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Abstract: Simulating spatial correlated binary data is very important on many cases, but it is not easily to accomplish, as there 

are restrictions on the parameters of Bernoulli variables. This paper develops a copulas method to generate spatial correlated 

binary data. The spatial binary data generated by this method has an inverse spatial pattern comparing with the latent Gaussian 

random field data, however they have similar empirical variograms, although the closed form for the spatial correlation is not 

available specifically. 
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1. Introduction 

The main goals of this paper are to offer a method to 

generate spatially correlated binary data through a copulas 

method. In probability theory and statistics, a copula is a 

multivariate probability distribution for which the marginal 

probability distribution of each variable is uniform. Copulas 

are used to describe the dependence between random variables. 

They are named for their resemblance to grammatical copulas 

in linguistics. Sklar's Theorem states that any multivariate 

joint distribution can be written in terms of univariate 

marginal distribution functions and a copula which describes 

the dependence structure between the variables. Copulas are 

popular in high-dimensional statistical applications as they 

allow one to easily model and estimate the distribution of 

random vectors by estimating marginal and copulas separately. 

There are many parametric copula families available, which 

usually have parameters that control the strength of 

dependence. 

Simulating spatial data is very important on many cases. 

The absence of replication in most spatial data sets requires 

repeated observation of a phenomenon to obtain empirical 

estimates of mean, variation, and covariation. In this paper, the 

authors only focus on spatially correlated binary data, which 

are encountered in many applications ranging from 

epidemiology to forestry. Infectious disease data often have 

spatially clustered observations. In forestry binary responses, 

for example, the presence or absence of some disease is often 

observed. 

Several authors have proposed different methods for 

generating correlated binary data. A study of their methods 

was performed and it was tried to extend their methods to 

spatially correlated binary data. However, the majority of 

these methods have limitations with respect to generating 

spatially correlated binary data with non-constant mean. For 

example, Lunn and Davies (1998) showed a method of 

generating correlated binary variables with a very simple 

correlation structure, which is suitable for generating variables 

with correlation structures which are exchangeable, and is 

easily extended to cater for correlation structures which are 

autoregressive or stationary M-dependent. However it is 

impossible to extend their method to general spatial 

correlation structures and also their method only generates 

binary data with constant means. 

Park et al. (1996) developed a method for generating spatial 

binary data based on generating correlated Poisson random 

variables which are then recoded as zero or one. Al-osh and 

Lee (2001) introduced a simpler approach than that of Park 

et.al (1996) for generating non-negatively correlated binary 

data. Their proposed method only uses properties of binary 

random variates that eliminates the need for the intermediate 

step of using correlated Poisson variates as in Park et.al (1996). 

The key idea lies in the fact that any Bernoulli random 

variable can be expressed as a convolution of other 
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independent Bernoulli random variables and that correlation 

among the binary observations can arise as a result of their 

sharing some common elements that induce such correlation. 

The algorithms of Al-osh and Lee (2001) are almost the same 

as Park et al. (1996), and their demonstrations and results on 

simulating 3-dimensional binary vectors are similar, and only 

differ in whether the convolution is of Poisson variables or 

Bernoulli variables. In comparing these two methods’ 

efficiency, Al-osh and Lee’s method is expected to be more 

efficient since it generates binary variables directly without 

any intermediate step as in Park et al.'s method. 

However, Al-osh and Lee (2001) did not discuss the 

restrictions of their method very much, and just stated that 

their algorithm should work for most practical cases in 

generating a vector of binary variates with nonnegative 

correlation structure. Their method is not as powerful as 

claimed. The restrictions on the possible combinations of 

mean and correlation structure required in their algorithm are 

such that no single simulation method can handle moderate to 

large sample sizes easily together with the restrictions. Unlike 

Park et al. (1996) and Al-osh and Lee (2001), Qaqish (2003) 

introduced a family of multivariate binary distributions with a 

certain conditional linear property. This family is particularly 

useful for efficient and easy simulation of correlated binary 

variables with a given marginal mean vector µ  and 

correlation matrix R. His method can be used to generate 

spatially correlated binary data with non-constant mean, but 

this method also had restrictions. Qaqish (2003) stated a 

Lemma giving restrictions on �µ, R�, for which his method is 

available. For certain patterned correlation matrices, such as 

exchangeable, AR(1), and MA(1) correlations, the algebraic 

inverse forms of their correlation matrices are available and 

there are simple rules to decide beforehand on the parameters 

in �µ, R�  to satisfy the Lemma. However, for many other 

correlation matrices, such as spatial correlation matrices, it is 

difficult to obtain the algebraic inverse form of the correlation 

matrix. An example for which it works is a binary process 

regularly spaced on a 1-dimensional transect with exponential 

correlation. Since the exponential correlation now is actually 

AR (1) correlation and it is easy to obtain the inverse of AR (1) 

