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Abstract: Different from other Coding, based on the Overlapped Multiplexing Principle discovered by author， a novel 

OVTDM (Overlapped Time Division Multiplexing) Waveform Coding is proposed. Instead of the encoding matrix and mapped 

signal constellation, any engineering sense band-limited Multiplexing Waveform can be employed. By its data weighted shift 

overlapped versions, the coding gain and spectral efficiency are both achieved. The heavier the overlap of the data weighted 

Multiplexing Waveform, the higher the coding gain and spectral efficiency as well as the closer the output to the optimum 

complex Gaussian distribution. The encoder structures, parameters, optimum and fast decoding algorithms, pre-coding, some 

implementation problems as well as the bit error performance are estimated and discussed. Simulations show that OVTDM is 

suitable for high spectral efficiency applications and its spectral efficiency is roughly proportional to SNR. 
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1. Preface 

Shannon Theory is well known the guidance of 

communications. If let a signaling symbol (pulse) of received 

signal to carry more information, multi-levels called level 

division should be employed. Along with the code constraint 

length increasing, the number of distinguish levels of a 

received “pulse” approaches to 1 S NP P+  carrying 

2max 0.5log (1 / )S NP P+  bits/symbol information, where S NP P  

is the signal noise ratio (SNR). Later by level division and 

assuming channel obey Nyquist criterion with bandwidth 

strictly limited to B. A continues channel was easily 

transformed to a discrete memory-less signaling symbol 

sequence with rate 2B symboles/s, i.e. a discrete memory-less 

channel. The “Shannon capacity” 2
log (1 / ) /= +

S N
C B P P bps Hz  

was easily obtained in this way. Obviously channel capacity 

may have different even better form if level division and 

Nyquist criterion are no longer employed. 

There are 2K combinations of K bits with total duration b
KT

needing 2K one to one mapping represented symbols. If the 

channel is regarded as a memory-less symbol sequence, surely 

level division, i.e. a signal constellation of 2K levels is the 

only choice. However the received signal is continuous one, 

why don’t employ 2K waveforms? It is a general knowledge 

that in a very noisy environment, people can still distinguish a 

huge number of weak voices by their waveforms rather than 

levels. 

The fatal weakness of Nuquist Criterion is that it violates 

the uncertainty principle and the no ISI (Inter-symbol 

Interference) Nyquist Channel is physically unrealizable. In 

fact, in any field X (X denotes time T, frequency F, space S, 

code C as well as their hybrid H) system, the overlapping 

between adjacent data is unavoidable, the higher the data rate 

the heavier the ISI. Why don’t to utilize ISI adroitly? The 

Overlapped Multiplexing Principle discovered by [12] reveals 

that the overlapping between adjacent and neighboring data in 

any system is never interference but a beneficial coding 

constraint relation offering benefit coding gain. The destroy 

fact coming outside the system is only the interference. The 

channel capacity will be reduced by brutally force equalizing a 

channel with code constraint into a Nyquist channel of 

thoroughly losing coding constraint relation. 

Leaving from Nyquist criterion and level division, based on 

the Overlapped Multiplexing Principle and waveform division, 

a novel OVTDM (Overlapped Time Division Multiplexing) 

waveform coding scheme is proposed in the paper. By the shift 

data weighted overlapped version of an engineering sense 

band-limited Multiplexing Waveform, there appears a 

OVTDM coding with high spectral efficiency, high coding 

gain, no coding redundancy, relative low decoding 

complexity. 

It is well known that the transmitted signal should be not 

only in complex field, but also in complex Gaussian 

distribution under additive complex Gaussian noise 
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environment. Unfortunately all nowadays coding need 

mapping to a signal constellation in complex field. Though 

most of the sequence to sequence coding is blameless, their 

final outputs can never be in complex Gaussian distribution, 

due to the mapped signal constellations are all in uniformly 

distribution. Even “shaping” scheme may centralize the signal 

constellation a little. Such modification can never solve their 

fatal weakness and gives at most 1.53 dB gain. 

Although there are non-finite field coding, e.g. [10] and 

partial response coding, as well as the superimposed coding 

[9]. However such “superimposition” is not the “shifted 

overlapping with ISI” and the key point is that they never 

leave the uniform distributed signal constellation.  

FTN (faster than-Nyquist) criticizes Nyquist signaling rate 

but insists on a strictly band-limited Nyquist channel (Sinc 

pulse is an exception?). On the other hand, so far FTN is only a 

little faster than Nyquist rather than much faster than Nyquist 

like OVTDM, and its drawback is still treats symbol 

overlapping as an interference rather than a beneficial coding 

gain. 

OVTDM belongs to a novel waveform coding, it is based on 

waveform division rather than level division and its output 

automatically approaches to optimum complex Gaussian 

distribution. OVTDM employs an engineering sense 

band-limited multiplexing waveform. By its shift data 

weighted overlapped version, OVTDM will have least output 

levels and maximum Euclidean branch distance as well as an 

approaching to optimum complex Gaussian output. 

Except Nyquist criterion another obstacle of limiting 

spectral efficiency η is the signal levels, i.e. the number of 

points in a signal constellation. People use to put 2K levels 

without coding and at least 2K+1 levels with coding for 

η=Kbits/symbol. Therefore the signal levels will be increased 

exponentially with η, even shaping may shrink the levels a 

little. For average power limited channel, the more the signal 

levels the smaller the distance between them and the lower the 

noise immunity. 

OVTDM essentially is a convolutional waveform coding 

scheme. Except the near complex Gaussian distribution 

outputs, OVTDM also has least number of output levels. For 

binary (+1,-1) data input, the output of a K folds OVTDM 

only has K+1 levels with spectral efficiency η=Kbits/symbol 

and 2K distinguished output sequences within the code 

constraint length b
KT . Since there are only K+1 levels for each 

code node, their Euclidean distance between code nodes can 

be increased at most. Surely relative higher noise immunity 

can be achieved. 

The output distribution of a K folds OVTDM with binary 

(+1,-1) input is the Kth order binomial distribution 

approaching to optimum Gaussian distribution with K. It is 

well known that polynomial and binomial distribution can all 

approach to Gaussian distribution with K. Two stage 

concatenate OVTDM structure parallel putting in orthogonal I, 

Q channels is proposed in the paper, where the 1st stage is a 

K1th order pure OVTDM (no relative shift) changing binary 

(+1,-1) input into multilevel real input and the 2nd stage is a 

K2th order shifted OVTDM making output polynomial 

distribution approach to Gaussian. The total spectral 

efficiency η of such I, Q parallel concatenate OVTDM 

structure is η= 2K1K2bits/symbol, and I, Q real distribution 

outputs together approach to complex Gaussian. 

Instead of encoding matrix and mapped signal constellation, 

any band-limited Multiplexing Waveform can be employed in 

OVTDM. By its shift data weighed overlapped version, 

coding gain and spectral efficiency η are both achieved. Then 

what is the Optimum Multiplexing Waveform? What effect is 

the channel filtering? Such problems will be discussed in the 

paper. The channel capacity of OVTDM is roughly linear to 

SNR rather than logarithm of SNR. The reason is it utilizes 

physically realizable engineering sense rather than Nyquist 

sense band-limited waveform. No matter how fast decay with 

tail spectrum outside filter’s bandwidth, physically realizable 

spectrum tail always extends to infinite. The system capacity 

should be linearly to SNR (see [15] and appendix C of the 

paper). The performance of OVTDM can go far beyond the 

Shannon capacity when spectral efficiency η is high enough, 

the reasons are as follows: 

Leaving obstacle from Nyquist criterion, recovering 

discrete memory-less sample sequences with no code 

constraint to waveforms with strong code constraint relation; 

Employing waveform division instead of level division; 

The code outputs no longer have exponentially increased 

but algebraically increased levels with spectral efficiency η. 

The Euclidean distance between nodes of OVTDM increased 

at most. 

No matter how fast decay with tail spectrum outside filter’s 

bandwidth, spectrum tail always extends to infinite rather than 

strictly no tail. 

Even only field time T coding OVTDM is discussed in the 

paper. It is easily expanded to other field X (OVXDM). 

2. OVTDM System Model 

A OVTDM Model 

The complex envelop (center frequency removed) model of 

an OVTDM system is shown in Fig.1. 

nu

( )h t
α

( )s t

( )n t

( )v t

 

Fig 1. OVTDM model 

Assuming that 0 1U [ , , ]Tu u≜ ⋯ be the transmitted i.i.d. 

