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Abstract: This paper provides a mathematical study to characterize the impact of isolating infected population in the dynamics 

of diarrhea epidemic. System of non-linear differential equation (consists five human compartments S, I, E, Ih, R human 

compartment) is used to determine a certain threshold value (known as the basic reproductive number R0 that represents the 

epidemic indicator obtained from the Eigen value of the next-generation matrix) to model the impact of isolating infected 

population in the dynamics of diarrhea epidemic. The equilibrium points of the model are calculated and the stability analysis of 

the numerical simulation has been shown. We investigate the local asymptotic stability of the deterministic epidemic model and 

similar properties in terms of the basic reproduction number. If at least one of the partial reproduction numbers is greater than 

unity then the disease will persist in the population. The disease free equilibrium point is locally and globally asymptotically stable 

when R0 < 1 and unstable when R0 > 1. Numerical simulation of the model is carried to assess or supplement the impact of 

isolation on the dynamics of diarrhea disease. Numerical simulation results show that as the rate of isolation is increases, then the 

recovered populations also increase. According to sensitivity analysis of the model, we presented numerical simulation results that 

confirm theoretical findings and the work has been illustrated through figures for different values of sensitive parameters. 

Keywords: Modeling, Isolation, Basic Reproductive Number, Stability, Sensitivity Analysis, Diarrhea,  

Numerical Simulation 

 

1. Introduction 

Diarrhea is the passage of three or more loose or liquid 

stools per day in a period not exceeding 14 days [1]. It is 

commonly a sign of an infection in the intestinal tract that is 

caused by different bacteria, virus and parasitic entities [1]. 

In low resource areas, Rota-virus and Escherichia coli 

bacteria cause the highest incidents of diarrhea [2]. These 

microorganisms spread throughout unclean water and 

contaminated food or from one person to another, and are 

most widespread in settings with poor hygiene and absence 

of access to clean drinking water and sanitation [2]. Diarrhea 

continues to be one of the leading causes of child mortality, 

mostly in children less than 5 years of age living in low and 

middle-income countries [3]. In 2015, 5.9 million children 

globally died before reaching their fifth birthday where 

diarrhea was responsible for 9 percent of these deaths [5]. An 

estimated 1.7 million cases of diarrheal diseases arise each 

year killing around 760,000 children under the age of 5 

years[1, 5]. The majority of deaths take place in children less 

than 2 years of age living in South Asia and sub- Saharan 

Africa [6]. In 2013, 6.3 million children under 5 year died in 

which 2.9 million of them in the African Region, about 

473000 from diarrhea [7]. Diarrhea disease is the second 

leading cause of death in children under five years old. In 

2008, 16 percent of death was caused by infectious disease 

worldwide [2]. When an infective individual or external 

vector is introduced into a close population, the infectious 

disease tends to spread within the population [4]. Diarrhea is 

responsible for killing around 76,000 children globally, there 

are nearly 1.7 billion cases of diarrheal disease [1]. In 

developing countries, the annual incidence rate of diarrhea 

disease episodes in children less than five years old is 3.2 

episodes per child [3]. It kills more young children than HIV, 
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malaria and measles combined [2]. Diarrhea illness alone 

causes more than 1.5 million deaths annually, thereby making 

it a worse health threat than cancer or AIDS in terms of death 

toll [7]. Diarrhea is an abnormal looseness of the stool, 

changes in stool frequency, consistency, urgency and continence. 

Sub-Sahara Africa is the most vulnerable region of infectious 

disease [1], this is due to the fact that the region is greatly 

affected by climate change which makes it more vulnerable to 

infectious diseases. Diarrhea outbreaks are associated with 

periods of rainfall and runoff when subsequent turbidity 

compromises the efficiency of the drinking water treatment 

plants [1] found out that heavy rainfall increases diarrhea 

outbreak due to water contaminated distribution. Many 

waterborne disease outbreaks occur following a period of 

intense rainfall [2]. Diarrhea could be acute which lasts for 2 

weeks and chronic which lasts for more than 2 weeks [2]. It is 

one of the most common diseases that is transferred through 

contaminated food and water [4]. There are two types of 

diarrhea which are infectious and non-infectious diarrhea. 

