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Abstract: On the example of the two-criterion problem with the objective functions of the maximum, the confidence 

probabilities of the demand and the minimum of the total costs show the applicability of the method of Vector Optimization of 

Particle Swarm Optimization (VEPSO). Compared with genetic algorithms and other methods of evolutionary modeling, this 

method is easy to implement and has high efficiency, as well as the accelerated cost of an approximate solution of the problem 

from the external archive of the no dominant best solutions to the Pareto front, which is the boundary of the Pareto-optimal 

Compromise) solutions. 
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1. Introduction 

In recent decades, the problem of managing the resources 

of spare parts is becoming increasingly important. The reason 

for this is the increased requirements for quality and 

reliability of servicing complex technical systems. The task 

of placing spare parts at different levels of supply is to 

achieve maximum integrated benefits and guarantee high 

efficiency of technical training of the serviced systems. 

Despite numerous studies of this problem (see, for example, 

[1-3]), in most papers only one criterion has been optimized. 

In fact, the task of placing spare parts for maintenance 

companies should be formulated simultaneously for several 

target functions, as well as the required probability of 

sufficient volume of the order of spare parts for the planned 

period and minimization of total costs. 

Particle swarm optimization (PSO) is a kind of 

evolutionary computational technology based on the theory 

of the propensity of particles (ants, bees, birds, etc.) to 

construct a column, groups, and proposed by Eberhart and 

Kennedy [4] in 1965 The idea of the PSO-method is to 

simulate the behavior of birds when hunting for food. In this 

method, it is assumed that a group of birds reaches a food 

source randomly, while the food is in some specific area. The 

optimal strategy for finding food is to reach the nearest 

neighborhood of food from any current position of the birds. 

In the PSO-method, each individual unit is taken as a particle 

with a certain position ( )x  and ( )υ  speed. The solution of 

the problem is the optimal position ( )*x  of the particles. 

The collective system is able to solve complex dynamic 

tasks for performing collaborative work that could not be 

performed by each element of the individual system in a 

variety of environments without external management, 

control, or coordination. In such cases, talk about swarm 

Intelligence, as a special way of cooperative behavior, that is, 

survival. 

Among the so-called "Soft computing techniques", 



 Science Research 2017; 5(4): 57-64 58 

 

developed over the past 50 years for difficult to solve discrete 

optimization problems, are divided: genetic algorithms (GA) 

[5-8], based on natural selection and genetics; Ant (Art 

Colony Optimization - ACO, Art Systems - AS), modeling 

the anthill's behavior [9-12]. 

Unlike the PSO method, the multi-objective particle 

swarm optimization (MOPSO) method is formulated for 

several objective functions and makes a choice from a set of 

possible solutions. The key issue here is the appropriate 

choice of the fitness function, which measures the quality of 

the multi-criteria problem solving scheme. In accordance 

with the choice of the fitness function, the solution schemes 

in the PSO method are classified as: target polymerization 

method, Pareto dominance method, and rule-based method. 

The first of them is related to the polymerization of several 

objective functions by adding their degrees and invoking 

several objective functions into one objective function [13, 

14]. The Pareto-dominance method [15-17] best selects a 

good solution providing a global mechanism, which guides 

the MOPSO method to find a good solution with a symmetric 

distribution. In the method based on the rule [18, 19], not all 

objective functions are considered simultaneously. According 

to various limitations of the optimization problem, the fitness 

function is constructed according to the objective functions 

chosen in accordance with the rule. 

In [20], an improved MOPSO method for implementing 

spare parts in the multi-criteria optimization model was 

proposed, which provides the maximum confidence in the 

chosen amount of spare parts and the minimum costs 

accepted as objective functions. Dimension reduction and 

multicriteria optimization are used to increase the 

effectiveness of the MOPSO method. 

2. Formulation of the Problem 

Consider a spare parts management system consisting of 

two echelons. The first echelon is a firm auto service 

company (AC), engaged in the repair and maintenance of 

cars, and the second echelon - the supply center for spare 

parts (parts) of these cars. Spare parts differ in the standard: 

engine ( )1i = , body ( )2i =  and suspension ( )3i = . 

