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Abstract: The exact energy spectrum for inversely quadratic Yukawa plus potential plus inversely quadratic Hellmann 

potential was obtained, via the WKB approach. Also three special cases of the potential have been considered and their energy 

eigenvalues obtained. 
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1. Introduction 

One of the earliest and simplest methods of obtaining 

approximate eigenvalues of the one-dimensional Schrodinger 

equation in the limiting case of large quantum numbers was 

originally proposed by Wentzel, Kramers, and Brillouin 

known as the WKB approximation method [1]. The Wentzel-

Kramers-Brillouin (WKB) Approximation was first 

introduced in quantum mechanics in 1926, although it had 

been developed earlier. This approximation is important since 

at the beginning of the development of quantum mechanics, 

physicists around the world were attempting to solve the 

Schrodinger and Schrodinger-like equations. In 1928 Gamow 

used the Approximation to theoretically describe alpha decay 

for the first time [2]. In the lowest- order approximation, the 

WKB quantization condition is 

� �2��� − �	
��
�
� �
 = �ђ �� + ���,� = 0, 1, 2	    (1) 

In general, Equation (1) yields moderately accurate 

eigenvalues as analytic functions of the parameters contained 

in the potential. An exact analytical solution of Schrodinger 

equation for central potentials has attracted tremendous 

interest in recent years. Example of these potentials are the 

parabolic type potential [3], the Eckart potential [4, 5], the 

Fermi-step potential [4, 3], the Rosen-Morse potential [6], 

the Ginocchio barrier [7], the Scarf barriers [6], the Morse 

potential [8] and a potential which interpolates between 

Morse and Eckart barriers [8]. To properly use the WKB 

approximation for a three dimensional problem with 

spherical symmetry, one has to apply the one-dimensional 

WKB formalism to the radial Schrodinger equation 

���� � + �!ђ� "� − �#$$	
�%Ψ = 0                   (2) 

where the effective potential	�#$$	
� is 

�#$$	
� = �	
� + '	' + 1�ђ�2�
�  

Such a straightforward application leads to an important 

difficulty in obtaining exact energy eigen value solution 

because the WKB reduced radial wave function at the origin 

has a behaviour which is different from that of the true wave 
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function [2]. For this reason, Langer [5] suggested that the 

strength of the angular momentum should be treated as an 

adjustable parameter K, not as a fixed quantity. Langer 

pointed out that K should be replaced with the term �' + ���� 

in the lowest order quantization formula which has great 

physical meaning. The replacement of '	' + 1� → �' + ���� 

regularizes the radial WKB wave function at the origin and 

ensure correct asymptotic behaviour at large quantum 

numbers. 

The aim of this work is to solve the Schrodinger equation 

for the inversely quadratic Yukawa plus inversely quadratic 

Hellmann (IQYIQH) potential via the WKB approximation 

method. The IQYIQH takes the form: 

�	
� = − )*
� +,�-
 − )�
 + )�
� +,-
                   (3) 

where .	  is the screening parameter and �/, ��&��  are the 

depths of the potential. Recently, Itaet al [9] have used a 

form of the potential known as a class of the Yukawa 

potential plus Manning-Rosen potential to obtain bound state 

solution of the SE via NU Method. The IQH potential was 

first studied in a mixed form with the Mie type potential in 

2013 by Itaand co-workers [10, 11, 12, 13] where they obtain 

the solution of the Schrodinger equation via NU method. 