(identical, independent, distribute) data sequence; ( )h t  be the 

so called Band-limited Multiplexing Waveform, which is an 

impulse response function, including all the filters in the 

system. e.g. wave-forming, transmitter, receiver, channel, 

equalizer etc. n
u  carrying Q bits be the nth transmitted data 

with duration T ; 0
E  be the transmitted data energy; α be the 

attenuation factor of the channel; 0
E Eα=  be the received 

data energy, ( )n t  be the complex envelope of additive white 
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Gaussian noise with power spectrum density 0
N . Then the 

received signal’s complex envelope is 

( ) 2 ( ) ( ) ( ) ( ),
n

n

v t E u h t nT n t s t n t= − + = +∑          (1) 

Where ( ) 0, (0, )h t t= ∉ ∆ is the employed any physical 

realizable band-limited multiplexing waveform; 

( 1)K T KT− < ∆ ≤ ; / 1K T∆ +  ≜ is the number of 

overlapped folds of ( )h t ; •    is the least integer of • . 

When [ , ( 1) ], 0,1, 2,...t nT n T n∈ + = , the received signal 

can also be represented as 

1

0

( ) 2 ( ) ( ) ( ) ( ),
K

n n i i n n n

i

v t E u h t n t s t n t
−

−
=

= + = +∑          (2) 

Where: 

( ) ( )[ ( ) ( ( 1) )]

( ) ( )[ ( ) ( ( 1) )]

( ) ( )[ ( ) ( ( 1) )]

( ) ( )[ ( ) ( )]          

n

n

n

i

s t s t U t nT U t n T

n t n t U t nT U t n T

v t v t U t nT U t n T

h t h t iT U t U t T

 − − − +
 − − − +
 − − − +
 + − −

≜

≜

≜

≜

          (3) 

( )U t  is the unite step function. 

Therefore ( )
n

v t  is just the complex convolution of 

transmitted data sequence 0 1U [ , , ]Tu u≜ ⋯  with Multiplexing 

Waveform sequence 0 1 1h( ) [ ( ), ( ), , ( )]
T

Kt h t h t h t−≜ ⋯ .  

Fig.2 is its model of waveform convolutional encoder with 

rate 1 and constraint length K. The spectral efficiency reaches 

KQη =  bits/symbol. For the sake of simplicity in Fig.2 tape 

coefficients 0 1 1, , , Kh h h −⋯ are not number sequence but 

waveform sequence 0 1 1( ), ( ), , ( )Kh t h t h t−⋯ . 

-1Kh1h0h

n
u

1n
u − 1n Ku − +...

2Kh −
...

 

Fig 2. The complex waveform convolutional encoder model of OVTDM with 

shift unit T and overlapping folds K 

For 2Q-nary real data, the output of a K folds OVTDM of 

real ( )h t will have (2 1) 1QK − + levels with spectral efficiency 

KQ bits/symbol. The reason is that since the width of symbol 

(multiplexing waveform ( )h t ) expanded K times, the original 

signal bandwidth B should be shrunk to B/K. In order to keep 

the same data rate there have to be K symbols overlapped 

together. Let the frame length be L occupying [ ( 1)]K L T+ −  

sec. carrying LQ bits. Then its spectral efficiency η becomes 

bits/s/Hz
[ ( 1)] /

L KLQ KQ

K L TB K BT
η = →

+ −
≫

       (4) 

When L K≫ , the spectral efficiency η and the capacity of 

such K folds OVTDM system will increase K times. Its output 

is binomial distribution of order K, approaching Gaussian 

distribution when 1K ≫ . 

Similarly, when ( )h t  is real, for quaternary (+1, -1, +j, -j) 

independent data steam. Any K folds OVTDM output has 
2( 1)K +  levels with spectral efficiency η=2K bits/symbol. Its 

output is orthogonal two binomial distributions of order K, 

approaching complex Gaussian distribution when 1K ≫ . 

OVTDM does destroy the one to one mapping relation 

between the input and output symbols but keeps the one to one 

mapping relation between the input sequence and the output 

sequence [2][12]. For binary data within constraint length K, 

there are 2K input binary data sequences, but also 2K output 

waveform sequences. They are absolutely in one to one 

mapping relation. Similarly, for quaternary data within 

constraint length K, there are 2K input binary data sequences 

and 2K output waveform sequences both in orthogonal I and Q 

channels. One to one mapping relation still kept. Surely 

MLSD (Maximum Likelihood Sequence Detection) should be 

employed. From the total 2K possible waveform sequences in 

each I and Q channel, to select the most possible coded 

waveform sequence that is nearest to the received signal 

waveform sequence [2][12]. 

B Power Spectrum of OVTDM 

Let the Multiplexing waveform and its spectrum be ( )h t  

and ( )H f  respectively. ( ) ( )h t H f↔  

They are a pair of Fourier transform. 

The output waveform of OVTDM and the corresponding 

spectrum are  

2 /
( / ) ( )− ↔∑ ∑ j fn T

n n

n n

u h t n T H f u e
π

             (5) 

Then output power spectrum of OVTDM is 

2

22 / * 2 ( ') /

'

'

( ) ( )
−

     =   
   

∑ ∑∑j fn T j f n n T

n n n

n n n

E H f u e E u u e H f
π π

, (6) 

Since input data is i.i.d. ( ) ( )2*

' , 'n n n n n
E u u E u δ= , formula (6) 

becomes 

( )2 2
( ) n

n

H f E u∑                             (7) 

For i.i.d. data, since only K adjacent data overlapped 

together, there are only K terms in summation. Finally the 

power spectrum of a K folds OVTDM is
2

( )K H f . That is 

completely same as its band-limited multiplexing waveform

( )h t . 

C The Difference of OVTDM from others 

OVTDM employ not level division but waveform division. 

OVTDM belong to waveform coding. Instead of the encoding 
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matrix and mapping constellation, any 

band-limited Multiplexing Waveform ( )h t

By its data weighted shift overlapped versions,

and spectral efficiency η are both achieved.

performance is only determined by ( )h t . 

optimum ( )h t ? If the restraint condition

constraint length K, the answer is very simple.

symmetry principle, rectangular ( )h t  is the 

coding constraint relation is equal and maximum.

the problem will become complicated for

condition, e.g. spectral efficiency η. Since

related to the “time–bandwidth production”

required “time–bandwidth production”? 2nd

definitions of “bandwidth” and “time duration”

definition is suitable? Or need to re-define?

uncertainty principle strictly limited bandwidth

duration signal is physically unrealizable. The

is no longer the rectangular one. For non

constraint length and relation should all be 

problem of that when moving a little part the

will be complete different. Such question can’t

nowadays coding theory. Several ( )h t

simulation in the paper. They are rectangular,

raised cosine spectrum waveform as well as

Since employing rectangular ( )h t has 

meaning, and employing other ( )h t can be

filtering in engineering. It is lucky that 

difference is not huge relative to their gain.

even the optimum ( )h t  is found, 

improvement may not huge. Any way finding

is still an open problem. 

Fig 3. Some basic Multiplexing waveforms

Some tested ( )h t in the paper as in [12] are

1
( )h t ∼ Rectangular wave with durationT

0
1/ , 1/ .

e
B T B T= =  

2
( )h t ∼ Raised Cosine wave 1 with duration

Novel High Spectral Efficiency Waveform Coding-OVTDM

 

 engineering sense 

( )h t  can be employed. 

versions, the coding gain 

achieved. The system 

( )h t  Then what is the 

condition is the coding 

simple. Due to the 

 optimum, since its 

maximum. However 

for other restraint 

Since ( )h t  should be 

production” of it. First what is 

2nd there is so many 

duration” [12]. Which 

define? According to the 

bandwidth and time 

The optimum ( )h t  

non-flat ( )h t , Code 

 changed. That is a 

the whole situation 

can’t be solved by 

( )h t  are given for 

rectangular, raised cosine, 

as their compounds. 

 some theoretical 

be approached by 

 their performance 

gain. Which tell us that 

 the performance 

finding optimum ( )h t  

 

Some basic Multiplexing waveforms  

are as follows: 

T , 

1/ , 1/ .B T B T  

durationT , 

1/ , 2 / .
e

B T B T= =

3
( )h t ∼ Raised Cosine wave 2

1/ 2 , 1/ .eB T B T= =

8 2 2

1 ( / )
( ) sin ( / )

2 (1 / )

Cos t T
h t c t T

t T

ππ=
−

wave with most energy within ( , ),

Fig 4. Power spectrum of the basic

4 1 2
( ) ( ) ( )h t h t h t= ⊗ ∼  2T

5 1 3
( ) ( ) ( )h t h t h t= ⊗ ∼ 3T

6 2 2
( ) ( ) ( )h t h t h t= ⊗ ∼ 2T

7 2 3
( ) ( ) ( )h t h t h t= ⊗ ∼ 3T

The power spectrum of 

production of their components.

