 

Similarly, the potentials [6] Φ�� 	 ��
� , Φ�� 	 � ���

� , 

Φ�� 	 �
�

��
�  and Φ�� 	 � ���

�  do not add up to the 

Newtonian potential ( � ��
� ), rather Φ������ !� 	 � ,

�
��

� . 

Hence the fields are color-sensitive, but the forces and 

potential energies are not, as it follows obviously. 

Thus, Faruque [5] has clearly found a way to recover 

Newtonian force and potential energy [5] from four 

independent colorful fields in place of the single Newtonian 

field. One reason behind four fields instead of one is that 

physicists are trying to formulate quantum gravity theory 

using a spin 2 graviton field [7], but no satisfactory result has 

yet been found. We therefore are trying with a new approach 

with four fields. Here, the cross fields are 3/2 times the direct 

fields. To justify this, we can only say that the four fields are 

based on conjecture. The conjecture is justified by its giving 

the correct Newtonian gravitational force law and correct 

potential energy. 

The four gravitoelectric fields have associated 

gravitomagnetic fields. So, there issues four set of 

Maxwellian equations. We have worked this out [8]. 

However, when we engage with quantum version of the 

theory, there would be four spin 1 bosons which will convey 

the gravitational interaction. This is a new avenue to 

visualize gravity field. Our result in [8] shows that effectively 

the fields acts like a spin 2 field. 

This theory can be extended to a theory parallel to 

Gravitoelectromagnetism despite the fact that now one has 

four set of Maxwellian equation and each set involves a spin1 

field. We call this fields spin1 gravitons when we set out to 

formulate a quantum theory of gravity. This theory will be 

called quantum gravitodynamics and it possesses four spin1 

quantum bosons for transfer of the full gravitational force. In 

the next Section, we try to advance a little further in the 

direction of quantum gravity. 

 

2. Initial Concepts of the New Theory 

Electric mass ‘ � ’ and magnetic mass ��2��  can be 

thought of as two quantum states. The quantum operator [9, 

10] for mass can be written as 

�&- . '/
0�

1
1�                                    (7) 

Then for the electric mass ‘�’ states, the wave function is 

2� 	 exp �� '
/ �6�7�                            (8)  

And for the state of magnetic mass ��2�� , the wave 

function is 

2� 	 exp ��'
/ �6�7�                             (9) 

The operator which transforms (see figure 1c) ��8) to ��9� 

is simply 

2�� 	 exp ��'
/ �6�7�                           (10) 

The four independent fields �
��� , �
��� , �
���  and �
���  can be 

considered as four color fields and in the language of 

quantum theory, we ascribe the symbols ��8� : �, ��9� :
�2�, and the four fields by ��88�, ��99�, ��89�and ��98�. 

The four fields  ��88� ,  ��99� ,  ��89�and ��98�  are distinct 

fields or spin 1 gravitons. They are exchanged when ��8� .
��8�  scattering or ��9� . ��9�  scattering like interactions 

occur. ��8�  and ��9�  states are occupied by a single 

elementary particle simultaneously. However, when 

interactions occur the states ��8� or ��9� can act separately. 

Hence, we have four fundamental vertices when we consider 

Feynman diagrams [11] to be a means to envisage quantum 

gravity interactions. These are shown in figure 1. 

  

  

Figure 1. Fundamental vertices in quantum gravitodynamics. 

In figure 1(a) and 1(b), no flavor change occur, but in 

figure 1(c) and 1(d), ��8� . ��9�  and ��9� . ��8�  type 

flavor changing occur. 

Now, consider the interaction depicted in figure 1(a). Let us 

envisage potential scattering by a particle of electric mass �. 

The figure 1(a) would look like what is depicted in figure 2. 
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Figure 2. Potential scattering by a particle of mass M as dictated by figure 

1(a). 