Infectious diarrhea is caused by virus, parasite or bacterium, 

which could be can pylobacteria, shiga -toxin producing E. Coli, 

giardiasis, salmonellosis, shigellosis, Rotavirus, yersinia, 

cryptosphoridiosis etc. Non-infections is caused by toxins (e.g. 

food poisoning). This type of diarrhea does not spread from 

person to person [12]. original infection [4]. However, diarrhea 

is preventable and can be treated. Diarrhea disease can be 

prevented by taking safe clean drinking water, by using 

improved sanitation, washing hands with soap regularly, 

exclusive breast feeding for the first six months and taking of 

rotavirus vaccination. Various studies have been conducted to 

investigate diarrheal disease transmission dynamics. Lopman, B. 

analyzed the dynamic transmission model of nor virus infection 

disease and immunity [1]. The immunity after infection is 

temporary and the infection tend to be less severe than the It was 

found that asymptomatic prevalence of norovirus can change 

dramatically with small changes in the basic reproduction 

number R�. Chaturvedi, O. et. al [1] formulated a continuous 

mathematical model for shigella outbreaks. They designed the 

model as an SIRS system comprising of a non-constant 

population. It was proved that as long as the value of basic 

reproduction number ��  is kept minimal, the disease can be 

eradicated. The model shows that the higher the value of �� the 

more likely an epidemic will spread at higher rate. In this present 

work, we incorporate the impact of a isolation and treatment in 

the control of the disease. We show the efficacy of isolation and 

treatment of infected individuals in the control of the disease. It 

is important to establish the consequence of multi-intervention 

campaigns for the spread of diarrhea in order to understand and 

predict it. Diarrheal disease affects rich and poor, old and young, 

and those in developed and developing countries alike, yet a 

strong relationship exists between poverty, an unhygienic 

environment, and the number and severity of diarrheal episodes 

especially for children under five [13]. Poverty is associated 

with poor housing, crowding, dirt floors, lack of access to 

sufficient clean water or to sanitary disposal of fecal waste, 

cohabitation with domestic animals that may carry human 

pathogens, and a lack of refrigerated storage for food-all of 

which increase the frequency of diarrhea. Poverty also restricts 

the ability to provide age-appropriate, nutritionally balanced 

diets or to modify diets when diarrhea develops so as to mitigate 

and repair nutrient losses. The impact is exacerbated by the lack 

of adequate, available, and affordable medical care. Thus, the 

young suffer from an apparently never-ending sequence of 

infections, rarely receive appropriate preventive care, and too 

often encounter the health care system when they are already 

severely ill [13]. Although the presence of blood in the stool is a 

recognized danger signal, prompting more urgent care seeking, 

even these patients either are not treated early or receive poor 

medical care. Ironically, the poor spend considerable amounts on 

inappropriate care and useless drugs purchased from local shops 

and untrained practitioners. If antibiotics are properly prescribed, 

poverty often limits the purchase of a full course of treatment or 

leads to cessation of treatment as soon as symptoms improve, 

even though the infection has not been cured [13]. Diarrhea is a 

disease that is characterized by the unusual passage of fluid 

stool three or more times in a day and is transferred via 

contaminated food and water. There are up to 1.7 billion 

clinical cases of diarrhea annually across the globe [2]. The 

disease is known to cause severe illness in children under 

five and is listed as the second leading cause of mortality in 

children under the age of five causing around 700000 child 

deaths per year [2]. Countries in the United Kingdom report 

about 13000 clinical cases of rotavirus diarrhea annually in 

children [3]. Australia has had high numbers of rotavirus 

infections of up to 32000 clinical cases every year [4]. In the 

whole of Africa,45 percent of child mortality is caused by 

rotavirus diarrhea [8]. It can be generally misunderstood that 

the hazards of water-borne disease like diarrhea will be of 

minimal levels. Due to the presence of various water 

reservoirs in the country, Botswana also suffers significantly 

due to water-borne diarrheal diseases. These water reservoirs 

contribute to the transmission of infectious diseases to a 

noteworthy extent mainly because their vicinity acts as 

habitats for a large percentage of the country population. 