Where: ~ , 1,2,3=aT a denotes

( ), l 1,2,...,7lh t = ; 0
, eB B  respectively

bandwidth and the equivalent 

fictive rectangular bandwidth 

with the same filtered power in 

OVTDM is a waveform coding

performance is controlled by h t

( )h t  would be destroyed by

channel. However the random time

(which causes frequency selective

overlapping to ( )h t  and has no

On the contrary, it is a beneficial

performance. Duo to that the additional

the coding and implicit diversity

3. A Bit Error Probability

OVTDM 

Just like the convolutional codes,

OVTDM’s bit error probability 

open problem. There were many

OVTDM  

0
1/ , 2 / .B T B T= = ; 

2 with duration 2T , 

01/ 2 , 1/ .B T B T= =  

2 2

1 ( / )

(1 / )

Cos t T

t T
∼ Raised Cosine spectrum 

( , ),T T− 01/ , 2 / .eB T B T= =  

 

basic Multiplexing waveforms  

2T , 00.6 / , 1/ .eB T B T= =  

3T , 00.4 / , 1/ .eB T B T= =  

2T , 00.75 / , 1/ .eB T B T= =  

3T , 00.45 / , 1/ .eB T B T= =  

 ( ) ( 4,5,6,7)lh t l =  are the 

ents. 

denotes the time duration of 

respectively denote the first zero 

 noise bandwidth, the last is a 

 of high (0) ( 1,2,...,8)lH l =
 white Gaussian noise. 

coding scheme. The system 

( )h t . People may worry about 

by multipath Rayleigh fading 

time dispersion of the channel 

selective fading) may put additional 

 effect to spectral efficiency η. 

beneficial factor of improving system 

additional overlapping increases 

diversity gain simultaneously. 

robability upper Bound of 

codes, Evaluating on accurate 

 is very difficult. That is still an 

many error probability upper bound 
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of ISI channel, but all gave a pessimistic and no general result. 

This chapter will give an optimistic and general result by a 

“Modified Minimum Euclidean Distance Sphere Bound” [2] 

and a non-normalized masked distribution. 

A Node error event of OVTDM 

An error event begins at t = jT , ends at 

+ ) , 0,1, 2,...t = j k K T k+ =（  

Suppose the correct data sequence be 

0 1 1 1 1 1
u [ , ,...., , , ,.... , ,...., ],

j j j j k K j k N
u u u u u u u u− + + + + + −≜ One 

error sequence with S  errors from u be 

' ' ' '

0 1 1 1 1 1
u [ , ,...., , , ,.... , ,...., ],

S j j j j k K j k K N
u u u u u u u u− + + + + + + −≜  

'

1

1
e (u u )=[0,0,...., , ,...., ,0,....,0]

2
S S j j j ke e e+ +−≜ , be the 

error sequence with S  errors, where {1,0, 1}
n

e ∈ − , 
2

,
n

n

e s=∑

and no consecutive 1K − position with no errors, i.e. no�
1

00...0
K≥ −

between adjacent 0.
n

e ≠ There are totally 
12 ( )S SK -1 −

 e
S

event with shortest length 1S K+ − and longest length

( 1)( 1) .K S K− − +  

B Node error probability and Bit error probability of 

OVTDM 

Let u be the correct data sequence, 
'u
S be its only 

alternative, than their pairwise probability is  

2' 1/2

0 0

1
(u u ) (e ) {[ ( ) '( ) ] }

2

NT

S e SP P erfc s t s t dt
N

+∆

→ = −∫≜ ,   (8) 

Where: 
2 / 21

( ) ,
2 x

erfc x e d
ω ω

π

∞

∫≜  

2
( ) ( )

2

S

n

n

E
s t u h t nT= −∑ ∼ is the correct signal, 

'
2

'( ) ( )
2

S

n

n

E
s t u h t nT= −∑ ∼ is its only alternative. 

The Euclidean distance between ( )s t and '( )s t is 

2 0

0

( ) '( ) 2 ,

( , 0,1,..., 1)

NT

S n m n m

n m

s t s t dt E e e h

n m N

+∆

−− =

= −

∑∑∫
         (9) 

Where: 

 

0 0

0

( ) ( )

( 0,1,..., 1)

NT

n m m nh h t nT h t mT dt h

n m K

+∆
∗ ∗

− −− − =

− = −

∫ɶ ɶ≜
        (10) 

Since 
2 0

0, 2,n

n

e s h= =∑  

Let:       0 0

l l
h Re h =ɶ≜  

0

( ) ( ) , 0,1,..., 1),

lT

Re h t h t lT dt l K

∆−
∗ + = −∫               (11-1) 

1
,l n n l

n

e e
S

σ −∑≜                             (11-2) 

1
0

1

,
K

S l l

l

hε σ
−

=
∑≜                              (11-3) 

2

0/d E N≜ ,                            (11-4) 

(11-4) is so called the normalized SNR. Thus (8) becomes 

1

2 22
1

(e ) {[2 (1 )] } exp{ (1 )},
2

e S S S
P erfc sd sdε ε= + < − +   (12) 

People are interested in when a node error event occurs, the 

probability of average S bits in error, i.e. 

( ) ( e )e e SP s P= ∪ ,                      (13) 

Since in Trellis diagram of OVTDM, each node represents 

one bit entering into the channel, the bit error probability bP is 

1

{ } ( ) ( e ) (e )
s

b b e e s e S

s

P E n sP s P P
∞

=

= = = ∪ ≤∑ ∑
e

,     (14) 

Since there are 
12 ( 1)S SK −− different es with S  errors, the 

union bound on ( )eP s  becomes 

1( ) 2 ( 1) { (e )},S S

e e S
P s K E P−≤ −                (15) 

Such a bound only suitable for small S and .K  when 1S ≫

or 1K ≫ , (15) may greater than 1 and becomes useless. A best 

way is to use the “Modified Minimum Euclidean Distance 

Sphere Bound” [2]， that gives 

2 (1 )( / u) ( 1)( 1) { / u}, ( 2, 2),Ssd

eP s s K E e s Kε− +≤ − − ≥ >   (16) 

There is equal probable ( 1)( 1)s K− − 'uS surrounding u , 

then 

2 2(1 ) [1 ( )]1
{ / u} , ( 2)

( 1) 1)

− + − +≥ >
− −

S ssd sd Min
E e e K

s K

ε ε u
 (17) 

Where: , (u)s iε is the conditional sε under u and its only 

alternative is
'

,u s i
. Thus 
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2

2

( ) (u) ( / u) ( 1)( 1) (u) { (1 )}

( 1)( 1) { (1 )}, ( 2, 2),

e e S

S

P s P P s s K P E exp -sd

s K E exp sd s K

ε

ε

= ≤ − − +

= − − − + ≥ >

∑ ∑
u u                                                         (18) 

Note: When 2,K = 'u
S with S bits error from u is only 

consecutive S bits different from u , therefore (17) is hold only 

for 2.K > There should be no ( 1)( 1)s K− − coefficient for

2K = . 

When 1, 0,SS ε= =  we have 

2
2(1) (2 ) e ,−= < d

e
P erfc d                      (19) 

An upper bound on bP is 

 

2

22

1

2

2

( )

( 1) ( ) { }, ( 2)

∞
−

=

∞
−−

=

= ≤ +

+ − − >

∑

∑ S

d

b e

s

sdsd

s

P sP s e

K s s e E e K
ε

     (20) 

To find an upper bound on bP , the evaluation of 
2

{ }Ssd
E e

ε− or its upper bound is of importance. 

