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Abstract: Discrete Fourier transform (DFT) modulated filter banks (FBs) are considered as strong tools used to implement 

both dynamic spectrum access and spectrum sensing in cognitive radio (CR) systems. High time-frequency (TF) resolution for 

spectral estimation and effective spectrum access with low complexity transceivers are the basic objectives in CR systems. 

However, the limitations of self-interference in DFT FBs as well as a primary user interference increase the overall transceiver 

complexity. In this paper, we design DFT modulated FBs which take into account the aforementioned contradicting 

requirements of high resolution capabilities, efficient spectrum access and affordable implementation effort for an additive 

white Gaussian channel. Four simple designs are presented and their performance are investigated and compared for a CR 

system with basic transmission parameters resembling those of IEEE 802.11g. 
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1. Introduction 

Intensive research activities are increasing rapidly in the 

field of cognitive radio (CR) due to the importance of the 

wireless spectrum in radio communications. To exploit this 

resource, unused slots of the spectrum by so-called 

prioritized primary users (PUs) are detected to be used by 

so-called secondary users (SUs). The SUs are allowed to use 

idle spectral resources given that the resulting interference 

experienced by the PU is limited, e.g. in the framework of 

underlay, overlay or interweave CR systems [1]. 

Spectrum sensing (SSE) [2], [3] requires good 

time-frequency (TF) resolution of the employed spectral 

estimation scheme to allow for subsequent spectrum access 

(SAC). The latter in turn benefits from good TF resolution of 

the employed waveforms due to limited availability of TF 

resources to be used by the SUs. The PU traffic patterns and 

the bit-error rate (BER) specifications of SU transmission 

together with spectral masks can be used to specify the 

conditions under which SSE and SAC schemes are designed. 

An efficient transceiver architecture for implementing SSE 

and SAC simultaneously should thus employ a common 

signal processing approach for both tasks. To this end, one 

option is to use discrete Fourier transform (DFT) modulated 

filter banks (FBs) where the spectrum under consideration is 

sensed by SU receivers (RXs) and potentially accessed by 

SU transmitters (TXs) in small portions of the TF plane. 

A critical issue in the design of FBs is the TF correlation of 

FB output signals. Mutually orthogonal pulses in the TF 

plane used for inner products in the FBs can be constructed 

using DFT FBs which represent implementations of Gabor 

systems [4]. In case of mutually orthogonal pulses, zero 

intra-band and cross-band intersymbol interference (ISI) of 

SU signals as well as high accuracy for spectrum estimation 

can be achieved under certain conditions. Here, we can 

distinguish two cases. Firstly, one can consider so-called 

critically sampled DFT FBs [4]. Riesz bases in the Hilbert 

space of square-summable time signals ( )2
L ℤ  with good 

TF concentration properties of the resulting pulse to be used 

in the FB, however, cannot be constructed according to the 

Balian-Low theorem [5]. Secondly, under-critically sampled 

FBs are described in [6]. In this case, the pulse TF 

concentration can be improved at the expense of a potential 

loss in transmission rate due to the incompleteness of the 

corresponding Gabor frame and the correspondingly missing 

perfect reconstruction property. In [6], a high implementation 

complexity is required to construct a pulse 

[ ] [ ] T

0 , , 1g g L = − …g  consisting of  L  components in the 

time domain with L ∈ ℕ  in a so-called paraunitary 
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over-critically sampled FB under the lattice being dual to the 

sought for Gabor system. Besides, a semidefinite 

programming to solve a semidefinite relaxation of the 

original optimization problem with a number of constraints 

[7] has to be implemented with an additional potential final 

rank reduction method.  

