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Abstract: The authors describe a multi-step generalization of the “attack-defense” model, defined and studied by Germeier. 

It is a modification of the Gross’ model. The similar model was proposed by Gorelik for the gasoline production. In the 

military models the points are usually interpreted as directions and characterize the spatial distribution of defense resources 

across the width of the defense front. The dynamics of the average number of parties described by the “attack-defense” game 

can be described by finite-difference Osipov-Lanchester’ equations. Therefore, it would also be interesting to obtain a 

generalization of Germeyer’s classical model to the dynamic case when the “attack-defense” game is played many times. On 

this basis, in the present work, a dynamic expansion of the model is constructed in the form of a positional game with opposing 

interests of the distribution of parties’ reserves with complete information. The authors studied the simplest multi-step 

extension of the attack-defense model, which consists in the fact that the corresponding game is played repeatedly. Multi-step 

game with the complete information of the parties’ reserves management was built on this basis. It is assumed that the defense 

party makes the first move at each step and the attack party became aware about this move. The functional equation for the 

best guaranteed result of the defense, which is the value of the positional game due to the parties’ adopted sequence of moves 

was written out. Its analytical solution for a two-step game was obtained and it was shown that it is advantageous for an attack 

party to enter all reserves simultaneously, as in the classic attack-defense game. 

Keywords: Attack-Defense Game, Multi-Step Expansion of the Game, Guaranteed Defense Result, Game Value,  

Optimal Attack Strategy, Optimal Defense Strategy 

 

1. Introduction 

The authors describe a multi-step generalization of the 

attack-defense game, defined and studied by Germeier [1]. It 

is a modification of the Gross’ model [2] and it is the basis 

for the authors’ further constructions. A similar model was 

proposed by Gorelik for the gasoline production [3]. The 

game model, generalizing the Gross’ and Germeier’ models 

was studied in the work [4]. In military models points are 

usually interpreted as directions and characterize the spatial 

distribution of defense resources across the width of the 

defense front. It is also possible to distribute the resources in 

depth associated with the separation of the defense. The 

parties’ resources are heterogeneous in general case. All these 

areas of generalization of the classical “attack-defense” 

model have been studied by the authors in previous works [5-

8], which can be considered as the authors’ modest 

contribution to the available literature on these issues. In 

reality, there is also a multistep continuation of the conflict in 

the form of a sequence of strikes inflicted before a sufficient 

level of losses is achieved by one of the parties (exhaustion) 

that is incompatible with the continuation of the conflict. The 

dynamics of the average number of parties in a multi-step 

conflict described by the “attack-defense” game was studied 

in the work [9]. System’s dynamics was described by finite-

difference Osipov-Lanchester’ equations. 

In the work [5], the simplest model of a multilateral 

defense system was studied in a given direction, taking into 

account the preliminary suppression of defense means by an 

attack party. This model is a special case of the terminal-type 
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discrete optimal control problem and can be solved by the 

gradient descent method with averaging. The control problem 

posed in the work [6] clarifies the problem of the distribution 

of defense resources in a given direction by levels in terms of 

accounting for more general restrictions than in the work [5], 

which take into account the possibility of the use of defense 

means at various borders. In the work [7], a generalization of 

the “attack-defense” model was studied, which consists in 

taking into account the heterogeneity of the parties’ means 

using target distribution based on the classical transport 

problem. Article [8] summarizes the classical game “attack-

defense” in terms of accounting for the defense topology that 

has a network structure and is based on the work by Hohzaki 

and Tanaka [10]. In contrast to the latter, the defense at each 

of the possible directions of movement between the vertices 

of the network defined by oriented edges can have several 

boundaries, which made it possible to combine the classes of 

multilevel and network models. 