Also, analytical expressions for the bound state of the 

inversely quadratic Hellmann plus inversely quadratic 

potential has been reported by Ita et al [14-16]. Not much has 

been done in solving the IQYIQH potential via the WKB 

method. This paper therefore seeks to address this issue and 

is organized as follows; Section 1 has the introduction, a 

brief description of the semiclassical quantization and the 

WKB approximation for the radial solution is reviewed in 

section 2. In section 3, the radial Schrodinger equation with 

IQYIQH potential was solved, followed by a brief discussion 

in section 4, and finally, conclusion in section 5 

2. Semiclassical Quantization and the 

WKB Approximation 

In this section, quasiclassical solution of the Schrodinger’s 

equation for the spherically symmetric potentials was 

considered. Given the Schrodinger equation for a spherically 

symmetric potentials �	
� of equation (3) as 

	−1ђ�� � ��� � + �
� ���2� + �
�345�2 ���6��7	
, 8, 9� 	="2��� − �	
��%7	
, 8, 9�               (4) 

The total wave function in eq. (3) can be defined as 

7	
, 8, 9� = :
;	
�<"√>1�8?	8�@	9�%          (5) 

And by decomposing the spherical wave function in 

equation (4) using equation (5), the following equations were 

obtained: 

�−1ђ AA �� ;	
� = B2��� − �	
�� − CDDE�
� F ;	
�      (6) 

�−1ђ AAG�� ?	8� = BHDDE� − CI�345�2F ?	8�           (7) 

�−1ђ AAJ�� @	9� = HK�@	9�                        (8) 

Where 	HDDDDE�, HK� are the constants of separation and, at the 

same time, integrals of motion. The squared angular 

momentum HDDE� = �' + ���� ђ�. 

Considering equation (6), the leading order WKB 

quantization condition appropriate to equation (3) is  

� LM�	
�
�
� �
 = �ђ �� + ���, n = 0, 1, 2...      (9) 

where 
�&
�  are the classical turning point known as the 

roots of the equation 

M�	
� = 2��� − �	
�� − �NO����ђ�
� = 0       (10) 

equation (9) is the WKB quantization condition which is 

subject for discussion in the preceding section. Consider Eq. 

(6)-(8) in the framework of the quasiclassical method, the 

solution of each of these equations in the leading ђ 

approximation can be written in the form 

ΨPQR	
� = SLT	
,U� +VW B± Yђ�LM�	
� �
F     (11) 

3. Solutions to the Radial Schrödinger 

Equation 

The radial Schrodinger equation for the IQYIQH potential 

can be solved approximately using the WKB quantization 

condition equation (9). Since the potential of interest slowly 

varies, we assume that the wave function remains sinusoidal. 

Hence, the effective potential was used and plugged it in to 

the WKB approximation of equation (10) and to obtain the 

exact solution, we consider two turning points.  

Given the effective potential with the centrifugal term as 

�#$$	
� = − )*
� +,�-
 − )�
 + )�
� +,-
 +	 �NO����ђ��Z
�      (12) 

where .  is the screening parameter and �/, ��&��  are the 

depths of the potential. 

The potential in equation (12) can also be written in the 

form 

�#$$	
� = 	)�,)*�
� + 	�)*-,)�,)�-�
 + 	��.� − 2�/.�� + 	 �NO����ђ��Z
�                                          (13) 

Substitute equatin (13) into equation (9), we have 



 World Journal of Applied Physics 2017; 2(4): 109-112 111 

 

� LM�	
�
�
� �
 = � [2� \� − 	)�,)*�
� − 	�)*-,)�,)�-�
 − 	��.� − 2�/.�� − �NO����ђ��Z
� ]
�
� �
 = �ђ �� + ���        (14) 

let HDDE� = �' + ���� ђ� 

� �2� �� − 	)�,)*�
� − 	�)*-,)�,)�-�
 − 	��.� − 2�/.�� − CDDE��Z
��
�
� �
 = �ђ �� + ���                 (15) 

Factoring 
�
� and √2�, we have 

√2�� �
 [\	� + 2�/.� − ��.��
� − 	2�/. − �� − ��.�
 − ��Z	)�,)*�,CDDE��Z �] �
 = �ђ �� + ���
�
�           (16) 

if 	� + 2�/.� − ��.�� = −�̂ and factoring out �̂, we obtain 

L2��̂ � �
[\−
� − 	�)*-,)�,)�-�_̂ 
 − ��Z	)�,)*�,CDDE��Z_̂ �]�

�
� = �ђ �� + ���                          (17) 

let − 	�)*-,)�,)�-�_̂ = `, and ��Z	)�,)*�,CDDE��Z_̂ � = a, we have 

L2��̂ � �
L	−
� + `
 − a��

�
� = �ђ �� + ���                                           (18) 