Let us think that � is at the origin of coordinate system 

and ��8��: �� is at ��. The potential energy in this situation 

is 

)���� 	 ��#
�                              (11) 

If the particle with ��8� has initial momentum ;�' and final 

momentum  ;�< , its initial and final wave functions (time 

independent) are given by 

2' = exp >' -�?.�� 
/ A,                          (12) 

and 

2< = exp >'-�B.�� 
/ A.                          (13) 

Since, no flavor change occurs hence, the wave functions 

(12) and (13), need not contain any mass states. And, then, 

the amplitude for the transition (figure 1(a)) is 

C 	 D 2<E )����2'F��� = G�� D 8H; I'J-�?K-�BL.��
/ M �

� F���  (14) 

Performing the integral, we get 

C =  ��#
K|O
�|�,                         (15) 

where , �� 	 ;�< � ;�' , is the momentum transferred from the 

scattered particle to the particle at origin. The amplitude for 

the scattering depicted in figure 1(b) has the same functional 

form except G��  replaced by �4G��� . But for the 

scattering depicted in figures 1(c) and 1(d), we should 

consider the flavor change from ��8� . ��9�  and from 

��9� . ��8�. 

Since the state ��8�  changes to ��9�  in figure 1(c), the 

initial wave function is 

2' = exp >' -�?.�� 
/ A exp >K'

/ �6�7A                 (16) 

and the final state is 

2< = exp >' -�B.�� 
/ A exp >�'

/ �6�7A                (17) 

The interaction operator which transforms 2' . 2< , can 

be written as 

Q��, 7� 	 K���#
� 8H; >�'

/ �6�7A                (18) 

The total amplitude for the process of figure 1(c) is then 

C = �3G�� S 8K'-�B.��
/ 8K�'#0��

/ 8�'#0��
/ 1

� 8' -�?.�� 
/ 8K'

/ #0��F�� 

= �3G�� D 8H; I'�-�?K-�B�
/ . ��M �

� F�� 

= ���#
|O
�|� .                                     (19) 

For the scattering of the type depicted in figure 1(d), 

similar treatment is possible and warranted. Hence we have 

found a way to calculate transition amplitudes for basic 

Feynman diagrams that involve gravitational interaction. 

3. Scattering of Electrons from a Static 

Mass 

Now we calculate the Rutherford type scattering [11] of an 

electron at a fixed gravitational potential. Specifically, we 

consider the following diagram: 

 

Figure 3. Scattering of an electron at an external potential �U�  to only 

gravitoelectric and lowest order. 

Following Ref. [12], we write by replacing – W8 by W�� , 

where ��  is the electron rest mass, the X �matrix for the 

scattering X<'  as 

X<' 	 W�� D F�H2<�H�CY�H��ZY2'�H� ([ \ W)        (20) 

In the lowest order, 2'�H� is approximately an incoming 

plane wave 2'�H�of an electron with momentum ;'  and spin 

]': 

2'�H� 	 ^#_
�?`  a�;' , ]'�8K'-?.b,                  (21) 

where a�;' , ]'� is Dirac spinor of the incoming electron, ��is 

the mass of electron and Q denotes the volume of a box in 

which 2' is normalized to probability 1. Similarly, we can 

write 

2<�H� 	 ^ #_
�B`  a�;< , ]<�8'-B.b,                 (22) 

where a�;< , ]<� is the adjoint Dirac spinor of the outgoing 

electron. The gravitational potential for ��8� . ��8� 

scattering by a static mass � is given by (see section 1) 

CY�H� 	 CY�H�� 	 ��
|b�| , C��H� 	 0                (23) 

Hence equation (20) transforms to 
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X<' 	 W ��#_
` ^ #_�

�B�?
 a J;<, ]<LZYa(;' , ]') D F�H 8'J-BK-?L.b �

|b�| (24) 

The time integral of equation (24) can be reduced to 2de(�< − �') as shown in [12]. 

The spatial part of integral is 

D F�H �
|b�| 8K'O
�.b�,                             (25) 

where, �� = ;�< − ;�', the momentum transfer. 

The integral in equation (25) can be evaluated using 

standard method. We find, thus, 

D F�H �
|b�| 8K'O
�.b� = �f

|O
�|�                          (26) 

Thus the X-matrix X<'becomes 

X<' = W ��#_
` ^ #_�

�B�?  a J;<, ]<LZYa(;' , ]') �f
|O
�|� 2de(�< − �')  (27) 

Now, the number of final states Fg<  within the momentum 

range F�;<is 

Fg< = Q hi-B
(�f)i                              (28) 

The transition probability per particle into these final states 

is given by [12] 