In practical terms, it would also be interesting to obtain a 

generalization of the Germeyer’s classical model [1] to the 

dynamic case when the “attack-defense” game is played 

many times. In the work [9], a special case was considered 

when the use of parties’ reserves during the repetition of the 

game was not supposed. On this basis, in the present work, a 

dynamic expansion of the model is constructed in the form of 

a positional game with opposite interests of the distribution 

of the parties' reserves with complete information. The 

functional equation for the best guaranteed result of defense, 

which is the value of the positional game due to the adopted 

sequence of moves of the parties, in which the defense party 

make the first move at each, was written out. The analytical 

solution of this equation is given for the case of a two-step 

game, it has the practical importance, since the attack party 

usually plans no more than two attacks per day on defense 

party. Written in normal form, this game refers to hierarchical 

games 1Γ  (see [1]) in the particular case when the interests 

of the players are opposite. The classic “attack-defense” 

game is the simplest discrete analogue of the average 

dynamics model, so the authors did not use statistical 

methods in the work, remaining within the framework of 

deterministic models. 

Adaptive control in repetitive hierarchical games 1Γ  with 

non-opposite interests was studied in [11]. Repeated 

hierarchical games 2Γ  with non-opposite interests were 

studied in [12, 13]. Dynamic quasi-information expansions of 

games with an expandable coalition structure were discussed 

in [14]. One class of repetitive games with incomplete 

information is described in [15]. 

2. The Basic Game of Attack-Defense 

The basic for our formulations attack-defense game was 

studied in the work [1]. This game can be formulated as 

follows. Let iP − the probability of hitting of one means of 

attack with one means of defense in the i − direction, 

1,...,i n= . It is required to solve an antagonistic game with 

the function of attack’s winning, which represents the 

average number of penetrated means of attack: 

{ }
1

( , ) max 0,

n

i i i

i

f X U X PU

=

= −∑            (1) 

Let V and Y - the number attack’s and defense’s means. 

The defense strategy is to distribute its funds in the directions 

of defense in accordance with the vector: 

{ }1

1

( ,..., ) , 0, 1,...,

n

n i i

i

U U U A U U V U i n

=

= ∈ = = ≥ =∑  (2) 

The attack strategy is to distribute its funds in the 

directions in accordance with the vector: 

{ }1

1

( ,..., ) , 0, 1,...,

n

n i i

t

X X X B X X Y X i n

=

= ∈ = = ≥ =∑  (3) 

Using the convexity of the function ( , )f X U on U , for 

this antagonistic game it was proved in particular (see, for 

example, [16], pp. 61-64) that the minimax: 

( )( )

1,...,

( , ) ,minmax maxmin
i

U AU A X B i n

f X U f X Uv
∈∈ ∈ =

= =                                           (4) 

will be the value of the game and the minimax defense 

strategy is optimal. Here 
( )

(0,..., ,...0)
i

X X= , where X  is in 

the i -th place, and the rest of the coordinates are zero. In this 

case, the optimal attack strategy is a mixed strategy, 

consisting in concentrating all forces in one direction in 

accordance with the optimal probability distribution, which 

can be obtained using the formulas also given in the work 

[16]. These formulas will be required for further exposition, 

therefore we will give them in full. 

The minimax strategy, which is the optimal pure defense 

strategy, has the form 

1

* , 1,2,...,
1

i n

i
ii

V
U i n

P
P=

= =

∑                       (5) 

The corresponding best guaranteed defense result is 

1

1

1
max(0; ( ) )

n

ii

v Y V
P

−

=

= − ∑                       (6) 

and is the value of the game. 

Let’s consider the mixed attack strategies 
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( )
0 0 0

0

1 1

, 1, 0, 1,2,...,i

n n

i i iX
i i

p I p p i nφ
= =

= = ≥ =∑ ∑ , 

where ( )iXI - is a probability measure concentrated at a point 

( )iX . Then the optimal strategy is the strategy 0φ , when 0
ip

is determined by the formula 

0 1

1

1 1
( ) , 1,2,...,

n

i
i ii

p i n
P P

−

=

= =∑ .                          (7) 

3. The Simplest Multi-step Model of 

“Attack-Defense” 

Let us denote by ,t tY V the average amount of the sides’ 

means at the end of t -th strike, which is modeled by playing 

the basic attack-defense game, then the equation for the 

average value tY∆  in the absence of reserves follows from 

equation (6). 

