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Abstract: The passage of National Health Insurance Scheme to replace the old system (called cash and carry) in Ghana 

seems to have raised many questions as to whether it has increased the rate at which people attend hospital and abolished cash 

and carry system. The data collected were hospital attendance for both health insurance and cash and carry system on monthly 

basis across age groups and gender for 2008-2017, obtained from Cape Coast Teaching Hospital. Chi-Square tests and the Box-

Jenkins’s methodology of time series analysis were employed to analyse the data. From the findings, the autocorrelation 

function (ACF) and partial autocorrelation function (PACF) plot suggested an AR process with order 1. Candidate models were 

obtained using the minimum AIC criteria to select adequate models and appropriate models were obtained as SARIMA (1,0,0) 

(0,1,0)12 model for insured (NHIS) and SARIMA (1,1,1) (2,0,1)12 model for uninsured (Cash and Carry system). Model 

diagnostics tests were performed using Ljung-Box test. The Chi-square tests inferred dependence in hospital attendance 

between insured and non-insured patients on gender and the years, In conclusion, insured patients will be increasing 

throughout the age groups and non-insured patients will be increasing for specific age groups 0-28 days to 15-17 years for the 

next 24 months. This research recommended among others that education should be given to the general public about the 

importance of health insurance, it registration and operations especially age group 0-28days to 15-17 years because they seem 

to continue the use of Cash and Carry System in seeking healthcare regardless of the introduction of NHIS. 
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1. Introduction 

Time series methodology have been applied in diverse 

fields, namely; engineering, epidemiological studies, 

Education and Health. Bannor et. al. (2012) [1] developed an 

ARIMA model for hospital attendance in Obuasi, Ghana. 

Retrospective monthly data spanning from January, 2008 to 

December, 2011 from the Obuasi Government Hospital was 

used. From the analysis, ARIMA (2, 1, 0) was selected as the 

best model with the smallest AIC of 420.33. The forecasting 

results in general revealed a stabilized trend of OPD 

attendance over the forecasted period and turning point at the 

month of January, 2012. 

Arthur (2013) [2] did a time series study of OPD 

attendance at the Saltpond Municipal Hospital. He used a 

retrospective data from 2002 to 2012. SARIMA (1, 1, 3) (0, 

1, 1)12 was the best model fit. The five year forecast showed 

an increasing trend in cases.  

Abubakari (2012) [3] also developed an ARIMA models 

for NHIS hospital enrolment in the Northern region of Ghana 

and used the best fit model to forecast for 2011 and 2012. 

The predicted values recorded were decreasing from month 

to month. Other findings showed that enrolment of patients to 

the scheme had experienced an increase and a decrease linear 

trend from the year 2005 to 2010. The highest enrolment (4, 

213) from the inception of the scheme was recorded in 

December 2008. Thereafter, enrolments have been declining 
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gradually from year to year. However, most of other few high 

enrolment values were recorded from August to December 

over the period under study and same was seen from the 

predicted values of 2011 and 2012. 

In Ghana, the National Health Insurance Scheme 

established by the government and enacted by ACT 650 of 

the NHI ACT replaced the old system of payment of hospital 

bills, popularly known as ‘Cash and Carry’ (payment of 

hospital bills without insurance cover) where patients pay 

physical money for their hospital bills without any insurance 

cover [4]. After over a decade of the implementation of 

NHIS bill, it is very important to compare the trend of 

hospital attendance using either of the two. This research 

sought to investigate whether the introduction of the National 

Health Insurance has increased attendance in the hospitals 

over Cash and Carry system using time series and chi-square 

analyses. 

2. Method 

The research was restricted to Cape Coast Teaching 

Hospital in the Central Region of Ghana. The target 

population for the study was patients who attend hospital 

with health insurance and those without insurance. The data 

collected were monthly and yearly hospital attendance from 

2008 to 2017 for insured and non-insured patients grouped 

according to gender and age groups. Because the study was 

focused on use of National Health Insurance or without 

National Health Insurance, a list of ten years hospital 

attendance records was considered for the period 2008 –

2017. The research seeks to investigate whether the 

introduction of the National Health Insurance has increased 

attendance in the hospitals over Cash and Carry system. Chi-

square tests and predictive modelling of the hospital 

attendance using Box-Jenkins’s methodology of time series 

analysis were used to find out if there is a significant 

association between the users of health insurance and the 

cash and carry system in terms of their hospital attendance. 

2.1. Chi-Square Test for Association 

The test was performed to determine if there is any 

association between insurance status (that is health insurance 

and cash and carry patients) and gender in addition whether 

there is any association between hospital attendances for type 

of system of healthcare (health insurance and Cash and Carry 

systems) and years. 

The null and alternative hypotheses are stated as follows: 

Test for Association between Hospital Attendance and 

Gender 

��: There is no association in attendance between gender 

and insurance status. 

��: There is an association in attendance between gender 

and insurance status. 

Test for Association between Hospital Attendance and Year 

��:	There is no association between hospital attendances 

for type of system of healthcare and years. 

��:	There is an association between hospital attendances 

for type of system of healthcare and years. 