More to this, the water sanitation systems have only been 

properly allocated in the middle and upper income residences 

[5] with only a limited portion of the population being 

subject to adequate sanitation which is 53 in the urban and 18 

percent in the rural areas [6]. When a high percentage of the 

population lives and depends on open water sources, the risk 

of diarrhea also increases appreciably. This possible 

association was implied in the International Disease 

Surveillance and Response Center in Botswana that reported 

about 15000 cases and 200 deaths due to diarrhea in 2012 

[7]. This shows that apart from the numerous treatment 

methods available, necessary prevention and precaution 

methods need to be employed so as to avoid diarrheal 

hazards in Botswana [13]. Diarrhea can be caused by a 

variation of pathogens including many types of virus, 

bacteria and protozoa. One of the most perilous pathogen in 

relation to diarrhea is the rotavirus. Rotavirus is classified 

into several serotypes which can cause viral gastroenteritis. 

Gastroenteritis is the inflammation of the gastrointestinal 

tract and has common symptoms of diarrhea, vomiting, fever 

and abdominal pains [8]. Rotavirus is the leading cause of 

diarrhea around the world and results in approximately 527000 

deaths annually. One of the most hazardous diseases causing 

about 900000 deaths annually happens to be malaria. The 
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figures produced by rotavirus can easily be compared to this 

mortality rate, hence proving the importance of the study and 

prevention of the disease. On the national level, Rotavirus 

remains the leading pathogen for diarrhea infections in 

Botswana too [9, 10]. Although the pathogen usually infects 

the immune suppressed individuals like small children and 

older people, adults and youth are also at high risk of infection. 

Transmission of the virus occurs mainly through the fecal-oral 

route but indirect transmission through any object that is 

touched with contaminated hands, e.g. toys, furniture, door 

knobs and sink surfaces is also common. Rotavirus is stable in 

the environment thus if sanitation is poor, the contaminated 

surfaces can continue to spread the pathogen. 

2. Formulation of the Model 

2.1. Existing Mathematical Model 

The model considered four (4) compartments to gain 

insight into the effect of vaccine on the dynamical spread of 

diarrhea disease in a community. The model comprises of 

susceptible individuals S(t), vaccinated individuals V(t), 

exposed individuals E(t) and infected individuals I(t) so that 

N(t) = S(t) + V (t) + E(t) + I (t). The susceptible population is 

increased by the recruitment of individuals into the 

population at rate�¸the population decrease by fraction of 

recruitment for vaccinated individuals at the rate �and by 

susceptible individuals who acquire diarrhea infection with 

effective contact with people infected with diarrhea, where 

�is the effective contact rate. The population increased by 

recovered individuals that has been treated and vaccinated 

individuals who lost vaccine due to vaccine wanes off at the 

rate � and � respectively. The population of susceptible 

individuals further reduced by natural death at the rateμ. 

 

Figure 1. The flow chart of existing model. 

2.2. The Present Model Formulation 

The model maintains the basic structure of the SV EI 

models, but the vaccinated (V) compartment is replaced by a 

compartment of recovered individuals (R) and the new 

compartment infected isolation is added. 

a) Model Assumptions 

The model will be maintaining the basic structure of the 

SV EI models. The general model will be developed based 

on the following assumptions: 

1) Susceptible populations are recruited by birth at a 

constant rate ˄. 

2) Individuals in each group have the same natural 

death rate μ. 

3) Human populations are divided in to five groups. 

4) Susceptible human can be infected by the infected 

humans. 

5) Infected human can die due to the infection. 

6) Infected human can recover due to some treatment. 

7) All new born-once are susceptible to infection. 

8) All the parameters which are used in this model are 

positive. 

9) Treatment given only for active diarrhea class 

(isolating class). 

10) Sex structure is not considered. 

11) Age structure is not considered. 

12) θ � μ 
 ω 
 	α. 

b) Flow chart of proposed model 

 

Figure 2. The flow chart of present model. 

Table 1. Description of variables of the model. 