C One upper bound on Bit error probability of OVTDM 

2=K  

At such case 1 1s
hε σ= , and according to appendix B, lσ

only exists even moments as 

 

1
2 2

1 2
0

11
E{ } ( 2 1) ,

2

0,1,2, , 1, 2, , 1,

−

−
=

− 
= − − 

 

= ⋅⋅⋅ = ⋅⋅⋅ −

∑
s

k k

l s k
i

s
s i

is

k l K

σ
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eP s
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2
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−
= =

−
− − − − −−

=

−
−−

−

− = − − 
 

−   = +    

 = +
 

∑ ∑

∑

i
k s

sd k

s k
k i

s
s i h d s i h dsd

s
i

s
h d h dsd

s

ssd h
s i

ik s

s

i
   (22) 

Finally 

We have 

( )2 22 2
1 1

1

1

1
e e e e

2

−∞
−− −

=

 +  
∑≤

s

h d h dd d

b

s

P s  

( )2 22 2
1 1

2
1

e 1 e e e ,
2

−
−− − = − +  

h d h dd d            (23) 

(23) is identical to the bound given by Viterbi and Omura [1]. 

For any physical realizable channel,
0

1 1h < , then for 2 1d ≫   

2
2,e 1; 2,d

bP d K−< =≫                 (24) 

The least favorite multiplexing waveform is the rectangular 

one with
0

1 1,h =  

[ ]2
( ) ( ) ( ) , 2= − − =h t u t u t KT K

KT
,        (25) 

2
24e 1; 2,d

bP d K− =≫≤ .               (26) 

2K>  
Although the distribution of ( 1, 2, , 1)l l Kσ = ⋅⋅⋅ − is known, 

due to the strong dependence among lσ , to find the 

distribution of ( )r sP ε  is still difficult. So far most of people 

employ numerate method, but it is unreality when 1s≫ or

1K ≫ .  

Since ( ) 0sE ε = , 
2

E{e }ssd ε− is controlled by 0sε < , 

especially its terminal of 0sε < when 2 1d ≫ . That requires 

finding the minimum energy of ( )n

n

e h t nT−∑ , such question 

had been studied by too many people in the past, there is 

impossible to list them all. On the other hand min sε must be 

related to a least favorite node error sequence, meaning 

( )1{ min } minr s s r lP Pε ε σ σ= = = .           (27) 

Node：If 1σ is not the minimum, need reordering. 

At the terminal of 0sε < , Let 1( , )s a K sε σ≅  ,  

Where: 

min
( , ) min

min 1

s
s

l

s
a K s

s

ε ε
σ

=
−

≜ ,           (28) 

 

Fig 5. The difference between  and  . 
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2 (1 )ssd
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Fig 6. Non-normalized 1'[ ( ) ]rP a K,s σ  with 1K −  times spectrum line 

Fig.5 shows the difference between the numerical evaluated 

real ( )
r s

P ε  and 1
( ( , ) )

r
P a K s σ  . sε , 1a(K,s)s are all discrete 

random variables, 1
( ( , ) )

r
P a K s σ  is always above ( )

r s
P ε , due 

to ( )
r s

P ε  has 1K − times more spectrum lines than

1
( ( , ) )

r
P a K s σ , and at the terminal of 0sε < , this two 

probabilities are equal. 

Since sε  is consisted of the summation of weighted 

identical distributed dependent . Between 

adjacent two spectrum lines of , there are no more 

than  spectrum lines of sε . 

Since ( )
r s

P ε is unknown, is known. If adding 

K-1 lines between two adjacent lines of , a new 

non-normalized distribution 1'[ ( ) ]rP a K,s σ will be obtained, 

that has total probability greater than 1, and ( )
r s

P ε will be 

masked by it (Fig.6), except in very few case, at the terminal of

0sε > ，However it is no effect to the final integration, duo to 

at 0,sε > 2 (1 )
1,ssd

e
ε− + ≪  the final integration is controlled 

only by 0sε <  (Fig.5). 

If replacing  by 1'[ ( ) ]rP a K,s σ , the expectation 

operation for  will be increased times. 

Where: 

         (29) 

0 / .s Sa Min sε< <  

When 
2 , ( , , ) 1;d K A K d s ≅≫  

2 , ( , , ) 1;K d A K d s K≅ −≫  

Otherwise 1 ( , , ) 1.A K d s K≤ ≤ −  

After such modification, we have 

22
1( , )

( ) ( , , )( 1)( 1) { },
sd a K ssd

eP s A K d s K - s e E e
σ−−≤ −      (30) 

Since 

2
1

2 2
( , ) 2

1

0

( )
{ } { },

(2 )!

∞
−

=

=∑
k

sd a K s k

k

sd a
E e E

k

σ σ          (31) 

Substitute 
2

1
{ }kE σ  into (31), we have 

2 1

2

( , , )( 1)
( ) ( , , ),

( 1)

d s

e s

A K d s s
P s e B K d s

s

− −
−

−<
−           (32) 

Where  

2 2 2 2( , ) ( , )1
( , , ) ( 2) [ ],

2

d d a K s d a K s dB K d s K e e e e− − −− + +≜     (33) 

Thus 
2

2 1

2

1
{1 ( 1) ( )[ B( , , )] },

1

d s

b

s

P e K s s K d s
K

∞
− −

=

< + − −
−∑  

2,K >                       (34) 

Especially 
2 2 2 1

2

1
{1 ( 1) ( )[ B( , , )] },

1

d s

b

s

P e K s s K d s
K

∞
− −

=

< + − −
−∑  

2
, 2,d K K >≫                              (35) 

2 2 1

2

1
{1 ( 1) ( ) A( , , )[ B( , , )] },

1

∞
− −

=

< + − −
−∑d s

b

s

P e K s s K d s K d s
K

 

2
, 2,K d K >≫                              (36) 

Now the key point becomes to evaluate ( , )a K s or 

equivalently the minimum Euclidean distance between any 

two received signals. Such task seems very difficult, duo to the 

fact when 1 1K or s≫ ≫  , the total number of the node error 

sequences is very huge. However, there is no need to evaluate 

all ( , )a K s , only evaluate several small 's s ( , )a K s  is enough, 

Then, in general such evaluations is not difficult but easy. 

Even most physical ( , )a K s  can be found by intuition way 

(appendix A). The reason is that, for the physical realizable

( )h t , series
0 0 0

1 2 1, , ..., Kh h h − is strictly monotonic decreasing 

with attenuation coefficient less than any arithmetic one. If the 

evaluation from 1, 2,..., Ms until s= , ( , ) 1,Ma K s ≤  then just let

( , ) ( , ),M Ma K s a K s s s= ∀ > , and Ms  usually is not large. 

Thus for
0

1 1h ≤ channel, a loser upper bound on bP can be 

obtained by let all ( , ) 1a K s = as 

2
2

1

1
2

( )
[1 ( 1) ( , , ) ( , )],

( 1)

∞
− −

−
=

−< + −
−∑d s

b s
s

s s
P e K A K d s B K d

K
 

0

1( 2, 1,K h> ≥                                    (37) 

Where 

2 221
( , ) ( 2) e (1 e )

2

d dB K d K − −− + +≜ ,        (38) 
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When 2 1d ≫ , we have 

2

2

2

1 1
2

3 2 0

1

( )
[1 ( 1)

2 ( 1)

1
{1 [1 ] }, ( , 2, 1),

2( 1)

∞
−

− −
=

−
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−

= + − > ≤
−

∑

≫

d

b s s
s

d

s s
P e K

K

e d K K h
K

   (39) 

It is a pity that 
0

1 1h ≤  exists only for small K. However, no 

matter in what situation, in ( )n

n

e h t nT−∑ ɶ
 at least one whole 

( ' )h t n T−  should be survived for odd s . Therefore for odd s , 

0

1
1h > is impossible, 

0

1 1h > only exists for even s . Since 

( , )a K s is monotonic decreasing function of s , there must 

exist a Ms , for , ( , ) 1Ms s a K s≥ ≤ , and let

( , ) 1 ( )Ma K s s s= ≥  .Thus only the term with ( , ) 1a K s >  

should be remained. Therefore a loser upper bound on bP can 

be obtained as 

2
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1
2

2
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1 1
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When 2 ,d K≫  

2

2

3

2
( 1)[ ( , ) 1]

1 1
2,4,...,

2

1
{1 [1 ]

2( 1)

( 1) [ 1]}
2 ( 1)

( 2, K),

− −

− −
− −

=

< + −
−

−+ − −
−

>

∑

≫

M

d

b

s a K s d

s s
s s

P e
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s s
K e
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   (41) 

When 2 ,K d≫  

2 3

2
2 1 1

1
2,4,...,

2

1
{[1 2( 1) ( , )(1 ( , )) ]

1

( 1) [ ( , , ) ( , )]}
( 1)

( 2, ).