In contrast to [20], we will consider in the first echelon one 

type of service (equipment), in our case it is a car and one 

serving j - th inventory (inventory of the first echelon). As in 

[20], it is believed that the first echelon acquires (purchases) 

the necessary spare parts in the same local inventory center 

(inventory of the second echelon). The task of placing 

deliveries of spare parts from the second echelon to the first 

will be solved under the following assumptions: 

1) The demand for each type of vehicle parts is subject to 

one of six parametric distributions (exponential ( )1j = , 

normal ( )2j = , lognormal ( )3j = , We bull ( )4j = , 

diffusion-free no monotonic ( )5j = , diffusion 

monotonic ( )6j = ); 

2) Each of the parts of the car is of equal importance and 

the failure of one of them causes the failure of the car 

itself; The second echelon supplies spare parts to a set 

of first-tier inventories, including the AC under 

consideration, with all first-tier inventories having 

roughly the same average demand and the same 

maximum allowable levels for each type of spare parts. 

3) Each of the failed parts is replaced respectively with a 

spare part and sent to a repair base; 

4) The second echelon supplies spare parts to a set of 

first-tier inventories { } ( )m 0АСP , 1, ,m m= … , 

including the AC under consideration, with all first-tier 

inventories having roughly the same average demand 

( ), 0E 1, ,i m m m= … and the same maximum allowable 

levels ( )max
, 0S 1, ,i m m m= …  for each type of i - th spare 

parts. 

To solve the problem, the following notations are used: 

i  - number of the type of spare parts; 

n  - the total number of types of spare parts (in our case 

3N = ); 

PST  - period of replenishment of spare parts in the first 

echelon; 

mT  - period of replenishment of spare parts in the second 

echelon; 

iE  - average demand for spare parts of the first type in the 

first echelon in the previous period; nonT ; 

iS  - the required (to be determined) number of i -th type 

spare parts in the first echelon in the planned period 

nonT ; 

oiS  - number of spare parts of the i - th type in the second 

echelon in the planned period; 

( )iE B S    - expected deficit in spare parts in the first 

echelon for a fixed value iS ; 

( ),i oiE D S S    - expected deficit in spare parts of the i -th 

type in the second echelon at fixed values iS and oiS ; 

ix  - the actual value of the accumulated demand for i - th 

type spare parts in the first echelon at some point in 

time from the previous period nonT ; 

( )iP x  - probability of the accumulation of demand for 

spare parts of the i  -th type in the first echelon at 

some point in time from the previous period nonT ; 

iξ  - the probability of a deficit in spare parts of the i - th 

type in the second echelon at fixed values iS and oiS ; 

iη  - probability of a deficit in spare parts of the first i -th 

type in the first echelon with a fixed iS ; 

max
iS  and max

oiS  - the maximum permissible level of spare 

parts of the first i  - th type in the first and second 

echelon, respectively; 

ix′  - the amount of deficit in spare parts of the first i  - th 

type in the first echelon for a fixed iS ; 
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oiE  - average demand for spare parts of the i -th type in 

the second echelon; 

iC  - spare part price of i -th type; 

oiT  - average time between failures (average operating 

time) of parts of the i -th type.  

3. Preparatory Part of the Model 

(1) Expected demand for spare parts in the first echelon. 

The expected value of the demand for i  -th type spare 

parts in the first echelon is defined  

( )
0

1

, ,

k

i i k i k

k

E x P x= ⋅∑                           (1) 

where is the { },i kx  sequence of accumulated failures of the 

car i  - th type parts belonging to the cars, received for 

maintenance in the considered AC during the first k  working 

day from the previous replenishment period consisting of 0k  

working days.  

Here ( ) ( )*
,,

, i kdem i
i k x xj

d
P x F x

dx
== , where *

,dem ij
F  is the best 

(in the sense of greatest consistency with the empirical 

distribution function) distribution function from the above 

list of six theoretical parametric distributions. For the 

particular example considered in the previous paper [21], 

specific example 
*

,1 5demj = ,
*

,2 5demj = ,
*

,3 4demj =  

The approximate value for ( )iP x  can be determined from 

formula 

( ) ( ) ( )( )* *
, ,

, , , /
dem i dem i

i k i k i kj j
P x F x F xα α= + − , 

Where: α  is a sufficiently small positive number. 