L2��̂ � �
L	
 − 
��	
� − 
��

�
� = �ђ �� + ���                                            (19) 

Wherewe obtain the turning points 
�&
� from the terms inside the square roots as 


� = −` − √`� − 4a2  


� = −` + √`� − 4a2  

Solving the integral of equation (19) explicitly, we obtain 

L2��̂ \− 	�)*-,)�,)�-�_̂ − 2���Z	)�,)*�,CDDE��Z_̂ �] = 2ђ �� + ���                                             (20)

�̂ = �Z	�)*-,)�,)�-��
\ђ�cO���O���Z	)�,)*�OCDDE��]�                 (21) 

� = ��.� − 2�/.� − Z	)�O)�-,�)*-��/�ђ�
ecO��O[�NO����O�fђ� 	)�,)*�g

�   (22) 

4. Discussion 

Having obtained the energy eigen values (equation 22) and 

corresponding eigen functions of the IQYIQH potential, it’s 

seen that the WKB approximation method is general for all 

types of problems in quantum mechanics, simple from the 

physical point of view, and its correct application results in 

the exact energy eigenvalues for all solvable potentials. We 

now consider the following cases of the potential 

Case 1. If we set the parameters 	�/ = �� = 0, �� = #�hij*, it 

is easy to show that equation (22) reduces to the bound state 

energy spectrum of a particle in the Coulomb potential 

�kc,N = −Zl m�nop*q
�/�ђ�

	cONO���                           (23) 

�kc,N = − Z#nr�ђ�i�j*�cs�                          (24) 

�t = � + ' + 1                                (25) 

Case 2: If we set the parameter 	−�/ = `,−2�/. =u,−2�/.� = a , �� = �� = 0 in equation (13), it is easy to 

show that equation (22) reduces to the bound state energy 

spectrum of a vibrating-rotating diatomic molecule subject to 

the mie type potential as follows 

�Cc,N = a − ZS�/�ђ�
ecO��O[�NO����O�fђ� Rg

�              (26) 
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Case 3: If we set the parameters a = 0 , in the energy 

expression of equation (26), it is easy to show that equation 

(26) reduces to the bound state energy spectrum of kratzer-

Feus potential as follows 

�Qvc,N = a − ZS�/�ђ�
ecO��O[�NO����O�fђ� Rg

�              (27) 

Case 4: If we set the parameters �� = �/ = 0 , in the 

energy expression of equation (22), we obtain the bound state 

energy spectrum of inversely quadratic effective potential as 

�wx_c,N = ��.� − Z	)�-��/�ђ�
ecO��O[�NO����O�fђ� )�g

�          (28) 

Case 5: If we set the parameters 	�/ = 0, in the energy 

expression of equation (22), we obtain the bound state energy 

spectrum of inversely quadratic Hellmann potential as 

�wxyc,N = ��.� − Z	)�O)�-��/�ђ�
ecO��O[�NO����O�fђ� 	)�,)*�g

�    (29) 

Case 6: If we set the parameters 	�� = 0, �� = −��	 in the 

energy expression of equation (22), we obtain the bound state 

energy spectrum of a class of Yukawa potential as 

� = −��.� − 2�/.� − Z	)�-O�)*-��/�ђ�
ecO��O[�NO����,�fђ� 	)�O)*�g

�  (30) 

5. Conclusion 

The WKB Approximation has been studied and applied to 

Inversely Quadratic Yukawa and Inversely Quadratic 

Hellmann Potential. Although the WKB approximation is a 

quite rough numerical calculation, however our results can be 

applied to spectroscopic analysis of diatomic molecules. 
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