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Abstract: This paper describes a new approach for the visual pose estimation of an uncertain robotic manipulator using 

ANFIS (Artificial Neuro-Fuzzy Inference System) and two uncalibrated cameras. The main emphasis of this work is on the 

ability to estimate the positioning accuracy and repeatability of a low-cost robotic arm with unknown parameters under 

uncalibrated vision system. The vision system is composed of two cameras; installed on the top and on the lateral side of the 

robot, respectively. These two cameras need no calibration; thus, they can be installed in any position and orientation with just 

the condition that the end-effector of the robot must remain always visible. A red-colored feature point is fixed on the end of 

the third robotic arm link. In this study, captured image data via two fixed-cameras vision system are used as the sensor 

feedback for the position tracking of an uncertain robotic arm. LabVolt R5150 manipulator in our laboratory is used as case 

study. The visual estimation system is trained using ANFIS with subtractive clustering method in MATLAB. In MATLAB, the 

robot, feature point and cameras are simulated as physical behaviors. To get the required data for ANFIS, the manipulator was 

maneuvered within its workspace using forward kinematics and the feature point image coordinates were acquired with the two 

cameras. Simulation experiments show that the location of the robotic arm can be trained in ANFIS using two uncalibrated 

cameras; and problems for computational complexity and calibration requirement of multi-view geometry can be eliminated. 

Observing Mean Square Error (MSE), Root Mean Square Error (RMSE), Error Mean and Standard Deviation Errors, the 

performance of the proposed approach is efficient for using as visual feedback in uncertain robotic manipulator. Further, the 

proposed approach using ANFIS and uncalibrated vision system has better in flexibility, user-friendly manner and 

computational concepts over conventional techniques. 
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1. Introduction 

The positioning problem of robot manipulators using 

visual information has been an area of research over the last 

40 years. Attention to this subject has drastically grown in 

recent years. The feedback loop using visual information can 

solve many problems that limit applications of current robots: 

automatic driving, long range exploration, medical robotics, 

aerial robots, etc. 

Neural networks are good candidates for approximating 

non-linear transformation functions because they possess the 

following desirable features. Firstly, neural networks have 

the capability to learn from experience. They do not require 

explicit programming to acquire the approximate model. 

Secondly, neural networks may approximate arbitrary non-

linear mappings subject to the availability of unlimited 

number of processing units. Thirdly, because of their massive 

parallel architecture, the data processing is fast. In the field of 

robotics, neural networks have been applied in the following 

problems: to solve the inverse kinematic problem of robots, 

to map the non-linear relationships in robot dynamics as an 

inverse dynamics controller, in path or trajectory planning, to 

map sensory information for robot control and in task 

planning and intelligent control. 

This paper focuses about mapping visual sensory 

information for robot control. Recently, the three-dimension 
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(3-D) vision systems for robot applications have been 

popularly studied. Baek and Lee [9] used two cameras and 

one laser sensor to recognize the elevator door and to 

determine its depth distance. Okada et al. [10] used multi-

sensors for the 3-D position measurement. Winkelbach et al. 

[11] combined one camera with one range sensor to find the 

3-D coordinate position of the target. Huang [4] addressed a 

3-D position control for a robot arm utilizing two-CCD 

vision geometry and inverse kinematics. Zhou et al. [5] used 

position sensitive detector (PSD) for high-precision parallel 

kinematic mechanisms (PKMs) in order to allow them to 

accurately achieve their desired poses. Dallej et al. [12] 

developed 3D pose visual servoing for cable driven parallel 

robots. 

An attractive approach is to have a system which learns the 

nonlinear relationship between the observed 2D feature 

deviations and the robot moments. Skaar et al. [6] developed 

a method for learning the image Jacobian, by way of least-

squares estimation, form several observations of cues along 

the approach trajectory. The method was successfully applied 

to a part-mating task. Neural networks have been applied in 

many areas of robot control, as described by Torras [13]. 

Hashimoto et al. [7] used a neural network to learn the direct 

mapping between the image deviations of four feature points 

and the joint angles of a 6-dof manipulator. A disadvantage 

to including the inverse kinematics in the mapping is that the 

learned relationship is pose-dependent, i.e. it only applies for 

positioning with respect to the target object in a particular 

location. In Wells’ observation [8], a neural network is used 

to learn the pose-independent mapping between feature 

deviations and pose-changes based images sampled from the 

workspace. Cid et al. [14] developed fixed-camera visual 

servoing for planar robot manipulators composing control 

laws by the gradient of an artificial potential energy plus a 

nonlinear velocity feedback. 