In this paper, an alternative approach to the design of a 

DFT FB transceiver for SSE and SAC is proposed which 

aims at a system-specific approach taking into account SU 

BER specifications and PU interference and simultaneously 

can be implemented with limited complexity. Here, we 

consider for simplicity transmission over an additive white 

Gaussian noise (AWGN) channel. The main idea is to find a 

pulse 
 
g  to be used in both SU TXs and SU RXs that result 

from constrained optimization. The objective function is the 

maximization of the pulse TF concentration where different 

concentration measures are applied. The constraints contain 

BER specifications of the SU taking into account intra-band 

and cross-band ISI from SU signals as well as third-party 

interference including the PU signal modeled as an additive 

white Gaussian process. Therefore, as long as the constraints 

are met for given values of the signal-to-noise ratio (SNR) 

and the interference based on the chosen objective function, 

no further optimization in the sense of achieving a global 

optimum of the objective function is required. 

Four different constrained optimization approaches for 

optimizing the SSE performance and meeting a specific BER 

are presented [8]. The concentration of 
 
g

 
at a certain point 

in the TF plane is measured using different dispersion metrics. 

We consider the minimization of a heuristic dispersion 

measure as well as the minimization of leakage in TF as well 

as separately in time or frequency based on the Rihaczek 

distribution. In addition to [8], we show a practical 

application of the design in the field of wireless local area 

networks (WLANs). 

  The paper is organized as follows. Sect. 2 describes the 

system model, the modulated DFT FBs used in the SU 

transceiver and the interference experienced by the SU RX. 

In Sect. 3, we discuss the transceiver design including the 

pulse optimization based on different leakage metrics for the 

four approaches. In Sect. 4, an overview of practical 

implementation aspects of the proposed transceiver is given 

based on the WLAN standard IEEE 802.11g. Sect. 5 shows 

pulses resulting from the optimization in Sect. 3 and their 

corresponding TF energy distribution. Furthermore, 

simulations are carried out to characterize the BER 

performance of the DFT FB transceiver in different 

interference environments. Finally, conclusions are drawn in 

Sect. 6. 

Throughout the paper boldfaced characters are used for 

vectors and matrices. Furthermore, 
   
E .{ } ,   . ,  XT ,  a* , 

  
.,. ,  . ,  Diag[a]  and 

 
.   

denote expectation, the 

Euclidean norm, transposition of matrix  X , complex 

conjugation of a complex number  a , the inner product, the 

absolute value, a diagonal matrix composed of the elements 

of the vector  a  and the ceiling function, respectively. 

 

2. System Model 

2.1. Frames and Filter Banks 

The authors in [4] derive the equivalence of DFT 

modulated FBs and Gabor frames in form of a relation 

between Gabor analysis/synthesis windows and the 

analysis/synthesis prototype filters of DFT modulated FBs. 

Here, we make use of this equivalence to describe the FBs.  

The properties of a discrete-time signal 
 
x n   can be 

characterized with respect to time and frequency in the 

context of a DFT FB which contains a so-called prototype 

filter that is characterized by its discrete-time impulse 

response 
  
g n . We define a set 

   
g
ℓ,k

n  = g n − ℓN   e j2π (n−ℓN )k / K : (ℓ,k) ∈Λ{ }  in ( )2
L ℤ  as 

a Gabor system which constitutes a set of functions derived 

from 
 
g n   by time shifts   ℓN  and frequency shifts   k / K  

with 
   
ℓ,k( ) ∈Λ  and { }0, , 1KΛ = × −ℤ …  where  K  and 

 N  
are positive integers chosen according to the system 

specifications. Using 
   

g
ℓ,k

n { } , two tasks can be 

accomplished. Firstly, under the assumption of a complete set 

   
g
ℓ,k

n { }
 

, the channel state information can be acquired by 

SSE, where a received signal 
  
y[n]  is projected onto

   
g
ℓ,k

[n]  

by [ ] [ ] [ ] [ ]*

, , ,
, .