correlation matrices, this can be simulated by the method of 

Qaqish (2003). However for a binary process regularly spaced 

on a 2-dimensional grid, no simple rules exist for the algebraic 

inverse of their correlation matrices even for exponential 

correlation. For a general R, Qaqish (2003) then suggested 

trying permutations of �µ, R�  and computing numerical 

inverse of the permutated R and checking those that satisified 

the conditions of the Lemma, but he noted that this was not a 

practical approach for actual simulation work as even for a 

small sample size 50, the number of possible permutations 

50! is a huge figure �50! = 3.04 × 10���. For sample size 

100, 10000 permutations for each of several �µ, R�	 with 

spatial correlation matrices were done here and none of the 

10000 permutations met the conditions of the Lemma. 

In this paper, a method based from copulas for generating 

spatially correlated binary variables are developed that do not 

have the shortcomings of the methods above. This copulas 

method is simple but are totally new and not found elsewhere. 

2. Methods 

2.1. Generating Spatial Binary Data Through Copulas 

Copulas method is a simulation method, and it is easy to 

understand and manipulate. This method is wildly used to 

mathematical experiments, and its procedure is explained in 

this section. 

Assume that K  random variables �V�s���  are K-variate 

normally distributed and the cumulative distribution function 

of each V�s�� is F���. �,i = 1,2,⋯ , K. The copulas method 

first transforms V�s��  to U�s�� by U�s�� = F���V�s��� , and 

now U�s��  is uniform distributed in  0,1! . Then random 

variables are then generated as required based on �U�s���. 
Here spatially correlated binary data �Z�s��� are generated 

based on �V�s���. Let �V�s��� be spatially correlated, and let 

ρ $V�s��, V�s%�& = ρ�% . For V�s��  with arbitrary mean and 

variance, U�s�� = F���V�s��� is always uniformly distributed 

in  0,1! . For simplicity it is assumed V�s��~N�0,1� . The 

spatially correlated binary data �Z�s���  are generated as 

Z�s�� = I�U�s�� < +,�s���. 
To generate spatially correlated binary data �Z�s���, with 

EZ�s�� = p�s�� and ρ $Z�s��, Z�s%�& = φ�% , the procedure is 

as follows: 

Step1. Generate spatially correlated �V�s��� , 

V�s��~N�0,1� for all s� and ρ $V�s��, V�s%�& = ρ�%. 
Step2. Obtain �U�s��� by U�s�� = F���V�s��� for all s�. 
Step3. Generate Z�s�� by Z�s�� = I�U�s�� < 0�s��� for all 

s� . Now �Z�s��� has EZ�s�� = p�s�� and ρ $Z�s��, Z�s%�& =
φ�%. There is no closed form relationship between ρ�% and φ�%, 
but �Z�s���  are spatially correlated based on the spatial 

correlation between �V�s���. The nature of the correlation is 

investigated here through the relationship between the 

processes. 

For an isotropic second-order stationary spatial process, the 

variogram function γ�h�  is expected to increase as h 

increases. At the range h∗, the γ�h� achieve its sill σ5, i.e. 

σ5 = γ�h∗� . If the variogram achieves the sill only 

asymptotically, then the practical range is defined as the lag 

distance at which the variogram achieves 95% of the sill. For 

the spatial process �V��, if its variogram achieves the sill at h∗, 

for arbitrary	s�, s% if for d�s�, s%� > h∗, ρ $V�s��, V�s%�& = 0. 

By the copulas algorithm, it is clear the corresponding Z�s�� 

and Z�s%�  also has ρ $Z�s��, Z�s%�& = 0 . But for arbitrary 

s�, s%	 if d�s�, s%� < h∗ , then ρ $V�s��, V�s%�& > 0 , and the 

corresponding Z�s�� and Z�s%� also has ρ $Z�s��, Z�s%�& > 0. 

It can be concluded therefore, that the process �Z�s��� has the 

same range as �V�s���. But when the variogram of �V�s��� 
achieves the sill only asymptotically, then for 

arbitrary	s�, s%, ρ $V�s��, V�s%�& > 0. As the d�s�, s%� increase, 
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ρ $V�s��, V�s%�& will be close to 0 but still bigger than 0. By 

the copulas algorithm, for the corresponding Z�s�� and Z�s%�, 

ρ $Z�s��, Z�s%�& > 0, for arbitrary	s�, s%  also. So the �Z�s��� 
also achieves its sill only asymptotically. However, �V�s��� 
and �Z�s��� have different scales, and there is no closed form 

for the relationship of the covariance functions between 

�V�s��� and �Z�s���. They will also have different practical 

ranges, but their practical ranges are close, as shown in the 

simulations section of this paper. 