In this paper, the positioning problem of 5-DOF articulated 

robot manipulators is addressed under two fixed cameras 

configurations. The main contribution is the development of 

a new pose-independent learning method for the robotic end-

effector positioning using two uncalibrated fixed cameras and 

robotic forward kinematics. The objective concerning the 

control is defined in terms of cartesian coordinates which are 

deduced from visual information. 

The paper is organized by six sections. In section 2, the 

analysis of the R5150 robotic manipulator is performed with 

the forward kinematic modelling along with the 

mathematical treatment along with the development of the 

link coordinate diagram and the kinematic parameters. The 

theory of ANFIS technique is presented in section 3. In 

section 4, implementation of proposed system is described. 

Experimental tests and results are presented in section 5. 

Finally, the paper is concluded in section 6 with the observed 

results and future work. 

2. Robotic Forward Kinematic Analysis 

In this section, the forward kinematic analysis of a robot is 

described determining D-H parameters and calculating robot 

forward kinematics. To get the physical robotic model for 

simulating a robot in MATLAB, the link lengths and joint 

types of the LabVolt R5150 manipulator are modelled in 

Figure 1; and the link frame assignments of the robot is 

shown in Figure 2.  

 

Figure 1. LabVolt R5150 robot. 
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Figure 2. Link frame for the LabVolt R5150 robot. 

2.1. Determining D-H Parameters 

D-H parameters table is a notation developed by Denavit 

and Hartenberg, which is intended for the allocation of 

orthogonal coordinates for a pair of adjacent links in an open 

kinematic system. It is used in robotics, where a robot can be 

modelled as a number of related solids (segments) and the D-

H parameters are used to define the relationship between the 

two adjacent segments.  

Table 1. D-H parameters. 

A Link d (m) a (m) α θ Joint Limit 

1 Shoulder 0.2555 0 90° θ1 338° (-185˚, 153˚) 

2 Elbow 0 0.19 0 θ2 181° (-32˚, 149˚) 

3 Wrist 0 0.19 0 θ3 198° (-147˚, 51˚) 

4 Tool Pitch 0 0 90° θ4 185° (-5˚, 180˚) 

5 Tool Roll 0.115 0 0 θ5 360° (-360˚, 360˚) 

The first step in determining the D-H parameters is to 

locate links and then, the type of movement (rotation or 

translation) is determined for each link. As it can be seen in 

Figure 1, the robot LabVolt R5150 has five rotational joints. 

Cranks, axes and rotation angles. They are shown as a 

simplified diagram in Figure 2. Using D-H parameters 

defined in the previous steps in Table l, the robot model was 

created in MATLAB software using the Robotic Toolbox. 

Robot model in addition to previously determined D-H 

parameters contains physical parameters which is using in the 

calculation of the dynamics movement.  

2.2. Forward Kinematic Model  

The forward kinematic model represents the relations 

calculating the operational coordinates, giving the location of 

the end-effector, in terms of the joint coordinates. After 

establishing D-H coordinate system for each link as shown in 

Table 1, a homogeneous transformation matrix can easily be 

developed considering frame {i-1} and frame {i} 

transformation.  

So, the link transformation matrix between coordinate 

frames {i-1} and {i} has the following form [3]: 
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The observed robot has 3-DOF three links with a 2-DOF 

wrist mechanism. In this work, the location of the end of the 

first three links is tracked using one colored feature point. 

Since a coloured feature point is attached to the end of the 

first three links of the robot, the first three basic 

transformation matrices are calculated to get the location of 

the feature point. The final homogeneous transformation 

matrix for locating the feature point is got from the product 

of three basic transformation matrices: 
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From the position matrix P, the location of the feature 

point is calculated as along as the movement of robotic arm. 

In this work, the forward kinematics of the robot is used to 

simulate and drive the robot for learning ANFIS networks 

and driving the robot to a specified trajectory or location. 

3. Adaptive Neural-Fuzzy Inference 

System 

Adaptive Neural-Fuzzy Inference System (ANFIS) is 

developed by R. Jang [1]. ANFIS is a hybridization of neural 

network and fuzzy logic methods. This is basically type of a 

feed forward neural network which involves fuzzy inference 

system through the structure of neural network and their 

neurons. It gives the learning ability of neural network to 

fuzzy inference system. The method is mainly developed for 

the evaluations of nonlinear functions that generally 

identifies nonlinear elements on line for control system 

design and predicts chaotic time series. 