Parameters Description 

S(t) Human population size in susceptible compartment at any time t 

E(t) Humans population size in exposed compartment at any time t 

I(t) Human population size in infected compartment at any time t 

I�(t) Infected but isolated human population size at any time t 

R (t) Recovered human population at any time t 

The population under this study is heterogeneous and 

varying with time which is represented 

P�t� � 	S�t� 
 E�t� 
 I�t� 
 I��t� 
 R�t�      (1) 

Based on the assumptions and flow chart in figure 2 leads to 

the following system of ordinary differential equations (ODE) 

��
�� � Λ 
 γR � βSI 
 μS
�!
�� � βSI � μE � σE

�#
�� � σE � μI � θI � αI

�#$�� � θI � μI� � αI� � ω	I�
�%
�� � ω	I� � γμ � Rμ &'

'(
''
)

                    (2) 

All the parameters are nonnegative real numbers, and their 

descriptions are explained in Table 2. 
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Table 2. Description of parameters of the model. 

Parameters Description ˄ Recruitment rate of humans 

β Effective contact rate 

γ Human recover rate from disease by immunity loss ω Treatment rates given for infectious individuals μ Natural death rate for humans population α Human death rate due to diarrhea disease θ Isolation rate from infected human population σ Infected rate 

2.3. Positivity of Solutions 

Theorem 1 If the initial data (S(0), E(0), I(0), I�(0), R(0)) ∈ Ω then the solution set S(t), 

E(t), I(t), I�(t), R(t) of the system (2) is positive for all t ≥ 0. 

Proof: From each of the equation of the model system (2) we 

have the following system in (3) hence one can solve the 

following system from system (2) 

���� ≥ (−βI + μ)S	�!�� ≥ −(σ + μ)E�#�� ≥ −(μ + θ + α)I�#$�� ≥ −(α + μ + ω)Ih�%�� ≥ −(ω + μ)R &'
'(
'')

                      (3) 

By integrating each of the equation in (3) and use 

separation of variables in each we have the following 

corresponding system in (4). S(t) ≥ S(0)e123#��45� ≥ 0	
E(t) ≥ E(0)e1(645)� ≥ 0
I(t) ≥ I(0)e1(54748)� ≥ 0
I�(t) ≥ I�(0)e1(84549)� ≥ 0
	R(t) ≥ R(0)e1(84549)� ≥ 0&''

'(
'''
)

                   (4) 

Hence the solution set S(t), E(t), I(t),:;(<) , R(t) of the 

system (2) is positive for all t ≥ 0. 

Consider the total human population N>(t) = 	S(t) +E(t) + I(t) + I�(t) + R(t). By taking the derivative of N>(t) 
with respect to the time along with the solution of system (2), 

it is obtained that 

�?@�� = ���� + �!�� + �#�� + �#$�� + �%�� . 
Then, using direct computation gives that 

?@�� = Λ − μS − μE − μI − αI − μI� − αI� − μR	= Λ − μN> − α(I + I�	) A      (5) 

In the absence of diarrhea, there is no death from diarrhea, 

that is,	B = 0, then 

?@�� ≤ Λ − μN>                                 (6) 

Applying Birkhoff and Rota’s theorem on a differential 

inequality (5), we get 

?@D15?@ ≤ dt                                   (7) 

Integrating the equation (7) on both sides and applying the 

initial conditions we obtain 

N> ≤ D5 ≤ FD15?G5 H e15�                        (8) 

which implies that N> ≤ D5, as t→ ∞. Hence, all the solutions 

of system (1) are uniformly bounded, and therefore we have 

finished the proof. 

According to system (1), the feasible region of it can be 

written as follows: 

Ω> = K(S, E, I, I�, R) ∈ ℜM4, N> ≤ D5N             (9) 

3. Model Analysis 

3.1. Existence of the Equilibrium Points and Basic 

Reproduction Number 

The equilibrium points are obtained by setting the right-

hand sides of the model system (2) to zero, that is 

���� = 0, �!�� = 0, �#�� = 0, �#$�� = 0, �%�� = 0  

Therefore the system of equations (2) becomes Λ + γR − βSI + μS = 0
βSI − μE − σE = 0

σE − μI − θI − αI = 0
θI − μI� − αI� −ω	I�	 = 0

ω	I� − γμ − Rμ = 0 &''
'(
'''
)

                (10) 

ThenX� = (S∗, E∗, I∗, I�∗, R∗) is the equilibrium point of the 

model system (2). 