2.2. Description of the Simulation Study 

Firstly spatially correlated normal data �V�s���  with 

sample size 100 on a regular grid were generated. The grid 

chosen was on  0,40! ×  0,40! with intervals of 4 in both 

directions. The maximum distance between the data points 

was 50.91 and a half of this was 25.46. Gaussian, exponential 

and spherical variograms of �V�s��� were generated. For each 

variogram type, a sill of 1, nuggets of 0, 1/3 and 2/3, and a 

practical range of 20 were considered. 

Gaussian and exponential variograms are from Matérn class 

of variogram functions with no nugget is given by 

γ�h� = σ:5 − σ:5
1

Γ�ν� >θh
2 @

A
2KA�θh�	�	ν > 0, B > 0. 

The smoothness of the process increases with ν and among 

the most commonly used parametric variogram models are the 

Gaussian (ν = ∞), Whittle (ν = 1) and exponential (ν = 0.5). 

The spherical variogram given by 

γ�h� = σ:5�
3
2

h
α − 1

2 �hα�E� 

is also commonly used. A nugget effect can be incorporated by 

adding a constant. Figure 1 gives an illustration. The spherical 

model attains its sill, but the Matérn models achieve their sill 

only asymptotically and thus their practical ranges are defined 

as where 95% of the sill is attained. 

 

Figure 1. Variograms for Gaussian, Whittle, exponential and spherical 

models with nugget F: = 0 , sill F: + H:5 = 1  and practical range 40 

indicated by the vertical line. The horizontal line denotes 95% of the sill. 

Secondly spatial binary data �Z�s���  with non-constant 

mean �p�s��� were generated from �V�s��� by the copulas 

method introduced in this paper. The definition of p�s�� is 

defined as 

p�s�� = exp�L�s��� /M1 + exp�L�s���N, 
L�s�� = −2 + xO�s�� ∙ 1, 

where xO�s�� is a random number from a uniform distribution 

on  0.5,1.5! . Thus the mean of the generated Z�s�  was 

around 0.27, since exp(-1)/(1+exp(-1))= 0.27. 

Data were simulated in this paper using SAS software 

(SAS® 9.2, SAS Institute Inc., Cary, N.C.). The spatial S�s� 

in the conditional method were generated by the SAS SIM2D 

Procedure. 

3. Results 

3.1. Simulations of the Data 

Here a sample of 100 spatially correlated normal data 

�V�s���  were first generated on the regular grid  0,40! ×
 0,40! with intervals of 4 in both directions. The Gaussian, 

exponential and spherical correlation types were considered for 

�V�s���. For each variogram type, a sill of 1, nuggets of 0, 1/3 

and 2/3, and a practical range of 20 were considered. The 

�V�s��� were transformed to uniformly distributed data �U�s��� 
by the transformation U�s�� = F���V�s���, where F�. � was the 

distribution function of V�s��. i.e. the Gaussian. A sample of 

size 100 spatial binary data �Z�s��� were then generated by the 

simple transformation, Z�s�� = I�U�s�� < +,�s��� . In this 

section, the results of the analysis of the spatial binary data 

generated by copulas method are shown below. 

One simulation of a realized dataset of Gaussian random 

field data �V�s��� and the corresponding spatial binary data 

generated by the copulas method are shown in Figure2. Here 

the sill and nugget of the variogram of the Gaussian random 

field were chosen to be 1 and 0 respectively. From the plots, it 

can be seen that the spatial patterns in the generated binary 

data were different from the spatial patterns in the 

corresponding Gaussian random field. The �V�s���  were 

transformed to uniformly distributed data �U�s���  by the 

transformation U�s�� = F���V�s��� , but the +,�s��  were 

determined without regard to U�s��  and Z�s�� =
I�U�s�� < +,�s��� so it is expected that if U is large Z will be 

zero and U small Z will be 1. Thus the spatial patterns are the 

‘inverse’ of each other. However, they should have similar 

variograms. Comparing the spatial patterns in Z�s� generated 

by different variogram type, little difference was found 

between the binary data generated by exponential and 

spherical variograms. However, the spatial binary data 

generated by Gaussian variogram had a different spatial 

pattern from the data by the other variogram types. The reason 

can be found from their corresponding realizations of 

Gaussian random fields. As shown in (a), (c), (e) of Figure 2, 

the Gaussian random field with Gaussian variogram had a 

different spatial pattern from the other two, while the other 

two had similar spatial patterns. 
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(a) A plot of V(s) with Gaussian variogram 