1
1 0

1

1
min( ; ( ) ), 0,1,..., .

n

t t t t t
ii

Y Y Y Y V t Y Y
P

−
+

=

∆ = − = − = =∑                                              (8) 

To obtain the equation for the average value tV∆ , let’s consider the i -th direction, 1,...,i n= . Let iR − the probability of 

hitting of one means of defense with one means of attack on the i − th direction, 1,...,i n= . By analogy with (8) it can be 

assumed, following [9], that the average losses will be in accordance with formula (5) 

1

1

1
min( ; ( ) ).

n
i t

t i t
i ii

V
V R Y

P P

−

=

∆ = − ∑                                                                           (9) 

Now the total average losses can be found as the mathematical expectation (9) taking into account the probability 

distribution (7) 

1 1
1

1 1 1

1 1 1
( ) min( ; ( ) ).

n n n
t

t t t i t
i i i ii i i

V
V V V R Y

P P P P

− −
+

= = =

∆ = − = −∑ ∑ ∑                                                  (10) 

Let’s write equations (8), (10) as 

1
1 0

1

1
max(0; ( ) ), 0,1,... 1, .

n

t t t
ii

Y Y V t T Y Y
P

−
+

=

= − = − =∑                                                  (11) 

and 

1 1
1 0

1 1 1

1 1 1 1
( ) max( [1 ( ) ]; ); ;

n n n

t t t i t
i i i ii i i

V V V R Y V V
P P P P

− −
+

= = =

= − − =∑ ∑ ∑                                 (12) 

where t  - is the number of attack’ strike, which determines 

the time step of the discrete model, T - is the specified 

planning horizon. 

Let’s suppose that at the beginning of each strike, the sides 

exchange blows of long-range weapons. We denote m  the 

probability of maintaining the combat capability of one unit 

of attack or defense. Let tu ( tv ) - is the number of reserve 

means of attack (defense) entered from safe shelters in the t -

th step. The total number of reserves of attack and defense, 

we denote respectively by Q  and W . 

Let’s subdue the reserves to conditions 

1

0

, 0, 0,1,..., 1,

T

t t

t

u Q u t T

−

=

≤ ≥ = −∑               (13) 

and 

1

0

, 0, 0,1,..., 1.

T

t t

t

v W v t T

−

=

≤ ≥ = −∑                 (14) 

Then the equations of system motion can be written as 

1
1 0

1

1
max(0; ( )( ) ), 0,1,... 1, .

n

t t t t t
ii

Y mY u mV v t T Y Y
P

−
+

=

= + − + = − =∑                                         (15) 
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1 1
1 0

1 1 1

1 1 1 1
( ) max{( ) [1 ( ) ]; ( )}, 0,1,... 1,;

n n n

t t t t t i t t
i i i ii i i

V mV v mV v R mY u t T V V
P P P P

− −
+

= = =

= + ×× − + − + = − =∑ ∑ ∑   (16) 

Let’s write equations 15, 16) in general form 

1 0( , , , ), 0,1,..., 1, ,t t t t tY f Y V u v t T Y Y+ = = − =                                                 (17) 

and 

1 0( , , , ), 0,1,..., 1, ,t t t t tV g Y V u v t T V V+ = = − =                                                 (18) 

We introduce the additional phase variables 
0 0
,t tY V , subduing them to the equations 

0 0 0
1 0, 1,..., 1, 0,t t tY Y u t T Y+ = + = − =                                                             (19) 

and 

0 0 0
1 0, 1,..., 1, 0,t t tV V v t T V+ = + = − =                                                            (20) 

Then the constraints (13), (9) on the control actions tu ( tv ) can be written as 

{ }0 1 0
( ) 0 , 0,1,..., 1,t t t t tu R Y u E u Q Y t T∈ = ∈ ≤ ≤ − = −                                                 (21) 

and 

{ }0 1 0
( ) 0 , 0,1,..., 1.t t t t tv P V v E v W V t T∈ = ∈ ≤ ≤ − = −                                                (22)

The multivalued mappings 0 0
( )t tY R Y→ and 0 0

( )t tV P V→  

will be Hausdorff’s continuous by virtue of Lemma 1.4 in 

[17, p.30] in the areas 0
0 tY Q≤ ≤  and 0

0 tV W≤ ≤ , 

respectively. 