(2) The relative shortage ratio in spare parts in the first 

echelon. 

The expected deficit in type-I spare a part in the first 

echelon is defined as 

( ) ( ) ( )
1i i

i i i i

x S

E B S x S P x

∞

= +

  = − ⋅  ∑ .          (2) 

Expected relative deficit, i.e. the probability of a i -th type 

deficit in the first echelon is defined as  

( )i

i
k

E B S

E
η

  = .                          (3) 

(3) Relative shortage ratio of spare parts in the second 

echelon. 

The situation when the actual demand in spare parts of the 

i -th type exceeds the level of their stock in the first echelon, 

necessitates an additional order sent to the second echelon. 

Consequently, the probability of demand for spare parts of 

the i -th type in the second echelon ( )0 iP x′  is defined as 

( )
( )

( )0

0

    при  0,

при  0.
i

i

i i i

S
i

i i

x

P x S x

P x
P x x

=

′ ′ + >
′ =  ′ =

∑

       (4) 

On the basis of (4), the expected demand for spare parts of 

the i -th type in the second echelon 

( )0

0i

oi i i

y

E y P y

∞

=

= ⋅∑ .                          (5) 

Expected replacement parts deficit i -th type in the second 

tier is defined as 

( ) ( ) ( )0

1

,

i oi

i oi i oi i

y S

E D S S y S P y

∞

= +

  = − ⋅  ∑        (6) 

and the probability of a deficit in spare parts of the i  -th type 

in the second echelon is represented in the form 

( ),i oi

i
oi

E D S S

E
ξ

  =                            (7) 

In the absence of data on oiS and oiE , we shall assume iξ  

that it is small, for example 0,05iξ = . 

(4) Average delay time for receipt of spare parts in the first 

echelon. 

The delay in the receipt of spare parts in the first echelon 

occurs in two cases. In the first case, when there is a deficit 

in spare parts in the first echelon, while in the second echelon 

there is a sufficient number of these spare parts. Then the 

arrival delay time is expressed in the form ( ) 11 i nonTξ η− ⋅ ⋅ . 

In the second case, when there is a deficit in spare parts both 

in the first and second echelons. Then the arrival delay time 

is ( )1 i non mT Tη ξ⋅ ⋅ + . Consequently, the average delay in the 

receipt of spare parts of the first i - type in the first echelon is 

presented as: 

( ) ( )1 PZ 1 PZ 1 PZ 11oi i i m i mT T T T T Tξ η ξ η η ξ η= − ⋅ ⋅ + ⋅ + = ⋅ + ⋅ ⋅  (8) 

(5) Confidence in meeting the demand for spare parts of 

the i -th type 

Statistical modeling of demand is carried out on the basis 

of failure statistics in the previous planning period. The 

identification of the best model of demand (or, what is still, 

the model of accumulated failures) and the mean time 

between failures were investigated by us in the previous 

paper [21]. 

In order to determine the average time between failures of 

i -th type parts ( oiT ) in [21], the following random variables 

(briefly r.v.) are introduced into consideration: r.v. operating 

time ( )T  to failure with values t  and r.v. Operating time 
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before the r -th failure ( )rT with values rt ; r.v. the number 

of failures ( )R  with values r  and 
0r

R  - r.v. with values 

0r r≤ , where 0r  - is some fixed number. In this case, the 

relations
0 0

0r rT RTµ µ= ⋅  and 
0 0

r rT Rν ν=  are satisfied, where 

µ  and ν  is the mean value and variance of the r.v., and 

between the distribution functions of the quantities  

( ) ( )
( ) ( )

0 0 0

0 0 0 0 0 0

0

0

; ,

; , ; ,

r r r

r r r r r r

T T T

T R T R R R

F t Bep T t r r

F t T F r

µ ν

µ ν µ ν

= ≤ ≤ =

⋅ =
         (9) 

The value oiT  of the quantity is found from the solution of 

equation 

( )
н
, 0

PZ
r
i k

T iF T α= = , 

0

н
,i kr  - Cumulative number of failures by the end of the 

period PZT  ( )0k k= ; 
mp

i iα π∂=   

(
mp
iπ∂ - indicator of the adequacy of providing non-

renewable parts of the i -th type). 