 

(b) The plot of generated spatial correlated binary data where V(s) has a 

Gaussian variogram 

 

(c) A plot of V(s) with an exponential variogram 

 

(d) The plot of generated spatial correlated binary data where V(s) has an 

exponential variogram 
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(e) A plot of V(s) with spherical variogram 

 

(f) The plot of generated spatial correlated binary data where V(s) has 

spherical variogram 

Figure 2. The Gaussian random field data �R�ST��  with Gaussian, 

exponential and spherical variograms generated on the grid  0,40! ×  0,40! 
with intervals of 4 in both directions and shown in (a), (c), (e) respectively. In 

all plots, the size of circles are proportional to their numeric values. The (b), 

(d), (f) were the corresponding generated spatial binary data U�V� by the 

copulas method. Here the sill and nugget of the variogram of the Gaussian 

random field data were chosen to be 1 and 0 respectively. 

3.2. Variogram Plots 

In this section, to examine the relationship of the variogram 

between the data sets �V�s��� and �Z�s���, 500 simulations 

were done. For the data �Z�s���, constant and non-constant 

means were considered. For the non-constant mean case, the 

means of �Z�s���  were set as in Method section. For the 

constant mean case, the mean of �Z�s��� were simply taken to 

be 0.27. In each simulation, the Matheron estimators of the 

variograms of �V�s��� and �Z�s���were calculated. In order to 

accurately estimate the variograms, only lags which had more 

than 30 data pairs were kept. As the �V�s��� and �Z�s��� were 

generated on a regular grid, there were sufficient lags that had 

more than 30 data pairs, so the data were not binned. To show 

the result of 500 simulations, the Matheron estimator at each 

lag is the average value of Matheron estimators at that lag over 

500 simulations. 

Figure 3 shows the results only for a nugget of 0 in each 

variogram type of �V�s���. For the case of nuggets 1/3 and 2/3, 

similar results to that of Figure 3 were seen. As can be seen in 

Figure 3, clearly there is spatial association between the 

�Z�s���. More importantly, the generated �Z�s��� were found 

to have a similar spatial correlation type as the �V�s���. Note 

that the variograms of �V�s���  and �Z�s���  have similar 

practical range, which was as expected in Method section. 

There is no closed form for the connection between the 

correlation functions of �V�s��� and �Z�s���. However, from 

the plot, it can be concluded that the copulas method kept a 

similar correlation type. From this same simulation, note that 

the nugget and sill of the variogram of �Z�s��� are different 

from that of �V�s��� . A comparison of the variograms in 

Figures 3 (b) and (c), shows the two plots are very similar. 

This may be because the non-constant means of �Z�s��� had a 

small variation around 0.27 (the value of the constant mean). 

However, in the Figure 3 (c) the non-constant mean variogram 

had a little more fluctuation at the big lags than Figure 3 (b). 

 

(a) 

 

(b) 
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(c) 

Figure 3. Matheron variogram plots of �R�ST�� and �,�ST��. In the three 

plots, the Matheron estimator at each lag was the average value of Matheron 

estimators at that lag in 500 simulations. Figures (a), (b) and (c) are the 

Matheron variogram of the normal data �R�ST��, the spatial binary data 

�,�ST��  with constant mean, and the spatial binary data �,�ST��  with 

non-constant mean respectively. In Figure (a), the exp, Gaussian and sph 

denote the �R�ST��  generated with exponential, Gaussian and spherical 

correlation types respectively, while in Figures (b) and (c), exp, Gaussian and 

sph denote the �,�ST�� generated from the corresponding �R�ST�� in Figure 

(a). This Figure shows results only for a nugget of 0 in each variogram of 

�R�ST��. 

4. Conclusion 

Simulating spatial correlated binary data is very important 

on many cases, but it is not easily to accomplish, as there are 

restrictions on the parameters of Bernoulli variables. Several 

authors have proposed different methods for generating 

correlated binary data. A study of their methods was 

performed and it was tried to extend their methods to spatially 

correlated binary data. However, the majority of these 

methods have limitations with respect to generating spatially 

correlated binary data with non-constant mean. This paper 

develops a copulas method to generate spatial correlated 

binary data. Copulas method is a simulation method, and it is 

easy to understand and manipulate. This method is wildly used 

to mathematical experiments, and its procedure is explained in 

this section. The spatial binary data generated by this method 

has an inverse spatial pattern comparing with the latent 

Gaussian random field data, however they have similar 

empirical variograms. The limitation of this copulas method is 

that the closed form for the spatial correlation is not available 

specifically. However, in many applications, the main 

requirements on simulation is to hold the designed variograms, 

and from this point the method proposed in this paper is 

delighted. 
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