3.2. The Disease-Free Equilibrium Point 

Since the basic reproduction number is computed at this 

equilibrium point, hence in the following the computation of 

this number is carried out, and then the endemic equilibrium 

point is determined. Now, in order to determine the basic 

reproduction number, the “next-generation method” or 

“Spectral Radius method” is used [10, 11]. Consider an 

epidemic model having n different compartments from which 

compartments contained infected individuals with the disease, 

then the next-generation matrix (operator) is given by(FV)	1S, 

Where 

F = TUVW(XG)UYZ [ and	V = TU^W(XG)UYZ [                (11)	
where i, j = 1, 2,...,m, _�  is the disease-free equilibrium 
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point, while xadenotes the number of individuals in the i�� 

infected compartment. However, Fa�xa� is the rate of 

appearance of new infections in the compartment i, 

whileVa�xa� � 	Va1S�xa� � Va4S�xa�where Va4S�xa� represents 

the rate of the shift of individuals into i��compartment by 

all other means and denotes the rate of the shift of 

individuals out of the i�� compartment. The 

differenceFa�xa� � Va�xa�gives the rate of change of xa. Note 

that Fa�xa� shouldinclude only infections that are newly 

arising but does not include terms that describe the shift of 

infectious individuals from one infected compartment to 

another. Finally, the basic reproduction number, that is 

denoted by R� , is given by the spectral radius (dominant 

eigen value) of the matrix FV1S. It is well known that the 

basicreproduction number R�  is oneof the most crucial 

quantities in infectious diseases as R� , measures how 

contagious a disease is. ForR�< 1, the diseaseis expected to 

stop spreading, but for R� �1, an infectedindividual can 

infect on an average 1 person; that is, the spread of the 

disease is stable. The disease can spread and become 

epidemic if R� > 1. Accordingly, regarding system (7), it is 

obtained that 

V � 	

d
e
e
e
f�σ 
 μ) 0 0

0 μ + α + θ 0
0 −θ μ + α + ωghh

hi
             (12) 

F = 	
dee
ef0 0 βS
0 0 0
0 0 0 ghh

hi
  

Then we have to find the inverse of the Jacobian matrix of 

V, which is given by 

V1S =	
dee
eef

S645 0 0
76(	645)(54849) S54847 0
548(	645)(74548	)(54849) 7(74548	)(54849) S54849ghh

hhi 	
Therefore, 

FV1S =	
dee
ef 637�(	645)(74548	)(54849) 37�(74548	)(54849) 7�548490 0 0

0 0 0 ghh
hi
  

Consequently, the basic reproduction number of system (2) 

is determined as 

R� = 637D5(645)(74548	)(54849)  
3.3. Local Stability Analysis 

This section treats the local stability of system (2) using 

the linearization technique. The Jacobian matrix for system 

(2) at the point (S, E, I, :;) can be written as follows: 

J =
de
ee
ee
f−(σ + μ) β D5 0 0

σ −(θ + μ + α	) 0 0
0 θ −(ω + μ + α) 0
0 0 ω −(μ + γ)gh

hh
hh
i
  

Theorem 2. The disease free equilibrium point,_� =	Fk5 , 0,0,0,0H is locally asymptoticallystable if �� < 1˙and �� < n(54o4p) 
otherwise unstable. The system is then re-defined as fS(S, E, I, I�, R) = Λ + γR − βSI − μS

fr(S, E, I, I�, R) = βSI − μE − σE
fs(S, E, I, I�, R) = σE − μI − θI − αI

ft(S, E, I, I�, R) = θI − μI� − αI� − ω	I�	fM(S, E, I, I�, R) = ω	I� − γμ − Rμ &''
'(
'''
)

                                                                 (13) 
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The Jacobian of the system (13) atX� � 	FΛμ , 0,0,0H is given by 

J(X0) =
de
ee
ee
f−(σ + μ) β D5 0 0

σ −(θ + μ + α	) 0 0
0 θ −(ω + μ + α) 0
0 0 ω −(μ + γ)gh

hh
hh
i
                                   (14) 

Consider the matrix (14) and let k be the eigenvalue. Then we have |J(X0) − kI| = 0 where I is a 5×5 identity matrix. Thus, 

we have 

|J(X0) − kI| = x
x−(σ + μ) − k β D5 0 0

σ −(θ + μ + α	) − k 0 0
0 θ −(ω + μ + α) − k 0
0 0 ω −(μ + γ) − kx

x
                      (15) 