In the case of Weibull distribution ( )*
,3 4demj = , we have 

н
3

н
3

н
3, 0

PZ

0,3 1/

3

1

1
ln

1

r

R
r

r
k

R

R

T

T ν

ν

µ
α

 ⋅Γ + 
 =

  
⋅   −   

, 

where: ( )xΓ  is the gamma function.  

In the case of a diffusion nonmonotonic distribution

( ) ( )* *
,1 ,2 5dem demj j= = , the above equation for finding ,o iT  

( )1 и i 2i = =  can be written in the form of a nonlinear 

equation ( ) 0f x = , wherev ,o ix T= , ( ) ( )
11

PZqT if x F T α
+

= − . 

This equation is solved by Newton's method using the 

iterative procedure 

( )
( )1

m
m m

m

f x
x x

f x
+ = −

′
. 

As an initial approximation, one of two simple estimates is 

taken for ,o iT : 

( ) 0

0

1

,
0 ,1

1 1
k

o i
i kk

T
k r=

= ∑ , 
( ) 0
2

, н
0 ,1

1
k

o i

i kk

k
T

k r=

= ∑ . 

Then the steady-state confidence probability of the spare 

parts of the i -th type in the first echelon will be written in 

the form: 

oi
i

oi Di

T
P

T T
=

+
                            (10) 

Multiplying the numerator and the denominator on the 

right-hand side of (10) by iE , taking (2) and (3) into account, 

we obtain 

( ) ( )( )
, 1

, ,

1i k

oi i
i

oi i i k i i k non i m

x S

T E
P

T E x S P x T Tξ
≥ +

⋅
=

⋅ + − ⋅ + ⋅∑
 (11) 

Therefore, the confidence probability (support probability) 

of meeting the demand for all spare parts takes the form: 

1

n

s i

i

P P

=

= ∏                                 (12) 

(6) Multi-criteria model of location and optimization. 

Taking into account 0oi iS m S= ⋅  the relationship, the 

problem of allocation and optimization of spare parts can be 

written in the form: 

1 , ,
max

ls s…
 

( ) ( ) ( )
,

,

, , ,1

1i k i

n
o i i

s

o i i i k i i k non i mi

x S

T E
P

T E x S P x T Tξ=
≥ +

⋅
=

+ − ⋅ ⋅ + ⋅∏ ∑
  (13) 

1 , ,
max

ls s…
( )0

1

1

n

s i i

i

C C m S

=

= + ⋅∑ .                 (14) 

with restrictions: 

( ) ( )
,

, ,

1
0 1, 1, ,

i k i

i k i i k

x S

i

x S P x

i n
E

≥ +

− ⋅

≤ ≤ ∀ =
∑

… .    (15) 

max0 i iS S≤ ≤ , iS - integer, 1, ,i n∀ = … .      (16) 

Equations (13) and (14) represent an optimization 

criterion, the first of which maximizes the confidence 

probability of satisfying demand, and the second maximizes 

the cost of realizing the demand for spare parts. Restrictions 

(15) mean that the relative deficit in spare parts of each type 

is not less than zero and not more than one. 

Restrictions (16) mean that the number of spare parts of 

each type in the first echelon in the planned replenishment 

period should not exceed its maximum permissible limit 

value. 

4. The Method of Multicriteria 

Optimization of Particle Swarm 

Behavior (Multi-Objective Particle 

Swarm Optimization  

Method-MOPSO-Method) 

The MOPSO method, or as it is also called the Vector 
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Evaluated PSO (VEPSO) method, is proposed by 

Parsopoulos and Vrahatis [14, 23]. This method of the swarm 

approach to the multicriteria problem is based on the idea of 

the genetic algorithm for solving the multicriterion problem 

(Vector Evaluated Genetic Algorithm - VEGA), proposed by 

Schaffer [24]. 

The essence of MOPSO-method is the following: 

Let the optimization problem consist of k  objective 

functions. 

Then, to solve the problem, k  swarm populations 

consisting of particles are µ - used (in our case these are 

arbitrary parts of the car, considered independently of their 

type nomenclature). 

Instead of the index i  usually used to denote particles µ , 

we will use the index for their designation, leaving the index 

to denote the type of particles. 