ANFIS structure is consists of five different layers such as 

fuzzy or input layer, normalization layer, product layer, 

defuzzification layer, and summation layer. Basic structure of the 

ANFIS is given in Figure 3, in which fixed node is given by circle 

and adjustable node is given by square. Suppose if there is two 

inputs x and y with one output z then ANFIS can be used as a first 

order Sugeno FIS. There are many fuzzy systems like Sugeno, 

Mamdani etc., but most popular and widely used system is 

Sugeno model due to its high interpretability and computational 

efficiency with default optimal and adaptive tools. 

 

Figure 3. Architecture of ANFIS. 

Therefore, first order Sugeno fuzzy rule can be expressed 

as follows: 

First Rule: 
1 1 1 1 1 1       ,         If x is A and y is B then Z p x q x r= + +   

Second Rule: 
2 2 2 2 2 2       ,   If x is A and y is B then Z p x q x r= + +   

where, Ai and Bi are fuzzy sets; and pi, qi and ri are 

parameters which is assigned during training process. As 
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presented in Figure 3, ANFIS structure consists all five 

layers.  

i. Layer 1 (Input layer)  

In this layer, each node is equal to a fuzzy set and output 

of a node in the respective fuzzy set is equal to the input 

variable membership grade. The parameters of each node 

determine the membership function in the fuzzy set of that 

node. 

Now output node will be defined by 
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xµ  and ( )
iB
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(MF). For example, widely used membership function i.e. 

Gaussian MF is used throughout the work. 
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where, x is the input value of the node; and ‘c’ and ‘σ’ 

determine the Gaussian membership function center and its 

width, respectively. Parameters in this layer are referred to as 

premise parameters. 

ii. Layer 2 (Product layer)  

The output of each node represents the weighting factor of 

rule or product of all incoming signals. In which 
iA

µ is the 

membership grade of x in iA  fuzzy set and 
iB

µ is the 

membership grade of y in fuzzy set iB . Here AND (Π) 

operator is used to product the input membership values. 

( ) ( )2 ,     1,2
i ii i A BO x y iω µ µ= = × =               (6) 

Each node output represents the firing strength of a rule. 

iii. Layer 3 (Normalization layer)  

Every node (circle) in this layer is a fixed node labelled as 

N. This layer is also called normalized layer. It calculates the 

ration of weight factor of the rule with total weight factor. In 

this layer, the average is calculated based on weights taken 

from fuzzy rules: 

3

1 2

,     1,2i
i iO i

ωω
ω ω

= = =
+

                         (7) 

where, iω  are normalized firing strengths. 

iv. Layer 4 (Defuzzification Layer) 

The output of every node is calculated by multiplying the 

normalized one with the consequent parameters ( , ,i i ip q r  ) of 

the linear function. Every i
th 

node in the fourth layer is an 

adaptive node given by the following node function: 

( )4 ,     1,2i i i i i i iO z p x q y r iω ω= = + + =                  (8) 

v. Layer 5: (Summation Layer) 

The single node here is a fixed node, labelled as Σ, which 

compute the overall output as the summation of all incoming 

signal. It can be expressed as follows: 

5 1 1 2 2

1 2

i i i

z z
O z

ω ωω
ω ω

+
= =

+∑                        (9) 

4. Proposed System for ANFIS-Based 

Visual Positioning Approach 

In this work, the visual positioning is trained using ANFIS 

as well as robotic forward kinematics and multi-view 

geometry. The flowchart of training process is shown in 

Figure 4. 

In this research, the first step is to test the working space 

of the robotic arm in vision. In order to do so, a m-file have 

been created in MATLAB based on the direct kinematics of 

the robotic arm and the epipolar geometry of two cameras. In 

this work, two pin-hole cameras are used; installed above and 

on the lateral side of the robot, respectively. The cameras’ 

focal length and view limits are identical as 0.002 in m and 

[0, 1024, 0, 1024] in pixels, respectively. 

The required data for ANFIS-learning is created in the 

robotic working space by varying the relative position 

between the robotic arm elements and acquiring image data 

from two cameras. The displacement between two 

consecutive elements was limited to their maximum and 

minimum ranges. This is so called as motor babbling phase, 

and the code in MATLAB is presented in Figure 5, and the 

simulation setup of robot and two cameras is shown in Figure 

6. Figure 7 represents the maneuvering points of the robotic 

arm captured by two camera views during the motor babbling 

phase. In this research, Corke’s RVC v9.10 MATLAB 

toolbox [2] is used for the simulation of robot and two 

cameras. 