k k k

n

y y n g n y n g n
∈

= =∑ℓ ℓ ℓ

ℤ

 Secondly, SAC 

can be done by transmitting data symbols    b
(ℓ,k ) at time  ℓ 

and at frequency  k  in form of a signal 
   
b(ℓ,k )g

ℓ,k
[n] with 

   b
(ℓ,k )  being drawn from a suitable symbol alphabet. Here, 

we consider a  π / 4 -differential quaternary phase-shift 

keying (  π / 4 − DQPSK ) modulation. Consequently, both 

sensing and demodulation can be accomplished using the 

given receiver structure with identical analysis and synthesis 

windows of the Gabor system. As a result of the 

aforementioned equivalence, a Gabor system can be 

implemented using a modulated DFT FB with  K  channels, 

where in each channel the signal is filtered and 

down-sampled by a factor   N . Furthermore, the parameters 

  K  and N are chosen to be equal in order to exploit the 

complete capacity offered by the channel of SAC and offer 

both orthogonal pulses if required as well as perfect 

reconstruction ability of the resulting DFT FB [8].
 

2.2. Spectrum Sensing and Access 

The two important phases of CR, SSE and SAC, are 

modeled in Fig. 1 where we assume firstly that the switch is 

in the SSE position. In this case, the input of the SU RX 

contains a thermal noise modeled as complex zero-mean 

AWGN with variance 
 
συ

2  as well as potential interference 

resulting by third parties including the PU signal. Thus the 

input signal 
  
y[n] = υ[n] is represented at the output of the 

DFT analysis FB whose filters have the   z − transform  
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Figure 1. System model with DFT modulated FBs. 

  
G

k

*(z−1)
 

with 

( ) ( ) , 0 , , 1
k

kG z G zW k K= = −…  

where   W = e
− j

2π
K and 

  
G(z) = g[n]

n=0

L−1

∑ z− n
is the 

 z − transform of 
 
g . To this end, the signals are 

downsampled by a factor  N  and projected onto the 

corresponding pulse to provide the TF projections 
   
y
ℓ,k  

assumed to be jointly Gaussian distributed where the 

elements of the vector ,0 , 1, , Ky y − =  ℓ ℓ ℓ
…y  at the output of 

the analysis FB are given by 

[ ]* 2 ( ) /

, [ ]  e
j n N k K

k
n

y n g n N
πυ − −

∈
= −∑ ℓ

ℓ

ℤ

ℓ  

[ ] [ ]* 2 /
e

j nk K

n

n g n N
πυ −

∈

= −∑
ℤ

ℓ
 

To determine whether 
   
y
ℓ,k

 at the kth  frequency and  ℓth  

time slots is occupied for transmitting the PU signal or 

available for the SU to transmit its data, e.g. in interweave 

CR, a threshold test is performed usually in combination with 

a suitable prediction. Secondly, we assume for simplicity that 

the aforementioned SSE has indicated availability of all 

subbands for SU transmission. In this case, the switch in Fig. 

1 is in the SAC position and the SU TX vector 

,0 , 1, , Kx x − =  ℓ ℓ ℓ
…x

 
is upsampled by a factor  N  and the 

signal 
 
x n   

is synthesized by  K  synthesis filters with 

 z −  transforms
  
 G

k
(z)  according to 

[ ] [ ] ( )
1

2 /

,

0

e
K

j n N k K

k

k

x n x g n N
π

−
−

= ∈

= −∑∑ ℓ

ℓ

ℓ ℤ

ℓ

 

[ ]
1

2 /

,

0

e
K

j nk K

k

k

x g n N
π

−

= ∈

= −∑∑ ℓ

ℓ ℤ

ℓ

 

Upon reception of 
   
y ℓN + L −1  , two tasks should be 

executed at the SU RX, namely detecting 
  
x
ℓ

 and 

simultaneously taking a decision about the presence of a PU 

signal in the   ℓth  time slot [8]. Clearly, both tasks benefit 

from good TF concentration properties of 
 
g  that will be 

discussed in Sect. 5. 