Let’s take the average number of attack means that 

overcame defense taking into consideration the repeated 

strikes as an attack win 

1

([ ],[ ])

T

t t t

t

J u v Y

=

=∑ .                         (23) 

The defense win will be the reciprocal 

([ ],[ ]) ([ ],[ ])t t t tI u v J u v= −  

4. The Positional Game of the Reserves’ 

Distribution 

Let’s consider the positional game of the reserves’ 

distribution using the constructed dynamic expansion of the 

target distribution model. 

The game starts from the position 0 0
0 0 0 0( , , , )Y V Y V . At the 

initial moment of discrete time, the players of the attack and 

the defense make a choice of control actions 
0 0

0 0 0 0( ), ( )u R Y v P V∈ ∈ . In this case, the defense party make 

the fist move and the attack party became aware about this 

choice. In normal form, this corresponds to the game logic G1 

(see [1]) in the particular case when the interests of the 

players are opposite. In the position 0 0
( , , , )t t t tY V Y V  the 

players choose 0 0
( ), ( )t t t tu R Y v P V∈ ∈ and the attack party 

became aware about the defense’s choice 0
( )t tv P V∈  before 

the choice 0
( )t tu R Y∈ . The process ends in the ( 1)T − -th 

step by the choice 0 0
1 1 1 1( ), ( )T T T Tu R Y v P V− − − −∈ ∈ and 

transition to the state 0 0
( , , , )T T T TY V Y V . 

Let’s 1[ ] ( ,..., )t TY Y Y=  - the trajectory of attack, 

implemented in the game. The winning of the attack party is 

determined by the formula (23), the winning of the defense 

party is opposite in sign to the winning of the attack party. 

We will assume that the game is a game with complete 

information, i.e. at each step, the players know the position 
0 0

( , , , )t t t tY V Y V and the point of the discrete time 

0,..., 1t T= − , and the attack party additionally knows the 

choice of the defense party 0
( )t tv P V∈ . 

Attack strategies are all sorts of functions 
0 0

( , , , , , )u Y V Y V v t , such that 0 0 0
( , , , , , ) ( )t t t t t tu Y V Y V v t R Y∈ . 

Defense strategies are all sorts of functions 0 0
( , , , , )v Y V Y V t , 

such that 0 0 0
( , , , , ) ( )t t t t tv Y V Y V t P V∈ . These strategies are 

called pure. 

Let’s attack and defense apply pure strategies 
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0 0
( , , , , , )u Y V Y V v t and 0 0

( , , , , )v Y V Y V t . In the situation 

( (.), (.))u v  the game is as follows. At the t -th step, 

0,..., 1t T= − , the system moves from the state 
0 0( , , , )t t t tY V Y V  to the state defined by equalities 

0 0 0 0 0 0
1 0( , , ( , , , , ( , , , , ), ), ( , , , , )), 0,1,..., 1,t t t t t t t t t t t t t t tY f Y V u Y V Y V v Y V Y V t t v Y V Y V t t T Y Y+ = = − =  

and 

0 0 0 0 0 0
1 0( , , ( , , , , ( , , , , ), ), ( , , , , ), 0,1,..., 1,t t t t t t t t t t t t t t tV g Y V u Y V Y V v Y V Y V t t v Y V Y V t t T V V+ = = − =  

for the main phase variables and 

0 0 0 0 0 0 0
1 0( , , , , ( , , , , ), ), 0,1,..., 1, 0,t t t t t t t t t tY Y u Y V Y V v Y V Y V t t t T Y+ = + = − =  

and 

0 0 0 0 0
1 0( , , , , ), 0,1,..., 1, 0,t t t t t tV V v Y V Y V t t T V+ = + = − =  

for additional phase variables. 