The chi-squared statistic for testing the null hypothesis �� 

has the test-statistic given by 

�� = ∑
��
���
��

�

�
�
                                (1) 

where,	��� = Observed value and ��� = expected value. 

This statistic takes its minimum value of zero when all 

��� = ��� . For a fixed sample size, greater differences in 

��� − ���  produces larger ��  values and stronger evidence 

against	��, with the probability of the level of significance of 

the test represented as a p−����� . The ��  statistic has 

approximately a chi-squared distribution and the chi-square 

approximation improves as ���  increases and also ��� ≥ 5	is 

usually sufficient for a decent approximation PSU (2018d) 

[5].  

2.2. Time Series Analysis 

It uses past behaviour of the variable in order to predict it 

future behaviour. Time series data consist of observations on 

a variable of interest collected in time order denoted 

 �,  �, … ,  �  where #	$	%  such that # = 1, 2, …  denote time 

steps, usually weekly, monthly, quarterly, yearly and etc. It is 

applicable when the number of variables of interest is 

univariate or multivariate. It is possible in time series one 

will have either an increase or decrease in trend and when 

there is no such pattern, it means the time series is stationary. 

The nature of the variable of interest is continuous time series 

and discrete time series (observations are made only at 

specific times). The components of time series are the trend, 

seasonal variation, cyclical variation and irregular variation. 

The Australian Bureau of Statistics (ABS, 2008), [6] 

explained a trend is giving by a continuous long term 

variable or movement of the points over a period of time. A 

trend that is time dependent is called a random walk or 

stochastic variable. Seasonality occurs when the time series 

exhibit regular fluctuations each year about the same time 

with some contributing factors as weather conditions and 

festivities. Two ways to put the four components together in 

Time Series Models are: 

i. Additive Model 

ii. Multiplicative Model 

Additive Model: 

 ( = )*( + ,( + -( + .(                      (2) 

Multiplicative Model: 

 ( = )*( × ,( × -( × .(                     (3) 

PSU (2018a) 

Where: 

 ( = Value of time series at time # 
)*( = Value of trend at time # 
,( = Value of seasonal variation at time # 
-( = Value of cyclical variation at time # 
.( = Value of irregular variation at time # 
White noise process also referred to as purely random 
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process is defined as a sequence {�(}2  of uncorrelated 

random variable with zero mean and variance equal to a 

constant	3�. In a random walk, a current value of the random 

variable	�, is a combination of past value �(�� and an error 

( 4% ). Smoothing techniques “smooth out” random 

fluctuations caused by the irregular component of the series 

which is particularly suitable for stationary series. These 

models include moving averages, single and double 

exponential smoothing, auto-regressive integrated moving 

average (ARIMA) and others. Also, we find seasonal effect 

so as to remove the seasonal effect from the series and the 

process is called deseasonalization. Stationary series exist in 

time series and it assumptions are constant mean, constant 

variance, and constant autocorrelation structure. 

2.2.1. Moving Average (MA) Models 

MA models provide predictions of 	 (  based on a linear 

combination of past forecast errors. It is one of the smoothing 

techniques.  

Thus the moving average operator is defined as: 

5	(7) = 1 +	5�7 +	5�7� +	⋯+	5:7:             (4) 

2.2.2. The Autoregressive Integrated Moving Average 

Model (ARIMA) 

Differencing is done in time series to a non-stationary 

dataset, having variation in the mean to remove such 

variation, the remaining series is called an integrated time 

series. The name an integrated model since the stationary 

model which is fitted to the differenced data has to be 

summed or integrated to provide a model for the non-

stationary data. Notational, all AR (p) and MA (q) models 

can be represented as ARIMA (1, 0, 0) meaning no 

differencing and no MA part. The general model is ARIMA 

(p,d,q) where p is the order of the AR part, d is the degree of 

differencing and q is the order of the MA part. The ARIMA 

process according to qmul (2018a), [7] can be written as 

 ( = ;< ( =	 (1 − 7)< (                          (5) 

The general ARIMA process is of the form: 

 ( = ∑ =� ( − >?
�@� + ∑ 5��( − > + μ + �#:

�@�             (6) 

Box Jenkins methodology uses moving averages and 

autoregressive approaches (Box, Jenkins and Reinsel, 1994) 

[8]. However, as formulated by Box and Jenkins (1976) [9] is 

the development of autoregressive integrated moving average 

(ARIMA) models to deal with forecasting and time 

correlated modeling. The general behavior of the ACF and 

PACF for ARMA/ARIMA models is summarized according 

to qmul (2018b) [10] as: 

Table 1. Behavior of ACF and PACF for ARMA models. 

 AR (p) MA (q) AARMA (p, q), p > 0, and q 

ACF Tails off Cuts off after lag q Tails off 

PACF Cuts off after lag p Tails off Tails off 

 

2.2.3 Autocorrelation Function (ACF) and Partial 

Autocorrelation Function (PACF) 

Measuring the association between current and past time 

series values are known as ACF and PACF. Autocorrelation 

function (ACF), measures linear dependence in time series, B 

time periods apart. Partial autocorrelation function (PACF), 

measures linear dependence in time series B accounting for 

the values of the intervals as well as points of time as a 

function at lag t. 