− −

− −
−

=

< + − −
−

−+ − −
−

>

∑

≫

M

d

b

s s

s
s s

P e K B K d B K d
K

s s
K B K d s B K d

K

K K d

    (42) 

and (42) are the final results, In fact (42) is suitable for any 

SNR 2d , duo to it uses the largest upper bound (K-1) on

( , , ).A K d s  

D Bit error probability upper bound of OVTDM for special 

multiplexing waveform ( )h t 2( 1, )K d K≫ ≫  

Two special multiplexing waveforms ( )h t are considered in 

this section, they are: 

1） Rectangular waveform 

2
( ) [ ( ) ( )]h t u t u t KT

KT
− −≜ ; 

2） Truncated exponential waveform 

( ) 2 [ ( ) ( )], / , 7th t e u t u t KT b KT bαα α− − − = ≥≜  

Note: Larger truncate number b will cause smaller cut off 

power that becomes interference, b has no effect to the 

conclusion! 

Due to the following reasons to study above two waveforms 

have both theoretical and engineer importance: 

1. According to the symmetry principle, rectangular ( )h t  

uniformly distributes signal’s energy to all time delay, it 

belongs to the least favorite waveform, but has the 

simplest decoding complexity at condition of all ( )h t  

have sameη . 

2. Physical realizable ( )h t  can be looked upon as the 

different exponential waveforms’ linear combination.  

3. By employing a special “Perfect Complete 

Complementary Orthogonal Code Pairs Mate” [12], 

rectangular ( )h t  can be working well in OFDM system 

without losing performance. 

1. Rectangular ( )h t  

Its
0 2(1 / ), ( 1, 2,..., 1)lh l K l K= − = − ,            (43) 

Its least favorite node error sequence is 

� � �
2 2 2

00...0 00...0....... 00...0
K K K

xx xx xx
− − −

 

Where: xx  denotes polar alternative + − errors. The least 

favorite waveform of ( )n

n

e h t nT−∑ is shown in Fig.7 as 

 

Fig. 7. Least favorite ( )ne h t nT−∑  for rectangular ( )h t  

It can be found: 

1 2 / , ( 2, 4,6,...)

( 1) / , ( 3,5,7,...)
s

sK s
Min

s s s
ε

− + =
=  − − =

    (44) 

2
[1 ], ( 2, 4,6,...)

1( , )

1, ( 3,5,7...)

s
s

s sKa K s

s

 − = −= 
 =

     (45) 

Thus an upper bound for rectangular ( )h t on b
P is 

  
( 1)j T+ ( 1)j K T+ + ( 2 1)j K T+ +

( )j K T+ ( 2 )j K T+jT
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≫d K

K

 (46) 

2 22 / 23
2 , ( , 1)

2( 1)

d d K

bP e e d K K
K

− −< +
−

≫ ≫          (47) 

 

Fig 8. Least favorite ( )
n

e h t nT−∑  for truncated exponential ( )h t  

2. Truncated exponential ( )h t  

When 1K ≫ ,  

0 22 2(1 2 ), ( 1, 2,..., 1),T

lh e T l Kα α−= ≅ − = −     (48) 

 

Fig 9. Simulation and theoretical Comparison for rectangular ( )h t  {η~ 

spectral efficiency (bits/symbol),
2

0
/

b
d E N= , b

P =10-5 } 

The least favorite error sequence is the continues polar 

alternative ....+ − + − + −  one (Fig.8) 

It can be found: 

[1 ], ( 1,3,5,...)
1( , )

1, ( 2, 4,6...)

s
T s

sa K s

s

α − = −= 
 =

,          (49) 

Thus when 2d K≫ , an upper bound on b
P for truncated 

exponential ( )h t  is 

2

2 2
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2
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1 1
3,5,7,...

2
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1 1
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s
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s s
P e K

K

s s
K e e

K
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d K
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∑

∑
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   (50) 

Since /T b Kα = , then when 2d K≫ , 

2

2

3 3

2 / 3 3

2

1
{2 [1 1/ 2( 1)] [1 1/ 2( 1)] }

2

1
{[1 1 / 2( 1)] [1 1/ 2( 1)] }

2

d

b

bd K

P e K K

e K K

d K

− − −

− − −

≤ + − − + + −

+ − − + + −

≫

,   (51) 

(5 When 2
, 1d K K≫ ≫ ,  

2 22 / 23
2 , ( , 1)

2( 1)

d bd K

bP e e d K K
K

− −< +
−

≫ ≫ ,  (52) 

After deeply study (46), (47), (51), (52), It may be find 

when 2 /d K  is kept a constant, Pb are roughly the same. That 

means that spectral efficiency η (or channel capacity) of 

OVTDM is roughly proportional to the normalized SNR d2. 

Such conclusion is identical to the conjecture of [12] and  

also similar to [15], since no mater rectangular or exponential

( )h t  , their bandwidth is defined only by engineering sense 

rather than Nyquist strictly sense. Regardless the decaying 

speed, the spectrum tail always extends to infinite. When the 

strict bandwidth is infinite, for Nyquis ( )H f  [15] has proved 

that the channel capacity is linearly to SNR. For any ( )H f

appendix C get the same conclusion when SNR is high. 

Simulations shown next in the paper also verify such 

conclusion. Since among different ( )h t  with identical η, 

Rectangular ( )h t  is the worst due to the Symmetric Principle 

and shortest constraint length, And among lots of simulated

( )h t , when η>6, their bit error probability performances all 

close to such bound (Fig.13). Therefore (46), (47) can be 

looked upon as an upper bound on bit error probability for any

( )h t .  

4. Two Stage Concatenated OVTDM 

A Two stage Concatenated OVTDM structure and 

Implementation 

Two stage concatenate OVTDM structure parallel putting in 

orthogonal I, Q channels is proposed in Fig. 10, where the 1st 

stage is a K1th order pure OVTDM (no relative shift) 

changing binary (+1,-1) input into multilevel real input and the 

2nd stage is a K2th order shifted OVTDM making its 

polynomial distribution output approach to Gaussian 
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distribution. The total spectral efficiency of such I, Q parallel 

concatenate OVTDM structure is 1 2
2K Kη = bits/symbol, and 

I, Q real distribution outputs together approach to complex 

Gaussian distribution. 

The multiplexing waveform of the 1st stage OVTDM is a 

rectangular one with duration 1 b
K T . The multiplexing 

waveform of the 2nd stage OVTDM, denoted within blue line 

block from transmitter to receiver, is a real waveform ( )h t  

with duration 1 2
( 1)

b
T K K Tλ λ λ= ≥ . Where 1λ ≥  is the 

waveform duration expanding coefficient corresponding to a 

rectangular ( )h t  after filtering. Time duration Tλ  of ( )h t  is 

the time width of occupying at least 99.9% of the total energy 

of ( )h t , depending on the required η. Because the cut off 

energy of ( )h t  will become interference, which should be less 

than the threshold SNR’s noise level at least 10-15 dB, larger η 

should choose larger percentage of the total energy of ( )h t  

(larger λ ). 

The shift interval of the 2nd stage OVTDM is 1 b
K T . In order 

to keep the spectral efficiency η unchanged in a filtered system. 

Overlapped folds of the 2nd stage OVTDM would be 

automatically increased from 2
K  to 2 2

K K
λ λ=    , where •  

is the least integer that is greater or equal to • . 

⊗
02

⊗
1

2

⊗
1K -1

2

⋮

{ 1, 1}u ∈ + −
∑

⊗
02

⊗
1

2

⊗
⋮

{ 1, 1}u′∈ + −

⊕

û

ˆ 'u

∑

1K -12

⊗
j

bT

⇓ ⇓
1 bK T

1 bK T

⇓
Interference

    Noise

⇑

( )
f

h t

( )Sh f

 

Fig 10. Concatenate OVTDM structure. The Multiplexing waveform of the 1st stage is a rectangular one of width 1 bK T , The Multiplexing waveform of the 2nd 

stage is ( )h t  of width 1 2 bT K K Tλ λ= , 1 22K Kη = . 