Thus, each situation ( (.), (.))u v  uniquely corresponds to 

the trajectory 1[ ] ( ,..., )t TY Y Y=  of the attack and therefore the 

win, determined by the formula (23) 

1

(( (.), (.)) ([ ],[ ])

T

t t t

t

L u v J u v Y

=

= =∑ ,                   (24) 

The considered game depends on two parameters - on the 

starting position 0 0
0 0 0 0( , , , )Y V Y V  and duration T . Therefore, 

we denote it by G(Y0, V0, Y0
0, V0

0, T). To obtain a functional 

equation for the value 0 0
0 0 0 0( , , , , )V Y V Y V T of a game G(Y0, 

V0, Y0
0, V0

0, T), it is convenient to immerse it in a family of 

games G(Yt, Vt, Yt
0, Vt

0, T – t) of value  

0 0
( , , , , )t t t tV Y V Y V T t−  

By virtue of the continuity of functions ( , , , )f Y V u v , 

( , , , )f Y V u v  with respect to the totality of variables and 

Hausdorf’s continuity of multivalued mappings 0 0
( )t tY R Y→  

and 0 0
( )t tV P V→ like Theorem 7 in the work [18, p. 38], it is 

established by induction 1,...,0t T= − that the following 

result come around. 

Theorem 1. Games G(Yt, Vt, Yt
0, Vt

0, T – t) has equilibrium 

situations in pure strategies. Moreover, its values 
0 0

( , , , , )t t t tV Y V Y V T t−  satisfy the functional equation 

0 0

0 0

( ) ( )

0 0

0 0

( , , , , ) min max [ ( , , , ) ( ( ( , , , ),

( , , , ), , , 1)];

1,...,0; ( , , , ,0) 0.

t t t t

t t t t t t t t t t t t
v P V u R Y

t t t t t t t t

T T T T

V Y V Y V T t f Y V u v V f f Y V u v

g Y V u v Y u V v T t

t T V Y V Y V

∈ ∈
− = + +

+ + − −

= − =

                             (25) 

This theorem generalizes the Zermelo’s theorem for finite 

games with complete information. To solve the functional 

equation (25), grid-based methods are applied (see [18]), the 

convergence of which to the solution requires separate study 

and is not discussed here. 

The written functional equation for the value of the 

positional game gives the best guaranteed defense result, 

which is the value of the game due to the adopted sequence 

of moves, in which the defense party make the first move at 

each step. This game written in normal form is related to 

hierarchical games G1 (see [1]) in the particular case when 

the interests of the parties are opposite. 

5. Analytical Solution of a Two-Step 

Game 

Let's suppose that 2T = . First we’ll consider a particular 

case 1n = , and then we’ll return to the general case. 

Then the equations of system motion are the usual discrete 

equations of the Osipov-Lanchester’s model [9] of the 

dynamics of the average and can be written as 

1 0max(0; ( ) ), 0,1; .t t t t tY mY u mV v P t Y Y+ = + − + = =       (26) 

and 

1 0max(0; ( )), 0,1; ,t t t t tV mV v R mY u t V V+ = + − + = =      (27) 

where indicated for brevity sake 

1 1,P P R R= = . 

From equation (25) we get 0 0
2 2 2 2( , , , ,0) 0V Y V Y V = , 

whence it follows  
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0 0
1 1 1 1

0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 0
( , , , ,1) min max ( , , , ) ( , , , ) max(0; ( ) ).

v W V u Q Y
V Y V Y V f Y V u v f Y V Q Y W V mY Q Y mV W V P

≤ ≤ − ≤ ≤ −
= = − − = + − − + −  

The latter is true because the nondecreasing function 

1 1 1 1( , , , )f Y V u v  on 1u  and nonincreasing on 1v  (см.(26)). 

Now from the equation (25) we get 

0 0

0 0 0 0 0 0
0 0

0 0
0 0 0 0 0 0 0 0 0 0 0 0

( , ,0,0,2) min max [ ( , , , )

( ( , , , ), ( , , , ), , ,1)]

v W u Q
V Y V f Y V u v

V f Y V u v g Y V u v Y u V v

≤ ≤ ≤ ≤
= +

+ + +
 

or expanded 

0 1

0 0
0 0

0 0 0

0 0 0

( , ,0,0, 2) min max {max[0; ( ) ]

max(0; max[0; ( ) ]

( max[0; ( ] )}.

v W u Q
V Y V mY u mV v P

m mY u mV v P Q u

P m mV v R mY u W v

≤ ≤ ≤ ≤
= + − + +

+ + − + + − −
− + − + + −

 (28) 

We obtain the condition under which 

1 0 0max(0; ( ) ) 0Y mY u mV v P= + − + > . 