Each swarm s -population ( 1, ,s k= … ) characterizes the 

µ -particle as a point in a set of S  n -dimensional space 

[ ] [ ] [ ] [ ]( )1 2, , ,
s ss s

nx x x xµ µµ µ= … , the velocity of a µ  -particle in the 

s  - swarm population is denoted as a vector 
[ ]s
µυ  with 

components 
[ ] ( )1, ,
s

i i nµυ = … , and denotes 

[ ] [ ] [ ] [ ]( )1 2, , ,
s ss s

np p p p Sµ µµ µ= ∈…  the best position that a point 

necessarily visits 
[ ]s

xµ , 
[ ]s

ipµ -a vector with components

[ ] ( )1, ,
s

ip i nµ = … . 

Then the process of vector 
[ ]s

xµ  correction is represented 

by an iterative scheme 

[ ] ( ) [ ] ( ) [ ] ( ) [ ] ( )( ) [ ] ( ) [ ] ( )( )1 1 2 21
s s s s q s

i i i i gi it w t c r p t x t c r p t x tµ µ µ µ µυ υ+ = ⋅ + − + −                                         (17) 

[ ] ( ) [ ] ( ) [ ] ( ) [ ] ( )( ) [ ] ( ) [ ] ( )( )1 1 2 21
q q q q s q

i i i i gi it w t c r p t x t c r p t x tµ µ µ µ µυ υ+ = ⋅ + − + −                                        (18) 

[ ] ( ) [ ] ( ) [ ] ( )1 1
s s s

i i ix t x t tµ µ µυ+ = + +                  (19) 

[ ] ( ) [ ] ( ) [ ] ( )1 1
q q q

i i ix t x t tµ µ µυ+ = + +                  (20) 

where w - is a positive parameter, called the inertial weight; 

1c and 2c  - positive constants, called respectively cognitive 

and social parameters; 1r  and 2r  is the realization of two 

independent random variables, which are assumed to be 

uniformly distributed in the interval ( )01, . Here 
[ ]q

gp - the 

best position in the q -th swarm population, which is 

calculated by the q -th objective function, i.e. for all l  c, 

l ix NG∈ , 
[ ]( ) [ ]( )q q

q g q ef p f p≤  if the objective function qf  

is minimized and 
[ ]( ) [ ]( )q q

q g q ef p f p≥  if the objective 

function is qf  maximized. Here iNG S⊆  is the set of 

neighbors of a point ix , i.e. points ex  from a neighborhood 

of a point ix . In formulas (17) - (20) t  it means the iteration 

number. 

In the case of two objective functions, the iteration scheme 

(17) - (20) can be written in the form [20]: 

( ) ( ) ( ) ( )( ) ( ) ( )( )1 11 1 1 1 1 1 2 2 2 11
i i gi ip x p xS t S t c r S t S t c r S t S t

µ µ µ µ µυ υω⋅ ⋅ ⋅ ⋅ ⋅ ⋅′+ = ⋅ + − + −                             (21) 

( ) ( ) ( ) ( )( ) ( ) ( )( )12 2 1 1 2 2 2 2 1 21
i i i gi ip x p xS t S t c r S t S t c r S t S t

µ µ µ µ µυ υω⋅ ⋅ ⋅ ⋅ ⋅ ⋅′+ = ⋅ + − + −                            (22) 

( ) ( ) ( )1 11 1
i ix x iS t S t t

µ µ µυ⋅ ⋅+ = + + , 1 Nµ≤ ≤ , 1 i n≤ ≤                                                     (23) 

( ) ( ) ( )2 21 1
i ix x iS t S t t

µ µ µυ⋅ ⋅+ = + + , 1 Nµ≤ ≤ , 1 i n≤ ≤  (24) 

( ) ( ) ( )
1 11 21i t S t S t

µ µµ υ υυ ⋅ ⋅
 + = +
 

                (25) 

In the MOPSO method, the inertial factor ω  is a very 

important controlled parameter that is used to control the 

degree of influence of the current velocity values on its 

magnitude. The large value of this parameter is more 

advantageous when conducting a global study, and its small 

value is in a local study. Numerous experimental studies [25] 

show that the efficiency of the MOPSO method becomes 

greatest when the parameter ω  varies between 0.4 and 1.4. 