2.3. Self-Interference 

If the functions 
   

g
ℓ,k{ }  are not orthogonal in both time 

and frequency domains, the demodulation of 
  
y
ℓ
 

representing sufficient statistics for the detection of 
  
x
ℓ
 in 

AWGN is subject to self-interference. We define 

    
x̂
ℓ,k

= y
ℓ,k

/ g
2

 as the estimated value of 
   
x
ℓ,k

 given by 

   
x̂
ℓ,k

= x
ℓ,k

+ ρ
Ω

IBI
(ℓ,K ) + ρ

Ω
CBI
(ℓ,K ) + ρ

Ω
RI
(ℓ ,K ) + z

ℓ,k         (1) 

where 

 

ρΩ = xλ ,κ
(λ ,κ )∈Ω
∑ ρℓ−λ , k−κ . Here, 

   
ρλ ,κ = g[n] g* n − λN  g

−2

 e− j2πnκ /K

n=0

L−1

∑ denotes a 

crosscorrelation and 
   
ρ

Ω
IBI
( ℓ ,K )

,  ρ
Ω

CBI
( ℓ,K )

 and 
   
ρ

Ω
RI
( ℓ,K )

are defined as 

the intra-band interference (IBI), the cross-band interference 

(CBI) and the residual interference (RI), respectively. 

Moreover, 
    
z
ℓ,k

= υ[n],g
ℓ,k

[n] g
−2

defines the AWGN noise 

and the third party interference contributions in 
   
x̂
ℓ,k

with 

variance equal to 
    
E z

ℓ,k

2{ } = συ
2

g
−2

= σ
z

2 . In (1), we define 

the sets 
   
Ω

IBI

(ℓ,k ) ,  Ω
CBI

(ℓ,k )  and Ω
RI

(ℓ,k )  as 

   
Ω

IBI

(ℓ,k ) = λ,κ( ) : λ ∈Ω
T,ℓ

,  κ = k{ }  

   
Ω

CBI

(ℓ,k ) = λ,κ( ) : λ = ℓ,  κ ∈Ω
F,k{ }  
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    Ω

RI

(ℓ,k ) = λ,κ( ) : λ ∈Ω
T,ℓ

,  κ ∈Ω
F,k{ }  

with index sets in frequency and time given by 

{ } { }F,
0, , 1 /

k
K kΩ = −…  

{ }T,
, , 1, 1, ,Ω = − ∆ − + + ∆

ℓ
ℓ … ℓ ℓ … ℓ  

  

∆ = L

N









 −1.  

By exploiting the central limit theorem, the IBI, CBI and RI 

contributions are modeled as zero-mean Gaussian random 

variables with variance [8] 

( ) ( ) ( )
( ) ( ) ( )

2

, , ,
, , ,IBI RICBI ( , )

IBI RICBI

2
2

,k k k
k k k

k K
λ κ

ρ λσ ρ ρ ρ ρ
Ω Ω Ω

∈Ω ∪ Ω ∪ Ω

 
 
 = + + = − −  

∑E
ℓ ℓ ℓ

ℓ ℓ ℓ
ℓ  

 Here, we consider 
 
xℓ,k  to be mutually independent 

DQPSK symbols with unit bit energy. Fig. 2 illustrates the 

self-interference affecting on demodulating the signal 
  
x

0,3
 

and the corresponding sets for 
  
x̂

0,3
 [8]. 

 

Figure 2. Self-interference to 
  
x

0,3
 with   K = 7 and ∆ = 5:  IBI, CBI and RI 

hatched vertical, horizontal and diagonal, respectively. 

3. Transceiver Design 

3.1. Optimization Constraints 

The main task in designing the transceiver in Fig. 1 is 

optimizing g  subject to certain constraints. Here, two types 

of constraints are distinguished. 

Firstly, we consider the constraints arising from system 

specifications formulated as a lower bound 
  
R

min
 on the data 

transmission rate  R  in bit/s and an upper bound 
  
P

b,max
on the 

average BER 
  
P

b
 of the SU in form of 

  
R ≥ R

min
                    (2) 

  
P

b
≤ P

b,max
.                   (3) 

The constraint in (2) is met upon choosing an appropriate 

value  K  as explained in Sect. 4 independently of the form of 

g.  On the contrary, the constraint (3) depends on g  and has 

therefore to be taken into account in the aforementioned 

optimization. In view of the Gaussian interference 

approximation in Sect. 2.3, the average BER reads [9] 

  
P

b
ζ( )  = Q

1
(a− ,a+ ) −

1

2
I

0
(a−a+ ) exp

− 1

2
(a−

2 +a+
2

)









      (4) 

with 
  
a± = a± ζ( ) = 2 ± 2( )ζ and 

 

ζ =
1

συ
2 +σ ρ

2
.