The 2nd stage of shifted OVTDM with multiplexing 

waveform ( )h t  can be also denoted by Fig.10, with shifted 

interval 1 bK T  and overlapping folds 2
K λ

.The impulse response 

of ( )
f

h t  consists of all filters in transmitter, e.g. root 

transmitter filter, pre-wave-forming, pre-equalizer etc. The 

impulse response of ( )
S

h t  consists of all filters in receiver, e. 

g. root receiver filter, post-wave-forming, post-equalizer etc. 

The total multiplexing waveform of the 2nd stage OVTDM is

( ) ( ) ( )
f S

h t h t h t= ⊗ . 

MLSD should be employed in such concatenated OVTDM 

system. From the total 1 22
K K λ

 possible waveform sequences in 

each I and Q channel, to select the most possible concatenated 

OVTDM coded waveform sequence that is nearest to the 

received signal waveform sequence [2]. 

Coding steps:      

Let the I, Q orthogonal channels’ binary (+1,-1) data input 

sequences be  

, 1 , , 1
I : , u ,u ,u ,

T T T

c n c n c n− +⋯ ⋯  

, 1 , , 1
Q : ,u , u ,u ,

T T T

s n s n s n− +⋯ ⋯  

Where 1 1 1 1

1

, , , , 2 ,( 1) 1u [ , , , , ]
T

n nK nK nK n K

K

u u u u• • • • + • + −= ⋯

�����������
 ; 

• ∼  denote either c or s. 

Performing the 1st stage OVTDM operation. That is the K1 

folds Pure OVTDM operation for I, Q channel with 

rectangular multiplexing waveform of width 1 b
K T  

respectively.  

Performing the 2nd stage OVTDM operation. That is the 

2
( 1)K λ λ ≥  folds shifted OVTDM operation for I, Q channel 

with ( )h t of width 1 2
( 1)

b
T K K Tλ λ λ= ≥  respectively. Where 

the shifted interval is 1 2 2
,

b
K T K K

λ λ=    . 

Finally the complex envelop of the received signal of such 

concatenate OVTDM is 
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( ) 2 u H( )

       u H( ) + ( ),
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
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

∑

∑ ɶ

T

c n b

n

T

s n b

n

S t E t nK T

j t nK T n t

Where: E is bit energy of the received 

complex envelop of the noise. 
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 
 

∑
K

K

i

K

t i

( )
11

1

1

2 2
21

1

2 2 1

K

K

i

i

− −

− +

=

 
−  

 
∑  is the normalized 

The multiplexing waveform vector of

OVTDM is H( )t ; 

The multiplexing waveform of the 2nd 

( )h t . 

Summary: The spectral efficiency 

concatenate OVTDM is 1 2
2K Kη =  bits/symbol.

bandwidth is determined by 1 2
T K K Tλ λ λ= ≥

spectrum is determined by ( )h t . The larger 

higher the decoding complexity as well as

system bandwidth. The number of its 
12 2

2
2 ( 1)K K λ + , However QAM signal’s level

spectral efficiency is 1 222 K K , which is much

concatenate OVTDM. 

B Decoding Algorithms and Complexity

OVTDM 

Based on the complex convolutional coding

and the orthogonal property between I, Q channels,

procedure can be done independently in I and

optimum decoding algorithm is well known

the Viterbi algorithm with state (node in

1 2( 1)
2

K Kλ −  and input level number 12K

decoding complexity will be increased exponentially

1 2
K K λ

. Fast algorithms like Fano, Stack or

algorithm can also be employed when 1 2
K K

C Overlapping Parameter Selection 

OVTDM 

The spectral efficiency η depends on 

1 2
K K λ

. How to put allocation on 1
K , 2

K λ
?

offer a transform from binary data to multilevel

no coding gain. All the coding gain is offered

rectangular ( )h t , According to the symmetric

1
1K =  is the best allocation. However for

situation is different, it is still an open problem

determined by simulation. 

It is well known that under the uncertainty

duration limited signal has infinite bandwidth.
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( ) 2 u H( )

       u H( ) + ( ),



ɶ

c n b
S t E t nK T

j t nK T n t

                  (53) 

 signal; ( )n t  is the 

1 1

( )

2 ( )
H( ) 2 2 1 ,

2 ( )
−

 
 
 
 
 
 

⋮
K

h t

h t

h t

        (54) 

 coefficient; 

of the 2nd stage 

 stage OVTDM is

 of the proposed 

bits/symbol. The system 

1 2
( 1)

b
T K K Tλ λ= ≥ . Power 

 the 1 2
K K  or λ , the 

as the narrower the 

 output levels is

level with the same 

much more than the 

Complexity of Concatenate 

coding model of Fig.2 

channels, Decoding 

and Q channel. The 

known the MLSD, i.e. 

in trellis) number 

12K  [2][3][12]. The 

exponentially with

or Sphere decoding 

1 2
K K λ

 is large. 

 of Concatenate 

 the production of

2
K ? In fact, 1

K  only 

multilevel data, it offers 

offered by 2
K . For 

symmetric principle, indeed 

for uneven ( )h t , the 

problem and can only be 

uncertainty principle time 

bandwidth. Frequency 

bandwidth limited signal has 

duration and bandwidth limited signal

If a smaller λ  (or 2
K λ

) is chosen,

reduced. However the signal 

“bandwidth” (time duration or frequency

that will become interference. On

(or 2
K λ

) is chosen, the signal 

“bandwidth” is smaller, but the 

increased. There should be some

“compromise” will reduce the

“error floor” will be appeared, 

power (interference) is fixed. The

processing “bandwidth”, the

“Compromise” should be 

“bandwidth”, error floor, λ  (or

by the cut off power and the

engineering the following considerations

1. Employing FIR filter with

2. Choosing suitable λ  (or K

3. Employing a multiplexing

from filtering; 

4. Employing “Minimum error

equalize the real multiplexing

to the required ( )h t . 

5. Simulation Results

Some summary simulations

different multiplexing waveforms

Fig.12. Where the system parameters

K2=1, 2, 3, 4, 5, 6, 7, the corresponding

respectively are 2, 4, 6, 8, 10,

spectral efficiency η measured by

[12] for different multiplexing

Fig.13. 

Fig 11. Bit error probability performances 

( 1( )h t ) 

4-1): 11-26  21 

 infinite duration. Both time 

signal is physically unrealizable. 

chosen, the decoding complexity is 

 power outside its processing 

frequency bandwidth) is larger, 

On the contrary, when a larger λ  

 power outside its processing 

 decoding complexity would be 

some “compromise” chosen. Surely 

the system performance and an 

 duo to that the cut off signal’s 

The smaller power that outside its 

the lower the “error floor”. 

 considered among system 

2
K λ

). Error floor is determined 

the spectral efficiency η . In 

considerations should be noticed: 

with finite time duration ( )h t ; 

2
K λ

); 

multiplexing waveform ( )h t that is robust 

error probability equalizer” [2] to 

multiplexing waveform '( )h t  approach 

Simulation Results 

simulations of OVTDM employing 

aveforms are given from Fig.11 to 

parameters respectively are K1=1, 

corresponding spectral efficiency η 

10, 12, 14bits/symbol etc. The 

by equivalent noise bandwidth 

multiplexing waveform ( )h t  is given by 

 

Bit error probability performances of OVTDM with different η, 



22 Li Daoben:  A Novel High Spectral Efficiency Waveform Coding

Fig 12. Bit error probability performances of OVTDM with different 

η,( 2
( )h t ) 

Fig 13. Simulation comparisons of (η, d2) relations for

different ( )h t  [12] (
5

1 10bP
−= × , equivalent noise bandwidth

It can be seen that when 6η ≥ , Relation 

threshold 
2

0
/

b
d E N≜  (at BER 1 10

b
P = ×

linear relation, which is identical to the conjecture

Conclusion: The performance of OVTDM

than the M-QAM, Especially when spectral

Performance of OVTDM begin to go beyond

The lager the η, the higher the gain over Shannon

6. OVTDM with Pre-Coding 

In a pre-coded OVTDM system, the binary

Fig.14 is not directly from the source but 

output. Fig.14 are some simulations employing

and TPC (64, 57) respectively. TPC is the

Turbo Product Code or Turbo Array Code.

column codes of them are BCH (64, 57) 

Novel High Spectral Efficiency Waveform Coding-OVTDM

 

 

Bit error probability performances of OVTDM with different 

 

for OVTDM employing 

bandwidth) 

 between η and the 
51 10−

) is roughly a 

conjecture of [12]. 