In [20], the following formula is used to ω  select the 

parameter 

max min
max

max
g g

G

ω ωω ω −
= −                      (26) 

where maxω  and minω  is the maximum and minimum inertia 

weight; g means the number of iterative steps and maxG  their 

maximum number. 
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5. Key Concepts of the MOPSO Method 

(1). Basic definitions and concepts of PSO-methods. 

We give the main definitions and concepts used in PSO- 

and MO PSO-methods [22, 25-26]. 

A multicriterial problem in general form is written as 

( ) ( ) ( ) ( )( )1 2min , , , kf x f x f x f x=
� � � � �

…          (27) 

under restrictions 

( ) 0, 1, ,ig x i m≤ =�
…                   (28) 

( ) 0, 1, ,jh x j p= =
�

…                    (29) 

where ( )1 2, , . nx x x x=� …  is the vector of variables from the 

n -dimensional Euclidean space 
nR ; : n

if R R→ ;

1,,2, ,i k= … , are the objective functions of the constraints 

of the problem. 

Definition 1. The best (personal best) position of a particle 

is the position providing the greatest success, (measured by 

some scalar quantity analogous to the fitness function used in 

evolutionary algorithms);  

Definition 2. The globally best (global best) position of a

µ  particle (denoted pµ ) is the position providing the 

greatest success in the neighborhood of this particle, 

measured by some scalar value, which is determined by the 

fitness function ( )xφ � . As a function ( )xφ � , we will use the 

aggregation of functions ( ) ( )1 , , kf x f x
� �
…  with weights 

1, , kw w…  (see formula (30) below) for all particles of the 

swarm population. 

Unlike the one-criterion optimization problem, in which 

the optimal solution has a clear meaning, in the multicriteria 

optimization (MO) problem there are many trade-off 

solutions called Pareto-optimal solutions. Target functions 

( ) ( )1, ,jf x j k= …  in the admissible domain nS R⊂  (i.e, 

the domain in which all ( )jf x
�

 functions are defined). Target 

functions ( ) ( )1, ,jf x j k= …  in the field S  may conflict 

with each other, so in most cases it is impossible to determine 

for all functions globally a minimum at the same point. The 

goal of the MO problem is to construct a set of Pareto-

optimal solutions. 

Definition 3. Let ( )1, , nu u u=� …  and ( )1, , nυ υ υ=
�

…  be 

two vectors from 
kR . They say that u

�
 dominates. υ�  

(denoted and υ�≺ ) if and only if, when j ju υ≤ , 1, ,j k= … , 

and j ju υ≤  at least for one j . 

This property is called Pareto dominance and is used to 

determine Pareto-optimal solutions to the MO problem. 

Definition 4. It is said that the x
�

 solution of the Pareto 

problem is optimal if and only if there is no solution u
�

 to the 

one that ( )f y
� �

 dominates ( )f x
� �

. In this case, it is x
�

 also said 

that it is nondominant (nondominated) relatively S . 

Definition 5. The set of all Pareto-optimal solutions of the 

MO problem is called a Pareto-optimal set and is denoted 
*ℜ . 

Definition 6. The set 

( ){ }* *S f xℜ = ∈ℜ
� �

 

called the Pareto - Front. 

A Pareto front is a convex set if and only if for all 
*,u Sυ ∈ ℜ  and all ( )0,1λ ∈  there exists *w S∈ℜ  such that 

( )1u wλ λ υ+ − ≥ , 

and concave if and only then 

( )1u wλ λ υ+ − ≤ . 

The Pareto front can also be partially convex and / or 

concave, as well as discontinuous. The Pareto-optimal set can 

be infinite. Therefore, the main goal of solving the MO 

problem is to find as many Pareto optimal solutions as 

possible that correspond adequately to the Pareto-front range 

and possibly the least differ from the Pareto front. 

Non-dominant best positions ipµ  in (17) - (20) and 

calculated for each particle towards the global minimum. The 

definition of leaders does not lead directly to the desired 

goal, since in the vicinity of the particle there can be many 

non-dominant solutions, only one of which is usually chosen 

to correct the speed. 

Most trivial solutions can be no dominant and participate 

as candidates in choosing the best positions of a particle. 