 

Furthermore, 

  
I

0
x( )  and 

  
Q

1
(a,b)  are the zeroth order modified Bessel 

function and the Marcum Q function [9], respectively. For a 

given value 
  
P

b,max
  in (3), the constraint can be formulated as 

  
 C

1
     : ζ ≥ P

b

−1(P
b,max

)              (5) 

The second type of constraints arises from implementation 

aspects. The norm of g  is limited to one, i.e. we have 

  
C

2
: g = 1.                  (6) 

Finally, in order to obtain a g  providing a system 

   
g
ℓ,k

n { }  of pulses being orthogonal in both time and 

frequency, a necessary condition reads 

[ ] [ ] { }3
C : 1 for 0, , 1g n g L n n L= − − ∈ −…    (7) 

in conjunction with L∈ ℝg  [10]. For later use, we collect the 

three constraints in (5), (6) and (7) symbolically in the vector 

  
C : [C

1
,C

2
,C

3
]. 

3.2. Objective Functions 

Our objective is the minimization of a dispersion metric of 

the pulse g  subject to the constraints   C.  Four different 

metrics are considered below. 

3.2.1. Heuristic Dispersion Measure 

A heuristic dispersion measure (HDM) is considered as the 

first approach [8]. Here, the time index  n  in g
 

is 

interpreted as a random variable whose probability 
  
Pr(θ = n) 

is defined by 
   
Pr(θ = n) = g[n]2 / g

2

. In view of (6), we have 

  
Pr(θ = n) = g[n]2

and choose the variance of θ  as the 

dispersion metric, i.e. 

   
HDM

η (g) = n2

n=0

L−1

∑ Pr(θ = n) − n
n=0

L−1

∑ Pr(θ = n)










2

 

  
= g

T
Dg − g

T
Zg( )2

           



 International Journal of Wireless Communications and Mobile Computing 2014; 2(4-1): 1-10  5 

 

with ( )2Diag 0, , 1L = −
  

D … and [ ]Diag 0, , 1L= −Z … . 

Thus the optimization problem based on the heuristic 

dispersion measure reads  

( )
( )

2
HDM HDM

arg min s.t. .
g L

η
∈

=g g C
ℤ

 

3.2.2. Time-Frequency Concentration 

In order to obtain a pulse with TF concentration (TFC), 

firstly, we measure the energy of the pulse 
  
ψ Ω∆ ,T

,Ω∆ ,F

(g)  

inside a given TF window 
 
Ω∆ ,T

× Ω∆ ,F
 based on the 

Rihaczek distribution [6]. Secondly, the leakage of the pulse 

energy outside the TF window is to be minimized. Here, we 

choose  

T T F F

,T ,F
1, , , ,

2 2 2 2

L L
∆ ∆

− ∆ + ∆ ∆ ∆   Ω × Ω = + × −  
   

…  

where 
  
L + ∆

T  
is assumed even, 

 
∆

T
 is a positive integer 

chosen as 
  
∆

T
= N

 
and 

  
∆

F
= 1/ K . The objective function 

now becomes 

  

TFCη (g) = 1−
ψ Ω∆ ,T

,Ω∆ ,F

(g)

g
2

= 1−ψ Ω∆ ,T
,Ω∆ ,F

(g) ,  

where we define [6] 

   