Direct computations show that this Jacobian matrix has the following characteristic equation: 

(σ + μ + k)(μ + θ + α + k	)(μ + ω + α + k)(μ + γ + k) − 3D65 (μ + ω + α + k)(μ + γ + k) = 0  

Akt + Bks + Ckr + Dk	 + E = 0  

Where A = 1	B = (σ + 4μ + θ + ω + γ + 2α) 	
C = (μ + θ + α)(σ + μ) + (σ + 2μ + θ + α)(2μ + ω + α + γ) + (μ + ω + α)(μ + γ) − 63D5  	

D = (μ + θ + α)(σ + μ)(γ + 2μ + ω + α) + (2μ + σ + θ + α)(μ + ω + α)(μ + γ) − 63D5 (2μ + ω + α + γ)  
E = (μ + θ + α)(σ + μ)(μ + ω + α)(μ + γ) − 63D5 (μ + ω + α)(μ + γ)  

Due to the complexity in determining the signs of the remaining eigenvalues, we employ Routh-Hurwitz conditions for 

stability. The Routh-Hurwitz conditions to ensure that all roots of (15) have negative real partsare A > 0, B > 0, E > 0	and BC > AD, BCD > ADr + BrEclearly A and B are positive. For C, D and E are to be positive, set 

(μ + θ + α)(σ + μ) + (σ + 2μ + θ + α)(2μ + ω + α + γ) + (μ + ω + α)(μ + γ) − 63D5 > 0  

(μ + θ + α)(σ + μ) + (σ + 2μ + θ + α)(2μ + ω + α + γ) + (μ + ω + α)(μ + γ) > 63D5   

For Dto be positive, set 

(μ + θ + α)(σ + μ)(γ + 2μ + ω + α) + (2μ + σ + θ + α)(μ + ω + α)(μ + γ) − 63D5 (2μ + ω + α + γ) > 0  

(μ + θ + α)(σ + μ)(γ + 2μ + ω + α) + (2μ + σ + θ + α)(μ + ω + α)(μ + γ) > 63D5 (2μ + ω + α + γ)  
For E to be positive, set 

(μ + θ + α)(σ + μ)(μ + ω + α)(μ + γ) − 63D5 (μ + ω + α)(μ + γ) > 0  

This leads to 
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1 � R�
�54948�

7
> 0  

From the assumption we have θ ≈ μ + ω +  α  so that 1 − R� > 0, sinceR� = 637D5��45��74548 ��54849� 
This can be true if and only if R� < 1. Hence, by Routh-

Hurwitz criterion, all the eigenvalues have negative real 

parts. 

This shows that X� locally asymptotically stable if R� < 1, 

and unstable if R� > 1. 
3.4. Global Stability of the Disease-Free Equilibrium Point 

In this section, we study the global properties of the 

disease-free equilibrium. The following theorem provides the 

global property of the disease-free equilibrium: 

Theorem: If R� < 1, then the disease free equilibrium of 

the model is globally asymptotically stable in the feasible 

domain. Proof By the comparison theorem, the rate of change 

of the variables representing the infected components of 

model system (2) can be re-written as 

�E��t�I��t�I���t�� = �F − V� �EII�
� − �βI�1 − S�00 �  

where the matrices F and V are defined by the expressions 

(12) respectively. But we also note that S≤ D5for all t ≥ 0 in 

Ω›. Thus 

�E′�t�I′�t�I� ′�t�� ≤ � EII�
�                               (16) 

Using the fact that the eigenvalues of the matrix (F - V) all 

have negative real parts, it follows that the linearised 

differential inequality system (16), is stable whenever R� <1. Consequently, �E, I, I�� =  �0, 0, 0� as t → ∞and evaluating 

system (2) at E = I =  I� = 0 gives S→ D5, for R� < 1. Hence, 

the disease-free equilibrium, X� , is globally asymptotically 

stable for R� < 1. 

3.5. The Endemic Equilibrium Point 

We shall now study the existence of the endemic equilibrium 

state of the modified model. Endemic equilibrium pointXS is a 

steady-state solution, where the disease persists inthe population. 