OVTDM is much better 

spectral efficiency 6η ≥ , 

beyond Shannon limit. 

Shannon limit. 

 

binary (+1,-1) input of 

 from a pre-coded 

employing TPC (64, 51) 

the abbreviation of 

Code. The row and 

and BCH (64, 51) 

respectively. The code rate respectively

and (51/64)2=0.6350. 

Fig 14. The spectral efficiency of TPC

bandwidth, h2(t) [12], 
51 10bP −= × ) 

It can be seen that the pre-coding

spectral efficiency of OVTDM

spectral efficiency of OVTDM

gain will become lower. For other

that the same conclusion will be

7. OVTDM in Random

Channel 

A OVTDM performance 

Channel 

The performance of OVTDM

time dispersion) channel is studied

receiver, Optimum detection is

MLSD. As comparison a high order

efficiency η with different 

employed. Because of that OVTDM

implicit diversity gain, that 

“multipath diversity”, the larger

diversity gain of the OVTDM

extra diversity for the system employing

the high order QAM can’t be 

fading channel. 

Fig.15 shows the bit error

OVTDM with parameter (K1=1,

raised cosine multiplexing waveform

fading channel. As comparison

explicit multiple diversity are 

error probability curve of such

with the 7th order explicit diversity

4dB gain (at BER
51 10bP −= × ). 

OVTDM  

respectively are (57/64)2=0.7932 ，

 

TPC pre-coded OVTDM (equivalent noise 

 

coding gain is larger when the 

OVTDM is low. However when the 

OVTDM is getting higher pre-coding 

other kind pre-coding we believe 

be obtained. 

Random Time Varying 

 in Flat Rayleigh Fading 

OVTDM in flat Rayleigh fading (i.e. no 

studied in this section. At the 

is still the Matched filtering + 

order QAM of the same spectral 

 explicit multiple-diversity is 

OVTDM itself already have some 

 is similar to the so called 

larger the K2, the higher the implicit 

OVTDM. There is never need adding 

employing OVTDM. However 

 worked well in flat Rayleigh 

error probability performance of 

(K1=1, K2=3, η=6) employing 

waveform [12], working in flat 

comparison a 64QAM with different 

 also given. The slope of the 

such OVTDM is about the same 

diversity of 64QAM, and has about 
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(K1=1, K2=3, η=6, 2
( )h t , Frame length 1000) 

Fig 15. Simulation result of OVTDM in flat Rayleigh fading channel  

Fig.16 shows the bit error probability performance of 

OVTDM with parameter (K1=1, K2=5, η=10) employing 

raised cosine multiplexing waveform [12], working in flat 

fading channel. As comparison a 1024QAM with different 

explicit multiple diversity are also given. The slope of the 

error probability curve of such OVTDM is about the same 

with the11th order explicit diversity of 1024QAM, and has 

about 8dB gain (at BER
51 10bP −= × ). 

 

(K1=1, K2=5, η=10, 2 ( )h t , Frame length 1000) 

Fig 16. Simulation result of OVTDM in flat Rayleigh fading channel  

Conclusion: The performance of OVTDM working in flat 

Rayleigh fading channels is far beyond the high order QAM 

with the same η. When η>6, Performance of OVTDM 

working in flat Rayleigh fading channel is even better than the 

high order QAM with the same η working in AWGN channel. 

B OVTDM Multiplexing Waveforms in Multipath Fading 

Channel 

The designed multiplexing waveform and the 

corresponding spectrum respectively are ( )h t  and ( )H f . 

That is a pair of Fourier transform. 

( ) ( ) ( ) ( ) ( )F C Sh t H f H f H f H f↔ =                 (55) 

Where ( )FH f , ( )SH f , ( )CH f  respectively are the 

transfer functions of transmitter, receiver as well as the 

channel  

For AWGN channel, ( ) 1CH f ≡ . 

However for multipath Rayleigh fading channel, ( )CH f  is 

a random time varying function with impulse response 

function of its Fourier transform. 

( ) ( )
C

i i

i

H f a tδ τ↔ −∑ ɶ                             (56) 

Where ( 0,1, )
i

iτ = ⋯  represent different multipath delay; 

, ,
( ), ( 0,1, )

i c i s i
a a ja i= + =ɶ ⋯  are all i.i.d. (independent 

identical distributed) complex zero mean Gaussian random 

variables with the following properties (Rayleigh fading) 

( ) 2

' , '

1
( , ' 0,1, )

2
i i i i iE a a a i iδ∗ = ∀ =ɶ ɶ ⋯ ; 

( ) ( ) 2

, , ' , , ' , ' , 'c i c i s i s i i i iE a a E a a a i iδ= = ∀ , 
2

i
a  denotes the ith 

path’s normalized average power (variance); 

( ) ( ) ( ), , ' , , ' 0, , 'c i s i c i s iE a a E a E a i i= = = ∀ ; 

Multipath spread ( )max i j
i j

τ τ
≠

∆ −≜ . 

Obviously in multipath Rayleigh fading channel, 

multiplexing waveforms of I and Q orthogonal channels 

respectively are 

, ,
( ) ( ), ( ) ( )

I Q

c i i s i i

i i

h t a h t h t a h tτ τ= − = −∑ ∑             (57) 

( )Ih t , ( )Qh t  are all random time varying multiplexing 

waveforms with waveform duration expanding coefficient C
λ  

related to ∆ . Spectral efficiency η only depends on the original 

designed ( )h t  and is unrelated to ∆ . Larger ∆  can cause 

larger 
2

CK
λ  making decoding complexity increased. However 

larger additional implicit diversity and coding gain are 

simultaneously achieved.  

Where 

2 1 1 2( ) / , ( ) / .C

b C bK T K T T K K T
λ

λ λλ= + ∆ = + ∆           (58) 

C OVTDM performance in Multipath Fading Channel 

The bit error probability performance of OVTDM 

employing Raised Cosine multiplexing waveform in multipath 

Rayleigh fading channel is studied in this section. At the 

receiver, Optimum detection is still the Matched filtering + 

MLSD. However M-QAM can’t be worked well in such 

channel. 

In multipath Rayleigh fading channel, according to (57) 

multiplexing waveform of I and Q channel are no longer the 

same ( )h t  but respectively become ( )Ih t , ( )Qh t  which are all 

random time-varying waveforms with larger waveform 

duration expanding coefficient C
λ  related to the multipath 

spread ∆ . Although spectral efficiency η of OVTDM only 

depends on the original designed ( )h t and is unrelated to ∆ . 

Larger ∆  can cause larger C
λ  and larger 

2
CK

λ  making 

5 10 15 20 25 30 35 40 45 50 55
10

-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

E /N  (dB)

B
E

R
 &

 F
E

R

 

 
K

1
=1, K

2
=3, Raised Cosine Wave, Rayleigh flat fading, BER

K
1
=1, K

2
=3, Raised Cosine Wave, Rayleigh flat fading, FER

64QAM, AWGN channel, BER

64QAM, Rayleigh Diversity order=7

64QAM, Rayleigh Diversity order=6

64QAM, Rayleigh Diversity order=5

64QAM, Rayleigh Diversity order=4

64QAM, Rayleigh Diversity order=3

64QAM, Rayleigh Diversity order=2

10 15 20 25 30 35 40 45
10

-10

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

E
b
/N

0
 (dB)

B
E

R
 &

 F
E

R

 

 
K

1
=1, K

2
=5, Raised Cosine Wave, Rayleigh flat fading, BER

K
1
=1, K

2
=5, Raised Cosine Wave, Rayleigh flat fading, FER

1024QAM, Rayleigh Diversity order=11

1024QAM, Rayleigh Diversity order=10

1024QAM, Rayleigh Diversity order=9

1024QAM, Rayleigh Diversity order=8

1024QAM, Rayleigh Diversity order=7

1024QAM, Rayleigh Diversity order=6

1024QAM, AWGN channel, BER



24 Li Daoben:  A Novel High Spectral Efficiency Waveform Coding-OVTDM  

 

decoding complexity increased. However larger additional 

implicit diversity and coding gain are simultaneously achieved. 