This condition is equivalent to the inequality 

0 0 0 0( ) ( )u u v Pv m Y PV> = − − .                 (29) 

If (29) is satisfied, then under the sign of the minimax in 

(28) stands the function 

1 0 0 0 0

0 0 0 0

0 0

( , ) max{ ( ) ;

(1 )[ ( ) ]

max[0; ( ]}.

F u v mY u mV v P

m mY u mV v P Q u PW Pv

Pm mV v R mY u

= + − +
+ + − + + − − + −

− + − +
  (30) 

If (30) is not satisfied, then under the sign of the minimax 

in (29) stands the function 

0 0 0 0 0

0 0

( , ) max{0;

max[0; ( ]}.

F u v Q u PW Pv

Pm mV v R mY u

= − − + −
− + − +

          (31) 

Thus, under the minimax sign in (29) stands the function 

1 0 0 0 0 0
0 0

0 0 0 0 0 0

( , ), ( )
( , )

( , ), ( )

F u v u u v
F u v

F u v u u v

>
=  ≤

 

It is not difficult to verify that the following lemma holds. 

Lemma 2. The function 1 0 0( , )F u v  ( 0 0 0( , )F u v  increases 

on 0u  and does not increase on 0v  (decreases on 0u and 

increases on 0v ). 

Corollary 1. From Lemma 2 it follows that for any 0v

value 0u  can take only two values 0 and Q . This means that 

it is beneficial for an attack party to enter all reserves 

simultaneously, either in the first step or in the second. 

Let’s introduce the notations 

* **( ); ( )
Y Q Y

W m V W m V
P P P

= − = + − .                 (32) 

Different ways of calculating the game’s value arise in 

connection with the position of the point 0 0( )u v  as relating 

to the segment [0, ]Q . In addition, it is important the 

difference sign Q PW− , showing whether the defense party 

is able to destroy the entire reserve of attack party by its 

reserve. Analysis of options and indicators from which you 

need to find the maximum are shown in Tables 1 and 2. 

Table 1. Options and indicators, the minimax of which gives the game value at 0Q PW− < . 

N Ratio of main forces Y, V Range v0 Intermediate indicators for ranges v0 Final indicators for cases N=1, 2, 3, 4, 5 

1 Y>PV+P/mW [0, W] F1(Q, W) F1(Q, W) 

2 PV+P/mW>Y>PV+(PW-Q)/m 
[0, W*] F1(Q, W*) Min {F1(Q, W*), 

max [F1(Q, W), F0(0, W*)]} [W*, W] Max [F1(Q, W), F0(0, W*)] 

3 PV+(PW-Q)/m>Y>PV 

[0, W*] F1(Q, W*) Min {F1(Q, W*), 

Max [F1(Q, W**), F0(0, W*)], 

F0(0, W**)} 

[W*, W**] Max [F1(Q, W**), F0(0, W*)] 

[W**, W] F0(0, W**) 

4 PV>Y>PV-Q/m 
[0, W**] Max [F1(Q, W**), F0(0, 0)] Min {max [F1(Q, W**), F0(0, 0)], F0(0, 0)}= F0(0, 

0) [W**, W] F0(0, 0) 

5 PV-Q/m>Y [0, W] F0(0, 0) F0(0, 0) 

The boundaries of the ranges can be attributed to the right or to the left range, the result of calculating the game value will be 

the same. The final indicators are obtained by minimizing the intermediate indicators for the ranges. 

Table 2. Options and indicators, the minimax of which gives the value of the game at. 