For the existence and uniqueness of endemic equilibrium XS =( S∗ , E∗ , I∗ , I�∗ , R∗ ), its coordinates should satisfy the 

conditions: XS=(S∗, E∗, I∗, I�∗, R∗)> 0. 

From the system of equation (10) the endemic equilibrium 

point is 

S∗ = F54636 H �μ + θ + α�  

E∗ = F�54748�5�546�1�3636 H F �54748���45��961�54748��54���546�H  

I∗ = F�54748�5�546�1�3636 H F ��45��961�54748��54���546�H  

I�∗ = F 7548H F�5�546�1�363 H F ��45��961�54748��54���546�H  

R∗ = F 95��546�19�363�9613�54748��54���546�H  

The result shows us endemic equilibrium point is exists 

and it is unique. 

3.6. Local Stability of Endemic Equilibrium Point 

The endemic equilibrium can expressed in terms of ��. For 

the existence of endemic equilibrium XSall state variables are 

non-negative. We analyze the stability of the endemic 

equilibrium by linearizing the above system of differential 

equations (2) to give the Jacobian matrix. The Jacobian matrix is 

computed by differentiating each equation in the system 

equation (2) with respect to the state variables. and solve at 

endemic equilibrium point. Endemic equilibrium points are 

steady-state solutions where there is diarrhea infection and this 

equilibrium points are obtained by setting the right hand sides of 

the model equations (2) equals to zero. The local stability of the 

endemic equilibrium point XS is decided by considering the sign 

of the eigenvalues of the Jacobian matrix of the system (2). 

Theorem The positive equilibrium XS  of system (2) is 

locally asymptotically stable if�� > 1 and unstable if�� < 1. 

3.7. Sensitivity Analysis 

Given the explicit formula for �� we can easily derive 

analytical expression for the sensitivity of �� with respect to 

each parameter that comprises��. In order to study the effect 

of this parameter on �� we performed a sensitivity 

analysis on �� with respect to this parameter. The normalized 

index ��is defined as: 

S� = U%GU� �%G(*) 
where h is the parameter of interest. The larger the magnitude 

of the sensitivity index leads to more sensitivity �� with 

respect to that parameters. 

U%GU6 = 1 − 6645 > 0  

U%GU3 = 1 > 0  
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U%GU7 � 1 � 7
64548 > 0  

U%GUD � 1 > 0  

U%GU9 � � 9�
94548 < 0  

U%GU5 � � 5�
54846 < 0  

U%GU8 � � 5�
84549 < 0  

 

(a) The reproduction number decreases when treatment 

 

(b) The reproduction number increases as isolation rate is increases rate is 

increases 

Figure 3. Sensitivity analysis of reproduction number with respect to 

treatment rate and isolation rate. 

From figure 3, figure 3a shows that when the treatment 

rate of increasing then Reproduction number is also 

decreasing, and figure 3b the isolating rate increase and 

Reproduction number also increases. So increasing the 

treatment rate of exposed of human population have positive 

impact on the reduction of the disease. 

4. Numerical Simulation 

Numerical Simulations of the dynamic model were carried 

out by MATLAB function ode 45, using the Rurnge-Kutta of 

order four. The set of parameter values in table we were used 

to investigate the effect of isolating people in the control of 

the spread of diarrhea. This parameter values whose sources 

are from literature and assumptions. Four hypothetical cases 

were considered and in each case, the probability that 

individuals who are exposed to the diseases will progress to 

infectious class depends on the level of immunity individual 

has. It is prominent to note here that when series diarrhea 

patient are isolated from infected people and kept in a 

separate place, and it is assumed that they will have herd 

immunity, (i.e. the level of immunity in a population which 

prevents epidemics). some of the parameter values used: 

Natural mortality rate of individuals, (μ): The time unit is 

set at year and the constant natural mortality rate, μ  is 

assumed to be inversely related to life expectancy at birth 

which is approximately 50 years. 

μ = SM� = 0.02 per year. 

Recruitment rate, (Λ): The recruitment rate, (Λ) controls 

the total population sizes because the asymptotic carrying 

capacity of the population is 
D5. For purposes of this study, we 

shall set the recruitment rate at 24 individuals per year. 

Contact rate (β) in this case the contact rate assumed to be 

constant it is 0.35. 