 

Figure 4. Flowchart of training process. 
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To get the required data, the manipulator was maneuvered 

within its workspace using forward kinematics, and the end-

effector image coordinates were acquired from two cameras 

as shown in Figure 8. The image coordinates of these 

cameras are [u1, v1] and [u2, v2], and they are used as training 

data. Therefore, there are four inputs for ANFIS training.  

ANFIS network is trained with the Gaussian membership 

function with a hybrid learning algorithm. For the neuro-

fuzzy model in this work, 588 data points analytically 

obtained using forward kinematics, of which 294 are used for 

training and the remaining 294 are used for validating. 

 

Figure 5. Motor babbling code in MATLAB. 

 

Figure 6. Simulation setup of robot and two cameras in MATLAB. 
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Figure 7. Workspace of the robot in two camera views. 

 

 

Figure 8. Image planes of lateral side and top cameras. 

Since ANFIS is a judicious integration of FIS and ANN, it 

is capable of learning, high-level thinking and reasoning; and 

combines the benefits of these two techniques into a single 

capsule. The success for FIS is the finding of the rule base. 

The reason being that there are no specific techniques for 

converting the knowledge of human beings into the rule base 

and also in order to maximize the performance of the model 

and to minimize the output error, further fine tuning of the 

membership functions is required. Thus, when generating a 

FIS using ANFIS, it is important to select proper parameters, 

including the number of membership functions (MFs) for 

each individual antecedent variable. It is also vital to select 

appropriate parameters for learning and refining process, 

including the initial step size (ss). In the present work, the 

commonly used rule extraction method applied for FIS 

identification and refinement is subtractive clustering. The 

MATLAB Fuzzy Logic Toolbox has been used for ANFIS 

model development. The flowchart of the ANFIS training in 

the work is shown in Figure 9. 

 

Figure 9. Flowchart of the ANFIS training. 

Here the initial parameters of the ANFIS are identified 

using the subtractive clustering method. However, it is vital 

to properly define the subtractive clustering parameters, of 

which the clustering radius is the most important. It is 

determined through a trial and error approach. By varying the 

clustering radius ra with varying step size, the optimal 

parameters are obtained by minimizing the root mean 

squared error (RMSE) based on the validation datasets. 

Clustering radius rb is selected as 1.5 ra. Gaussian 

membership functions are used for each fuzzy set in the 

fuzzy system. The number of membership functions and 

fuzzy rules required for a particular ANFIS is determined 

through the subtractive clustering algorithm. Parameters of 

the Gaussian membership function are optimally determined 

using the hybrid learning algorithm. Each ANFIS is trained 

for 400 epochs. 

Gaussian membership function has been used as the input 

membership function and linear membership function for the 
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output function. Here, separate sets of input and output data 

has been used as input arguments. In MATLAB, “genfis2” 

generates a Sugeno-type FIS structure using subtractive 

clustering. genfis2 is generally used where there is only one 

output; hence here it has been used to generate initial FIS for 

training the ANFIS. On the other hand, “genfis2” achieves 

this by extracting a set of rules that simulates the data values. 

In order to determine the number of rules and antecedent 

membership functions, “subclust” function has been used by 

the rule extraction methods. Further it uses the linear least 

squares estimation to determine each rule's consequent 

equations. 

However, ANFIS itself is only suitable for single output 

system. For a system with multiple outputs, ANFIS will be 

placed side by side to produce a Multiple-output ANFIS 

(MANFIS) [1]. The number of ANFIS required depends on 

the number of required output. In this research, the cartesian 

coordinate points have to be outputted as ANFIS outputs. 

Figure 10 shows a MANFIS with three outputs; x, y and z. 

Since the input data remains the same for each ANFIS, they 

also have the same initial parameter such as initial step size, 

membership function (MF) type and number of MF. 

 

Figure 10. MANFIS with three outputs. 

The parameters used in the model for training ANFIS are 

given in Table 2 and the rule extraction method used is given 

in Table 3. Table 4 summarizes the results of types and 

values of model parameters after training MANFIS. 

Table 2. Parameters used in all the models for training ANFIS. 