ψ Ω∆ ,T
,Ω∆ ,F

(g) = R
g
(n, f ) d f

f ∈Ω∆ ,F

∫
n∈Ω∆ ,T

∑  

with ( ) [ ] [ ] ( )2
R , e

j f v n

g

v

n f g n g v
π −

∈

= ∑
ℤ

known as the Rihaczek 

distribution [11]. The energy of the pulse can be formulated in 

a matrix form as
  
ψ Ω∆ ,T

,Ω∆ ,F

(g) = g
T
Sg  

where
  
S = S

n,ν{ } = ∆
F
sinc(∆

F
π (n −ν )){ }  is a 

 
L × L( ) − dimensional matrix and the reduced pulse 

 
g  is 

formulated as  

T

T T0, ,0, 1 , , ,0, ,0 .
2 2

L L
g g

 − ∆ + ∆    = +    
    

g … … …  

Therefore, the optimization problem based on pulse energy in 

TF domain is given by 

( )
( )

TFC
2

TFC
arg min s.t. .

g L

η
∈

=g g C
ℤ

 

 

where 
  TFCη (g) = 1− g

T
Sg.

 

3.2.3. Time Concentration 

In a corresponding time concentration (TC) approach, the 

concentration is only considered in time while the frequency 

window 
 
Ω∆,F

 is extended to the interval 
 
Ω

F
= 0,1 ) [8]. 

Consequently, the optimization function for TC reads 

  

TC
η (g) = 1−

ψ Ω∆ ,T
,Ω

F

(g)

g
2

= 1−ψ Ω∆ ,T
,Ω

F

(g)  

with 

   

ψ Ω∆ ,T
,Ω

F

(g) = R
g

f ∈Ω
F

∫ (n, f ) df = g n 
n∈Ω∆ ,T

∑
2

.
n ∈Ω∆ ,T

∑  

The optimized problem is formulated as 

( )
( )

TC
2

TC
arg min s.t. .

g L

η
∈

=g g C
ℤ

 

where 
  TC
η (g) = 1− g

2

. 

3.2.4. Frequency Concentration 

To formulate the frequency concentration (FC) metric, we 

extend the time window interval 
 
Ω∆,T

 to { }T
0, , 1LΩ = −… . 

The corresponding optimized problem becomes  

( )
( )

FC
2

FC
arg min s.t. .

g L

η
∈

=g g C
ℤ

 

with 

  

FCη (g) = 1−
ψ Ω

T
,Ω∆F

(g)

g
2

= 1−ψ Ω
T

,Ω∆F

(g) = 1− g
T
Sg. 

4. Practical Implementation Based on the 

WLAN Standard IEEE802.11g 

In this section we use the aforementioned DFT modulated 

FB transceiver designs to consider practical CR 

implementations with physical layer parameters resembling 

IEEE 802.11g. That is, we define the system parameters 

including the modulation scheme such that the required data 

transmission rate of IEEE 802.11g can be reached. For 

complexity reasons, DQPSK is used to avoid the need for 

channel estimation in differential detection of the received 

data symbols. In IEEE 802.11g, the minimum data rate in (2) 

to be supported by the CR system is 
  
R

min
= 54 Mbit/s . We 

assume a sampling rate α = 30 Msample/s
 

and choose 

  K = 512 . Clearly, in view of the 2-bits carried by one 

DQPSK symbol, the maximum data rate  R  results to 60 

Mbit/s. For the aforementioned parameters, we can thus leave 

subcarriers at the frequency band boundaries unloaded in 

order to have a certain separation to neighboring bands. More 

accurately, we use the 462 subcarriers in the band center and 

leave 25 subcarriers at both band edges unloaded as shown in 

Fig. 3. The resulting duration of a symbol carrying 512 

DQPSK symbols is about 
 
17 µs . 

Furthermore, we choose
  
L = 1536 = L K  as the length of 

our optimized pulse g
 

with 
  
L = 3.  Note that the TF 

concentration of g  being important for the SSE 
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performance depends mainly on the TF resolution parameters 

 
∆

T
= 512  and 

 
∆

F
= 1/ 512 . Concerning possible 

approaches for solving the optimization problems in Sect. 3, 

one has to realize that these problems are highly nonlinear. 

Thus, using interior-point (IP) and sequential quadratic 

programming (SQP) are powerful methods which can 

effectively solve our optimization problems easily and very 

reliably with a small number of iterations required for 

convergence [12], [13].  

 

Figure 3. The loaded and unloaded subcarriers for reaching the data transmission rate of IEEE 802.11g. 