Fj = kX<'k� `hi-B
(�f)i   

= ��(�f)�lm�
�?`  k�(-B,�B)no�(-?,�?)k�

|O
�|p  hi-B
(�f)i�B (2de(�< − �'))�, (29) 

where we have used Planck units, G = q = ℏ = 1, and the 

gravitational coupling constant [13] is employed, which is r� = ���. The last factor in equation (29) is divergent, so to 

avoid that we assume the transition takes place within a finite 

interval of time − s
� ≤ 7 ≤ s

�. Then we can write 

2deJ�< − �'L → D F7 exp{W(�< − �v)7}s �xKs �x = �yz{ (�BK�?)|
�

�BK�?  (30) 

Hence,  

(2de(�< − �'))� =
��'!�(�BK�?)|

�(�BK�?)� .              (31) 

The area under this function is  

D F�<
��'!�(�BK�?)|

�(�BK�?)� = 2d}~
K~ .                (32) 

To understand this result note that by replacing J�< − �'L 

by H, the integral becomes 4 sin� �b|
�b��. Now, the area under 

the curve can be approximated by a triangle with height }� 

and length of the basis 
�f
s . 

Therefore,  

D FH yz{�(b|
�)

b�
~

K~  ≈ �
� }� �f

s = 2d}.                 (33) 

When we increase T the shape of the function 4 sin� �b|
�b�� 

approaches a e  function, the area under the curve assumes 

the value 2d}.  

The square of the e-function can be written  

(2de(�< − �'))� = 2d}e(0)2deJ�< − �'L 

= 2d}eJ�< − �'L                    (34) 

This result can be understood in the following way: 

2deJ�< − �'L =  lims→~ S F7 exp{W(�< − �v)7}
s �x

Ks �x
 

For �< = �v , it follows that  

2de(0) = lims→~ D F7|
�

K|
�

= lims→~ }     (35) 

Inserting Eq. (34) into Eq. (29), we get transition 

probability per particle per unit time with final states within 

momentum range F�;< as, 

F� = h�
s = ���lm�

�?`  k�(-B,�B)no�(-?,�?)k�
|O
�|p

hi-B
�B eJ�< − �'L  (36) 

The scattering cross-section is the probability per particle 

per unit time divided by the incoming current of particles 

�'!0. = 62'(H)Z 2'(H)                          (37) 

This form of the current of particles follows directly from 

the Dirac’s theory of spin 
�
� particles. Here, superscript � in � 

and Z  gives the component of the current vector in the 

direction of the velocity of the incoming particles, 

��' = -�?
�?                                    (38) 

It can be shown using appropriate spinors and with spin 

polarization along �-axis that 

�'!0. = -?0�
�?

�
`                              (39) 

With our choice of 6 = 1, �' = � and ;' = ��' , we get 

space part 

k��'!0.k = |�

�?|
`                             (40) 

Using equation (36) and equation (40), the differential 

cross-section becomes 

F� = h�
�?�� = ���lm�

�?`k�

�?k
�

 k�(-B ,�B)no�(-?,�?)k�
|O
�|p  -�B�hk-�Bk

�B FΩ<eJ�< − �'L, (41) 

where we have used momentum space volume element 

F�;< = ;�<�Fk;�<kFΩ< . In practice, outgoing particles are 
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counted taking into consideration only a small window of 

momentum Δ;< . Hence, the differential cross-section [14] 

per unit solid angle FΩ< of the scattered particle follows as, 

h�
hΩB = D ���lm�

�?|�
�?|  k�(-B,�B)no�(-?,�?)k�
|O
�|p  -�B�hk-�Bk

�B�-B eJ�< − �'L,  (42) 

which reduces to 

h�
hΩB = ���lm�|O
�|p  ka(;< , ]<)ZYa(;' , ]')k�

              (43) 

In the non-relativistic limit, we expect to get a cross-

section similar to Rutherford scattering cross-section [15]. To 

go to that limit, we note that in the non-relativistic limit, the 

four component spinors of the electron can be written as the 

states of �� , the Pauli matrix. Moreover, ZY  reduces to a (2 × 2) form. Thus, in this limit we get 

ka(;< , ]<)ZYa(;' , ]')k� = 1, 

And the cross-section reduces to 

h�
hΩB�

!.�.�
= ���lm�|O
�|p .                             (44) 

This is gravitational analogue of Rutherford scattering 

cross-section. 