Parameters used in all the models Subtractive clustering 

Input MF type Gaussian membership (‘gaussmf’) 

Input partitioning ‘subclust’ 

Output MF type Linear 

Number of output MFs One 

Training algorithm Hybrid learning 

Training epoch number 400 

Initial step size 0.01 

Table 3. Rule extraction method used for training ANFIS. 

Rule extraction method used Type 

AND method ‘prod’ 

Or method ‘probor’ 

Implication method ‘prod’ 

Aggregation method ‘max’ 

Defuzzy method ‘wtever’ 

Table 4. Results of types and values of parameters after training MANFIS. 

Results of types and values of parameters x y z 

No. of nodes 87 77 117 

No. of linear parameters 40 35 55 

No. of non-linear parameters 64 56 88 

Total no. of parameters 104 91 143 

No. of training data pairs 294 294 294 

No. of testing data pairs 294 294 294 

No. of fuzzy rules 8 7 11 

5. Simulation Tests and Results for 

Visual Pose Estimation 

Three different ANFIS are designed for visual pose 

estimation of 5-DOF robot; x, y and z, respectively. The 

proposed method gives good estimation of the position of the 

5-DOF robotic end-effector. A data set of 588 cartesian 

points analytically obtained using forward kinematics, and 

feature points captured by two cameras in the motor babbling 

phase is used for training and validation; 294 and 294, 

respectively.  

After the training is complete, the model is validated using 

a different set of data from the one used before to train the 

FIS. In Figure 11-13, the rule viewers for x, y and z are 

presented. The rule viewer displays a roadmap of the whole 

fuzzy inference process. This represents a very useful tool for 

modifying and changing the fuzzy rules. 

The validation of individual data set using ANFIS is done by 

calculating the difference between the cartesian coordinates 

deduced using robotic forward kinematics and the ones using 

ANFIS. A total of 294 observation points generated in the 

workspace for validating purpose are considered to find the 

error of the cartesian coordinates. The plot of the comparative 

results for deduced and predicted cartesian data is shown in 

Figure 14. Observing the results, the differences between FK-

based and ANFIS-based data for individual Cartesian 

coordinate (X, Y, Z) are not much in 10
-3

. Therefore, validating 

has a good estimation using the specified ANFIS models.  
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Figure 11. Rule Viewer for ANFIS x. 

 

Figure 12. Rule Viewer for ANFIS y. 

 

Figure 13. Rule Viewer for ANFIS z. 
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Figure 14. Comparative results for deduced and predicted cartesian data. 

After testing the ANFIS networks, the MSE, RMSE, Error 

Mean and Standard Deviation (STD) Errors are calculated to 

check the estimation performance; described in Table 5. 

RMSE is a useful tool for comparing the forecasting errors. 

STD is one of the indicators that show the distribution of data 

on average how much the average value away. If the standard 

deviation of the data set is close to zero, it means that the 

data are close to the average and dispersion are small, while 

large standard deviation indicates a significant distribution 

data. Observing the errors, it can be concluded that the 

proposed approach is efficient in estimating the location of 

the uncertain robotic arm. 

Table 5. Errors in training and validating of ANFIS networks. 

Data Errors 
X Y Z 

Train Check Train Check Train Check 

MSE 6.613×10-6 7.789×10-6 8.747×10-5 8.942×10-5 2.09×10-5 2.471×10-5 

RMSE 0.0025715 0.0027908 0.0093527 0.0094563 0.0045716 0.004971 

Error Mean -7.293×10-17 5.507×10-5 -5.476×10-16 -1.141×10-5 -1.447×10-16 5.924×10-6 

Error St. D. 0.0025759 0.002795 0.0093686 0.0094724 0.0045794 0.0049795 

 

6. Conclusions 

An ANFIS-based visual positioning approach using two 

cameras is proposed in this paper. The idea of using forward 

kinematic equations and two cameras for generating training 

data for ANFIS led to a nearly accurate training of the 

ANFIS network. Simulation experiments show that the 

location of the robotic arm can be trained in ANFIS using 

two uncalibrated cameras. Observing the errors, the 

estimated position of the robotic arm is efficient for visual 

feedback control. Further, the proposed ANFIS based 

approach is very useful for obtaining the position of the 

robotic arm in Cartesian coordinate system as it can work as 

a control algorithm. The Cartesian-coordinate-based learning 

can be used in robotic calibration, visual servoing and 

Cartesian controller. The authors are planning to use the pose 

tracking using MANFIS and uncalibrated cameras for the 

visual servoing of the robot in future. 
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