Due to the large value of   K ,  a polyphase structure for 

implementing the FBs at both transmitter and receiver 

provides a considerable saving in complexity [10]. To be more 

specific, we choose the 
  
kth analysis polyphase subfilter as 

[ ] T

0 , , 1
k k k

e e L  = −  e … being obtained from g
 
by an 

 N − fold downsampling with phase shift   k,  i.e. 

  
e

k
n  = g Nn + k . 

If the transmitter and the receiver use a common hardware 

architecture, we can make use of the fact that the 
  
kth  

synthesis polyphase subfilter 
 
r

k
n   satisfies 

  
r

k
n  = e

K−1−k
n  ,  so that the synthesis filter is the 

permutation of the corresponding analysis filter which leads to 

corresponding saving in filter implementation. Note that each 

of the polyphase subfilters has a number of coefficients 
  
L = 3 

which is a factor of  K  less than the number of coefficients in 

the original pulse g.   

Now we compare the computational complexity  C  

measured in units of filter operations per second (FOPS) [14] 

required using the original FB in Fig. 1 with the complexity 

 C  due to applying the aforementioned polyphase structure. 

In the original FB implementation, the complex input signal is 

sampled at a rate α  and three real multipliers are required to 

perform the multiplication of two complex numbers. Thus we 

have for the filtering 

  
C = 3α K L = 3 ⋅30 ⋅106 ⋅512 ⋅1536 FOPS ≈ 71⋅1012 FOPS.  

By applying the polyphase structure, two real multipliers 

are required to perform the multiplication of the complex 

input signal and the real-valued coefficients of 
  
e

k
n .  

Furthermore, the polyphase subfilters are computed at a 

sampling rate 
  

α
N

. Thus,  

  

C= α
N

2 K L + K

2
ld K







≈ 315⋅10

6
FOPS,  

where 
  

K

2
ld K  is the DFT implementation complexity. The 

complexity reduction is thus 
  

C

C
= 225⋅10

3
.  

5. Performance Analysis 

The performance analysis is based on two parts. First, the 

energy concentration of the pulses governing the SSE 

performance is considered. Secondly, we study the SAC 

performance in terms of the achievable BER for a given pulse 

resulting from the constrained optimization in Sect. 3. Before 

starting the analysis, we introduce standard parameters, 

namely the signal-to-interference-plus-noise ratio (SINR) 
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ζ =
1

συ
2 +σ ρ

2
, the signal-to-noise ratio (SNR) 

  

γ = 1

συ
2

= 1

σ
z

2
, the signal-to-interference ratio (SIR)  

 

ξ =
1

σ ρ
2

 

and finally the loss due to possible self-interference and PU 

interference 

 

δ = γ
ζ

= 1+
σ ρ

2

σ υ
2

. Note that subsequently, a certain 

value δ  is assumed given for both the optimization and a 

corresponding simulation scenario. 

The TF concentration is characterized in terms of the 

leakage of the optimized pulses as a function of 
 
δ ∈ 0,3dB   

and γ , where 
 
δ = 0 dB represents a situation with zero 

self-interference, i.e. 
 
σ ρ

2 = 0.  For 
 
γ = 8dB , the resulting 

pulses are shown in Fig. 4 for the four different optimization 

approaches in Sect. 3. As can be seen, in time domain and for 

δ = 0dB, both HDM and TC based pulses take shapes being 

close to a rectangular window and show better concentration 

within 
 
∆

T
 than TFC and FC based 

  
g. A coarse inspection 

of Fig. 4 suggests furthermore that for increasing δ , the pulse 

concentration decreases and the shapes differ according to the 

type and quantity of the interference term. To judge the TF 

concentration in greater detail, the absolute value of the 

frequency-discrete Rihaczek distribution 

( ) ( )
F

F

2

,d ,d

2

R , R , df

k

K

g g

k

K

n f n f

∆+

∆−

= ∫  in [dB] is illustrated in Fig. 