№ Ratio of main forces Y, V Range v0 Intermediate indicators for ranges v0 Final indicators for cases N=1, 2, 3, 4, 5 

1 Y>PV+P/mW [0, W] F1(Q, W) F1(Q, W) 

2 PV+P/mW>Y>PV 
[0, W*] F1(Q, W*) min{F1(Q, W*), 

max [F1(Q, W), F0(0, W*)]} [W*, W] Max [F1(Q, W), F0(0, W*)] 

3 PV >Y>PV+(PW-Q)/m [0, W] Max [F1(Q, W), F0(0, 0)] Max [F1(Q, W), F0(0, 0)] 

4 PV+(PW-Q)/m >Y>PV-Q/m 
[0, W**] Max [F1(Q, W**), F0(0, 0)] F0(0, 0)=min{F0(0, 0), 

Max [F1(Q, W**), F0(0, 0)]} [W**, W] F0(0, 0) 

5 PV-Q/m>Y [0, W] F0(0, 0) F0(0, 0) 
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Remark 2. The values of the arguments of the indicator on which the minimax is implemented give optimal values 0 0,v u . 

In the general case, the equations of dynamics has the form (15), (16) 

1 0max(0; ( ) , 0,1,... 1, .t t t t tY mY u mV v P t T Y Y+ = + − + = − =                                                    (33) 

and 

1

1

0

max(( ) ; ( )),

0,1,... 1,; .

n

t i t t i t t i t t

i

V p mV v q mV v R mY u

t T V V

+
=

= + + − +

= − =

∑
                                              (34) 

where indicated for short 

1

1

1 1
( ) ), , 1

n

i i i
i ii

P p P q p
P P

−

=

= = = −∑  

In this case, the expression (28) for the game price will have the form 

0 1

0 0
0 0

0 0 0

0

1

( , ,0,0,2) min max {max[0; ( ) ]

max(0; max[0; ( ) ]

( max(( ) ; ( )) )}.

v W u Q

n

i t t i t t i t t

i

V Y V mY u mV v P

m mY u mV v P Q u

P m p mV v q mV v R mY u W v

≤ ≤ ≤ ≤

=

= + − + +

+ + − + + − −

− + + − + + −∑
                                  (35) 

The functions 1 0,F F  defined by formulas (30, 31) will undergo similar changes. 

1 0 0 0 0

0 0 0 0

1

( , ) max{ ( ) ;

(1 )[ ( ) ]

max(( ) ; ( ))}

n

i t t i t t i t t

i

F u v mY u mV v P

m mY u mV v P Q u PW Pv

Pm p mV v q mV v R mY u

=

= + − +
+ + − + + − − + −

− + + − +∑
                                                (36) 

and 

0 0 0 0 0

1

( , ) max{0;

max(( ) ; ( ))}.

n

i t t i t t i t t

i

F u v Q u PW Pv

Pm p mV v q mV v R mY u

=

= − − + −

− + + − +∑
                                             (37) 

After this, Lemma 2 and Corollary 1 remain valid. The 

game value and the optimal values 0 0,u v  are obtained from 

Tables 1 and 2, depending on the ratio of reserves. 

6. Conclusion 

The authors describe in this paper a multi-step 

generalization of the “attack-defense” model, defined and 

studied by Germeier. In the military models the points are 

usually interpreted as directions and characterize the spatial 

distribution of defense resources across the width of the 

defense front. It is also possible to distribute the resources 

in depth in relation with the separation of the defense. The 

parties’ resources are heterogeneous in general case. All 

these areas of generalization of the classical “attack-defense” 

model have been studied by the authors in previous works. 

In reality, there is also a multistep continuation of the 

conflict in the form of a sequence of strikes inflicted before 

a sufficient level of losses is achieved by one of the parties 

(exhaustion) that is incompatible with the continuation of 

the conflict. Therefore, in this paper, the authors 

constructed the model's dynamic extension in the form of a 

positional game with opposing interests of the parties' 

reserves distribution with complete information. The 

analytical solution of this extersion was obtained for two-

step game; that has practical value as the attack party plans 

usually no more than two strikes in a day on the defense 

party. And it was shown that it is advantageous for an 

attack party to enter all reserves simultaneously, as in the 

classic attack-defense game. 
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