However, this choice is not always fair, since the size of the 

Pareto front can exceed the size of the swarm population. 

Moreover, two no dominant solutions can be equally good, 

which complicates the problem of unambiguous choice of the 

best position of the particle. The size problem can be solved 

by creating an additional set called an external archive to 

accumulate no dominant solutions obtained in the process of 

solving problems, since the problem of the correct choice of 

the members of this archive depends on the approach to its 

formation. However, the external archive also has a limited 

size, thus leaving the possibility of building rules for 

replacing existing solutions with new solutions. 

Weighted aggregation of objective functions is the most 

common approach to constructing the utility function (fitness 

function) 

( ) ( )
1

k

j j

j

x w f xφ
=

= ⋅∑                     (30) 

where , 1, ,jw j k= …  are nonnegative scales. It is usually 

assumed that 

1

1

k

j

j

w

=

=∑ . Weights jw  can either be fixed or 
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adapt in the optimization process. 

For the two-criteria MO problem, the following approach 

to choosing weights is most common 

( ) ( )1 sin 2 /w t t Rπ= , ( ) ( )2 11w t w t= −             (31) 

called dynamic weighted aggregation (DWA). Here is the 

iteration t - index and R  is the weighted change in 

frequency. In the calculations it is usually assumed 200R =  

[27]. 

The general scheme for solving the MO of the PSO-

problem can be written in the form of the following pseudo-

code [22]: 

Begin 

Initialize swarm, velocities and best positions  

Initialize external archive (initially empty) 

While (shopping criterion not satis fied) Do 

For each particle 

Select a number of the external archive (if needed) 

Update velocity and position 

Evaluate new position 

Update best position and external archive  

End for 

End While 

End 

An integer solution of problem (13) - (16) is obtained by 

rounding up to the nearest integers the values of the 

component of optimal solutions in the real space 
nR . 

Experimental studies have shown [28] that the VEPSO 

algorithm, described by formulas (17) - (20) in combination 

with an external archive, tends, in the limit, to the Pareto 

front. 

The strict convergence of the MOPSO method was proved 

under the following conditions [26]: 

1. Decisions included in the external archive at the ( )1t +
-th iteration should be non-dominant with respect to the 

solutions generated for all iterations τ , 0 1tτ≤ ≤ +  

(monotonicity condition). 

2. The algorithm should be able to generate a solution in 

the neighborhood of the optimal point with non-zero 

probability for any solution x  from the admissible 

domain. 

6. Conclusion 

The work shows the implementation of the swarm 

approach to solving the two-level problem of allocations and 

optimizing the supply of the auto service enterprise (the first 

echelon) with multi-nomenclature spare parts from the same 

supply center (second echelon) with weakened assumptions 

on the distribution of demand and failure of each type of 

vehicle parts. Namely, in contrast to [20], in which it is 

assumed that the demand for parts is subject to exponential 

distribution and their refusals to the Poisson distribution, we 

consider the case where the distribution of demand and 

failure of parts is one of the six known theoretical parametric 

distributions: exponential, Normal, lognormal, We bull, 

diffusion no monotonic and diffusion monotonic. The last 

two types of distribution are particularly important for the 

failure of parts, since any (even minor) disruption of the 

performance of a particular vehicle component influences the 

diffusion mode on the performance of other parts. Moreover, 

replacing a failed part with a spare part cannot completely 

regenerate the normal functioning of the serviced vehicle 

The method of multi-objective optimization of particle 

behavior (multi-objective particle swarm optimization method 

- MO PSO-method). In comparison with genetic (HA) and 

other algorithms of evolutionary modeling, it showed its 

effectiveness and a sufficiently high confidence probability, 

providing a rather rapid convergence of the solution to the 

Pareto front, which is the boundary of the Pareto-optimal 

solution domain. The implementation of the method is shown 

on the example of a two-criterion problem that maximizes the 

confidence probability of meeting the demand and minimizes 

the total costs for the fulfillment of the planned multi-item 

spare parts in the replenishment period. 

The proposed method for solving the MO problem can be 

extended to other types of distribution of demand and failure 

of equipment parts, several maintenance companies that 

purchase spare parts from equipment from several service 

centers that are part of a single transport and logistics system 

(TLS) in the region and can be used in other industries. 
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