The larger the /
C

λ λ , the larger the additional coding and 

implicit diversity gain. 

 

Fig 17. Simulation result of OVTDM in Multipath Rayleigh fading channel 

(K1=1, K2=3, η=6, 2
( )h t , T∆ = ) 

Fig.17 is one of such examples, which shows the bit error 

probability performance of OVTDM in multipath Rayleigh 

fading channel with parameter (K1=1, K2=3, η=6) employing 

raised cosine multiplexing waveform [12]. Under conditions 

of the following: 

1） Ideal channel estimation achieved; 

2） The time dispersion power spectrum of the channel is 

uniformly distributed with multipath spread ∆  equal to 

T; 

It can be seen that the performance of OVTDM working in 

Multipath Rayleigh fading channel is much better than that of 

in flat Rayleigh fading channel. According to [2], comparing 

with the uniform distributed time dispersion power spectrum 

of the Multipath Rayleigh fading channel, for uneven time 

dispersion power spectrum channel, the bit error probability 

curve will shift to right with the same slope at the high SNR 

region. The shifted value is depended on its uneven degree. 

However no matter which shape of the time dispersion power 

spectrum of the channel, when T∆≫  the performance of 

OVTDM working in such Multipath Rayleigh fading channel 

will converge to that of in AWGN channel [2].  

8. Conclusion 

Nyquist criterion and level division are the two obstacles of 

communications. After leaving them a novel waveform coding 

OVTDM by waveform division is revealed in the paper. The 

required 
2

0
/

b
d E N≜  is roughly proportional to its spectral 

efficiency (system capacity). That is an amazing result! So far 

we never find any coded modulation scheme with better 

performance than OVTDM. However OVTDM is only at its 

initial stage. OVTDM still has some unsolved open problems. 

We do hope there appears better waveform coding latter by 

other people.  
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Appendix 

A Some simple waves’ ( , )a K s  

To evaluate ( , )a K s or equivalently the minimum energy of 

the least favorite waveform ( )n

n

e h t nT−∑ is of importance.  

If ( ) 0, [0, ),h t t≥ ∀ ∈ ∆  Then in general, the least favorite 

error sequence is continues polar alternative ....+ − + − + −  

one, except rectangular ( )h t . Any no error 0’s between the 

adjacent errors, or no polar alternative will make 

( )
n

n

e h t nT−∑  with larger energy. Thus 

( , ) 1
1 0

1

1
( 1) ( ) , ( 2, 2),

Min K s
l

S l

l

Min s l h s K
s

ε
−

−

=

= − − − ≥ ≥∑   (A-1) 

( , ) 1
0

1

1
( ) , ( 2, 2),

Min K s

S l

l

Max s l h s K
s

ε
−

=

= − ≥ ≥∑   (A-2) 

( , ) 1
1 0

1

1
( , ) ( 1) ( ) ,

1 1

Min K s
l

S l

l

s
a K s Min s l h

s s
ε

−
−

=

= = − − −
− − ∑    (A-3) 

B B) The distribution of lσ  

The definition of lσ  is  

21
, ( 1,2,..., 1), ,− = − =∑ ∑≜l n n l n

n n

e e l K e s
s

σ   (B-1) 

lσ can also be represented as  

0

1
, ( 1,2,..., 1); 1,2,... 1; 2; 2),

in

l i i

i

x l K n s s K
s

σ
=

= − = − ≥ ≥∑≜   (B-2) 

Where: binary { 1, 1}ix ∈ − + , ( 1) ( 1) 0.5r i r iP x P x= = = − = ; 

ln is the number of gap length equal to 1l − between 

adjacent errors ;  

,l in x are independent random variables; 
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lσ  is compound binomial distributed with conditional 

characteristic function as  

( / ) { / ] ( / ),l

l

j n

l l
n E e n Cos s

ωσ
σθ ω ω=≜          (B-3) 

Since in a node error event, following the first error the 

second error can occur equal likely at the past K-1 positions. 

That means 

1
1 1

( ) ( 1) 1 ,
1

l

l

s n

n

r l

l

s
P n K

n K

− −
−  −  = − −  −  

         (B-4) 

Then the characteristic function of lσ  is 

1

0

1

1

( ) ( / ) ( )

1
[ ( / ) 2] , ( 2, 2),

( 1)

l l

l

s

l r l

n

s

s

n P n

Cos s K s K
K

σ σθ ω θ ω

ω

−

=

−
−

=

= + − ≥ ≥
−

∑
     (B-5) 

(B-5) is independent on l , therefore lσ  are identical 

distributed, and so the subscript lσ of l  can be ignored. 

Since ( )σθ ω  is an even function ofω  , σ only exists even 

number of moments as 

2
2

2 0
{ } ( 1) ( )

k
k k

k

d
E

d
σ ωσ θ ω

ω =
= −  

1 21

1 2
0 0

11 ( 2) ( 2 )
,

( 1) 2

( 1,2,...; 2; 2).

s i ks l

s l k
l i

s l K l i

l iK s

k s K

− −−

−
= =

−   − −=   −   

= ≥ ≥

∑∑
       (B-6) 

Especially 

2

2

1
{ } 0, { } ,

( 1)

−= =
−

s
E E

s K
σ σ                (B-7) 

4

2 2

1
{ } [( 1) 3(s 2)],

( 1)

−= − + −
−

s
E K

s K
σ          (B-8) 

When 1s≫  , 

2

2

1
( ) ,

2 ( 1)→∞

−=
−s

s
Lim Log

s K
σθ ω ω           (B-9) 

It is just the logarithm characteristic function of a Gaussian 

random variable with mean 0 and variance 2( 1) / ( 1)s s K− − . 

Although ( 1, 2,...)ln l =  are not independent, 

( 0,1,2,...)
i

x i = are independent, ( 1, 2,...)
l

lσ = are 

uncorrelated. 

,2

1
{ } , ( 1, 2,..., 1),

( 1)
l m m l

s
E m,l K

s K
σ σ δ−= = −

−
         (B-10) 

C The capacity of channel of non-strictly limited 

bandwidth with high SNR 

OVTDM employs physical realizable rather than strictly 

band-limited ( ) ( )h t H f↔ . In engineer people are interested 

in ( )H f  with a long tail. What is the channel capacity C for 

such ( )H f  in AWGN channel with high SNR? 

When received signal power 1,SP ≫  we cut off ( )H f by a 

fictive rectangular filter ( )
fBG f  with bandwidth ,f eB B>  

where eB  is the equivalent noise bandwidth or other engineer 

sense bandwidth, and divide ( )
fBG f into many rectangular 

sub-channels ( )
iBG f with band-width 0iB → , they are all 

Nyquist ones such that 

0,
( ) ( )

1,i f

f

B B

i f

f B
G f G f

f B

 >= =  ≤
∑  

Basic assumptions:  

2

0

-

( )G ( ) ; .

∞

∞

∀ = >∑∫≜ ≫ ，

i

i

S S B i i f e

i

P P H f f df N B i B B B  

Where: 
i

SP is the signal power of the ith sub-channel; 

, C.i

S S i

i i

P P C≅ =∑ ∑  

If both ,f SB P are sufficiently large, ( ) ( )
fBH f G f  close to 

( )H f well under MMSE criterion. The ith sub-channel’s 

capacity Ci is 

2 0(1 / )i

i i S iC B Log P N B= + ，                     (B-11) 

Thus  00 /

02 (1 / ) .
i

ii i SBC B P Ni

S iP N B e
→= + →   

0

0

/
0 /2 2 2 .

i
i S

ii i i S

C P N
BC P NC

i

e e
→∑ ∑

= = → =∩       (B-12) 

Finally we have 

2

0

,S
P

C Log e
N

=                             (B-13) 

When SNR is high, (B-13) is identical to [15], but [15] is 

only for Nyquist ( )H f  with infinite bandwidth. Any way 

when ( )H f  strictly bandwidth extends to very wide, no 

matter ( )H f is engineer sense band-limited or not, Channel 

capacity will be always linearly to SNR. 
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