Human death rate due to diarrhea disease α, α varies from 

country to country. It is as low as 0.07 in developed countries 

but reaches 0.365 per year in some African countries 

(Snideretal [15]. Therefore, we take α =0.365 [15]. 

Table 3. The parameter values of the model. 

Parameters Case1 Case2 Case3 Case4 Reference 

Λ 24 24 24 24 estimated 

µ 0.02 0.02 0.02 0.02 [14] 

β 0.35 0.35 0.35 0.35 estimated 

σ 0.4 0.4 0.4 0.4 estimated 

α 0.365 0.365 0.365 0.365 [15] 

ω 0.4 0.4 0.4 0.4 estimated 

θ 0.2 0.2 0.6 0.6 estimated 

γ 0.98 0.98 0.98 0.98 estimated 

And the following initial conditions have been considered; S�0� = 1200; 	E�0� = 800; 	I�0� = 500; I��0� =200; 	R�0� = 100 at time t� = 0 and t� =15. 

5. Result and Discussion 

This has been done to show the dynamics of the disease in 

the population when there are no interventions. The 

numerical results should examine the effect of parameters on 

the transmission of diarrhea disease which are used in the 

present model. Let us discuss on the following some 

numerical outputs. 
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Figure 4. Effect of infected rate � on Exposed compartment. 

Figure 4: Numerical simulation on E(t) that shows the 

impact of infected rate σ on ex-posed human population. 

From this figure we observe that the infected rate σ is 

inversely proportional with the exposed human population. 

i.e. whenever the rate infection is increases then exposed 

human compartment decreases, inversely if the rate infected 

decreases the exposed human population increases through a 

time. In figure 5 we can observe that, if the isolation rate is 

increased throughout a time proportionally the infected 

isolated human population is also increases. And as the 

number of series infected is decreases, the number of infected 

human population becomes low. 

 

Figure 5. Effect of isolation rate � on isolated compartment. 

In figure 6 we can observe that, if some treatment rate is 

increased throughout a time proportionally there covered 

human population is also increases. 

Figures 7 and 8 shows that as the isolation rate θ decreases 

from 0.4 to 0.2 the reproduction number is also decreases 

from 0.91 to the 0.055. This indicates that the chance of 

expose rate is very rear and the infected becomes zero. 

 

Figure 6. Effect of treatment rate ω on Recover compartment. 

 

Figure 7. Reproduction number�� � 0.91	andisolationrate� � 0.4. 

 

Figure 8. Reproduction number	�� � 0.055	andisolationrate	� � 0.2. 

6. Conclusion 

In this study is to formulate and analyze the deterministic 
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compartmental mathematical model on impact of isolating 

infected human population for the transmission of diarrhea 

dynamics. The 5 dimensional system of ordinary differential 

equations were formulated. This model has shown 

importance of isolation in preventing transmission of 

diarrhea disease with in human population. We first showed 

that there exists a domain where the model is 

epidemiological and mathematically well-posed. The disease 

free and endemic equilibrium points are calculated. The basic 

reproduction number has been computed using next 

generation matrix method. By using the principle of 

linearized stability and Routh Hurwitz conditions, we 

proofed that the stability of the disease free and endemic 

equilibrium points are controlled by the basic reproduction 

ratio,R�. If R� < 1then the disease-free equilibrium point X�, 

is locally asymptotically stable; and if R� > 1 , then X�  is 

unstable. We also proved that an endemic equilibrium point XS  exists and locally asymptotically stable for all R� > 1 . 

From the reproduction numberR� , we conclude that; when R� < 1	 the diarrhea disease becomes decrease from the 

society over a period of time. When R� > 1then the diarrhea 

disease becomes endemic. The analysis and the numerical 

simulations showed that the disease decrease if the isolation 

of the infected human population increases and the recovery 

rate of infected human population is also increases. 

Conversely diarrhea disease increases if the isolation of the 

infected human population decreases and this decreases the 

recovery rate of infected human population. The sensitivity 

analysis of the basic reproduction number shows that 

isolation rate is the most sensitive parameter, next to it is 

treatment rate followed by recover rate. Therefore, isolating 

active diarrhea class and giving treatment for them will be 

reducing diarrhea infection. 
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