In the case of Coulomb scattering by a static charge of 

– �8, the corresponding formulae is 

h�
hΩB�

�&��&#�
= ���l�#_�

|O
�|p                         (45) 

If we take the scatterer as proton and restore usual units, 

Equation (44) becomes 

h�
hΩB�

!.�.�
= ���(��� #_)�#_�

|O
�|p                      (46) 

and Equation (45) becomes 

h�
hΩB�

�&��&#�
= ��p#_�

|O
�|p                              (47) 

Hence the ratio of electrostatic to gravitostatic scattering 

cross-section of electron-proton scattering becomes 

�p
��(��� #_)� = �p

(ℏ0)�  ℏ0
(��� )�m¡_�ℏ� .�               (48) 

= l�
lm  ℏ0

�  �
(��� )� 

≅ 1.7 × 10�¤  

where we have used the proper units for r  and r� . In the 

language of high energy physics r = ��
ℏ0 ≈ �

��¤ and r� = �#_�
ℏ0 . 

4. Discussion 

In summary, we have extended the elementary theory of 

Faruque [5] to incorporate gravitational interactions between 

elementary particles according to the rules and mathematics 

of Dirac equation. We began our analysis with an excerpt of 

the theory of Faruque [5] in Section 1. This is classical 

physics and there are four independent color fields to convey 

the full gravitational force from the source of gravity to a test 

mass. The fields are colorful meaning that they do not add up 

to the Newtonian gravity field. Similarly for gravitational 

potential, they do not give the Newtonian potential when 

added. But the forces add up to the Newtonian force and also 

the potential energy add up to the Newtonian potential energy. 

So, four fields as shown in the section 1, suffice to convey 

gravity’s influence. 

In Section 2, we have discussed about the two states of a 

particle. We have shown that the gravitoelectric charge (or 

mass) and gravitomagnetic charge (or mass) can be 

considered as two states of the particle. Ordinarily, the 

particle occupies both of them. But when the question of 

interaction comes, the two states can get separated and take 

part in interaction. In this Section, we have shown the 

fundamental processes involving the two masses �(8)  and �(9) in the fashion of Feynman. We have then considered the 

scattering of a particle off a static mass and found out the 

leading order terms of scattering amplitudes. We have 

worked out both �(8) → �(8)  scattering and �(8) → �(9) 

type scattering amplitude. In the latter case, we had to take a 

course so that flavor change from �(8) → �(9)  can be 

incorporated into calculation of amplitude. Our result is 

similar what we expect. 

In Section 3, we take the process of electron scattering off 

a static mass � and worked out in somewhat full detail the 

scattering cross-section. To do so, we have followed the 

procedure shown in [12]. In non-relativistic limit the 

formulas reduces to a formula like what we expect from 

Rutherford type scattering. In general, the 
h�

hΩB  is given by 

Equation (43). In the non-relativistic limit it is given by the 

simple formula of Equation (44). This result involve the 

gravitational coupling constant r� . Though it is very very 

small, interesting result came out when we take the non-

relativistic Rutherford scattering formula for Coulomb 

scattering of an electron off a static charge. This is given in 

Equation (45). 

To have a feeling of the number involved we find the ratio 

of Coulomb scattering and gravitational scattering of an 

electron off a proton. We dressed up the formulae using the 

coupling constants r  and r� , where r  is the fine structure 

constant and r� is the gravitational coupling constant. 

To our surprise, the ratio is within the grasp of high energy 

physics, once a huge energy environment is considered. The 

ratio is only ≈ 10�¤ ∶ 1 . Whereas gravitational coupling 

constant is 10��  times smaller than fine structure constant, 

the cross-sections are not so hugely separated in magnitude. 

5. Conclusion 

In conclusion, the new theory of gravity with four 

independent and color fields, gives interesting non-

relativistic and relativistic results for force, potential energy, 
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scattering cross-sections. Feynman diagrams can also be 

easily handled with the new flavor changing operator )<' . 

The ratio of Coulomb scattering cross-section to that of 

gravitation for scattering of electron off a static proton is also 

gives a good feeling since this is only ≈ 10�¤ ∶ 1. Thus we 

have moved a little forward to an as yet another theory of 

quantum gravity. A lot of work remains to do in future to 

complete the theory. 
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