5 for 
 
δ = 3dB  and 

 
γ = 8dB. For the HDM and TC cases, 

the latter shows the best concentration in time domain and 

both of them have almost zero IBI and RI, but non-zero ICI 

due to the aforementioned allowed loss. Correspondingly, the 

FC case experiences zero ICI while IBI and RI are about the 

same as for the TFC case. Next, we consider the leakage 

values 
 TCη (.),  

FCη (.) and 
TFCη (.)  for 

  HDMg ,  
TFCg ,  

TCg  and 

  FCg  as a function of 
 
ξ =γ , i.e. 

 
δ = 3dB,  in Fig. 6. Clearly, 

all leakage measures decrease for increasing values of ξ  due 

to a decreasing interference term. Apparently, as a direct 

consequence of the large value of  K , the leakage 
 FCη (.)  of 

any pulse is very close to zero and according to the pulse 

design, the leakage 
 TFCη (.) is the largest among all measured 

leakages for all pulses. Obviously, the objective function 

affects the leakage measure as can be seen from 

TCη ( TCg ),  TCη ( HDMg ),
FC and η ( FCg ) for which the 

corresponding leakages are zero. The relevant leakage 

measure for SSE in the TF domain is clearly 
 TFCη (.). Here, 

the least leakage metric is achieved by 
  TFCη (

TFCg )  which is 

almost identical to 
  FCη (

FCg ).   

The BER performance is considered for two cases in Fig. 7, 

namely interference-free transmission with bi-orthogonal 

pulses and thus 
 
δ = 0 dB  as well as transmission with 

interference and non-orthogonal pulses where again 
 
δ = 3dB . 

In the first case, it is seen that both 
  
P

b
 resulting from 

optimization (opt) and simulations (sim) are identical to the 

theoretical expressions for DQPSK in AWGN (4). However, 

for 
 
δ = 3 dB,

 
the self-interference is not Gaussian anymore 

so that a deviation of the simulated BERs from the ones in the 

optimization constraints arises where the latter are higher than 

the former. This in turn can be taken into account in the 

optimization procedure as long as the deviation is less than  δ . 
For example, if we want to design a system based on the TFC 

optimization criterion with 
 
δ = 3dB  maximum allowable 

interference and 
 
γ = 12dB where the deviation between the 

both curves in Fig. 7 can be observed to be 1.7 dB, a value of 

 
ζ = 12 dB −1.3 dB=10.7 dB  should be employed in the 

optimization to satisfy the BER constraint. 

6. Conclusions 

Trading implementation complexity in a cognitive radio 

transceiver against high-resolution spectrum sensing and 

minimum bit-error rate performance in spectrum access can 

be taken into account in the design of suitable DFT 

modulated filter banks. The system specifications translate 

into a constrained optimization procedure for finding 

corresponding prototype filter coefficients. If the design is 

applied to a system with characteristics similar to 

IEEE802.11g, the system specifications can be met by 

properly treating interference phenomena arising from both 

third parties as well as from self-interference in the filter 

bank. The transceiver complexity can benefit from the 

polyphase implementation of DFT modulated filter banks. 

The approach is currently extended to the case of 

time-/frequency selective fading channels [16] where the 

channel parameterization translates into properties of the 

corresponding TF signal representations, and the resulting 

pulses will be applied to indoor cognitive radio environments. 
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Figure 4. The optimized pulses in case of different values of δ using HDM, TFC, TC and FC and 
 
γ = 8dB.  

 

Figure 5. Energy concentration in TF plane based on frequency-discrete Rihaczek distribution 
   
R

g,d
(n,k)  using HDM, TFC, TC and FC for 

 
δ = 3dB and

 
γ = 8dB.  
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Figure 6. Leakage values of 
 TC
η (.),  

FC
η (.) and 

TFC
η (.) for 

  HDMg ,  
TFCg ,  

TCg
FC

 and g as a function of ξ = γ and 
 
δ = 3dB.

 

 

Figure 7. BER performance in AWGN with DQPSK signaling in case of 
 
δ = 0dB  (no interference) and 

 
δ = 3dB  (with interference). 
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