2.2.4. Seasonal ARIMA (SARIMA) Model 

Seasonality is one of the usual patterns of changes over 

specified time period say # where it explains the number of 

time periods until the pattern repeats again. In a seasonal 

ARIMA model, seasonal AR and MA terms predict �( using 

data values and errors at times with lags that are multiples of 

S (the span of the seasonality). We perform differencing in 

time series to examine differenced data when we have 

seasonality. Seasonality usually causes the series to be non-

stationary because the average values at some particular 

times within the seasonal span (e.g. months) may be different 

than the average values at other times. The seasonal 

differencing is defined as a difference between a value and a 

value with lag that is a multiple of S. With S= 12, which may 

occur with monthly data, a seasonal difference is (1-B
12

)xt=xt 

xt-12. The differences (from the previous year) may be about 

the same for each age group or month of the year obtaining a 

stationary series. With S = 4, which may occur with quarterly 

data, a seasonal difference is (1-B
4
)xt=xt-xt-4. Seasonal 

differencing removes seasonal trend and can also get rid of a 

seasonal random walk type of non-stationarity. If trend is 

present in the data, we may also need non-seasonal 

differencing. Often (not always) a first difference (non-

seasonal) will “detrend” the data. That is, we use (1-B)xt=xt-

xt-1 in the presence of trend. When both trend and seasonality 

are present, we may need to apply both a non-seasonal first 

difference and a seasonal difference. ARIMA (p, d, q) × (P, 

D, Q)S, where p = non-seasonal AR order, d = non-seasonal 

differencing, q = non-seasonal MA order, P = seasonal AR 

order, D = seasonal differencing, Q = seasonal MA order, and 

S = time span of repeating seasonal pattern [11, 12].  

2.2.5. Ljung-Box Statistic 

Ljung-Box statistic (also called Box-Pierce statistic) is a 

diagnostic tool applied to examine residuals from a time 

series model in order to observe if all underlying population 

autocorrelations for the errors may be 0 (up to a specified 

point). It is purely based on the autocorrelation plot. Instead 

of testing at each distinct lag, it tests rather the overall 

randomness based on the number of lags. The residuals are 

assumed to be “white noise,” meaning they are identically, 
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independently distributed from each other. The ACF for 

residuals is that all autocorrelations are 0. This means that Q 

(m) should be 0 for any lag m. A significant Q (m) for 

residuals indicates a possible problem with the model. Q (m) 

measures accumulated autocorrelation up to lag m: 

C(D) = �(� + 28∑
E�
�

���

F
�@�                            (7) 

where � is the sample size after any differencing operation, 

and the test statistic follows the chi-square distribution with 

degrees of freedom 6GH8 	 D � I . The p-value is 

determined as the probability past Q (m) in the significant 

distribution. A small p-value (say p-value < 0.05) indicates 

the possibility of non-zero autocorrelation within the first D 

lags PSU (2018c) [11, 12].  

3. Data Analysis and Results 

Table 2. Chi-square test for association of hospital attendance with gender. 

 Insured_1 Non-Insured_2 All 

Male 337123 (343893) 63660 (56890) 400783 

Female 508695 (501925) 76263 (83033) 584958 

All 845818 139923 985741 

From the output, since the �� 	 1582.238 with a 	I �

����� 	 0.00 is less than the alpha value of 0.05, we reject 

the null hypothesis. Therefore we conclude that the hospital 

attendances for insured and non- insured patients have 

dependency on gender. 

Table 3. Test for Association between Hospital Attendance and Year. 

Year Insured_1 Non-Insured_2 All 

2008 58393 (86692) 42640 (14341) 101033 

2009 79735 (100709) 37634 (16660) 117369 

2010 76437 (88687) 26921 (14671) 103358 

2011 71747 (71726) 11844 (11865) 83591 

2012 81673 (74767) 5463 (12369) 87136 

2013 86480 (75688) 1729 (12521)  88209 

2014 92646 (82068) 2998 (13576) 95644 

2015 95470 (83778) 2167 (13859) 97637 

2016 101957 (89797) 2695 (14855) 104652 

2017 101280 (91908) 5832 (15204) 107112 

All 845818 139923 985741 

In brackets are the expected frequencies: 

Pearson Chi-Square = 162538.620, DF = 9, P-Value = 0.000 

Likelihood Ratio Chi-Square = 158041.033, DF = 9, P-Value = 0.000 

The output above in Table 3 gives a p-value of 0.000 with 

degrees of freedom of 9 which is less than the alpha vale of 

0.05 indicates that the test is statistically significant. We 

reject the null hypothesis hence there is evidence of 

dependence in the hospital attendance between insured as 

well as non-insured patients and the years. 

Test for Stationarity of Insured Data 

In checking for the stationarity of the dataset before using 

it to forecast, KPSS test was employed. 

KPSS Test. 

6��8:	Data set is stationary  

(��8:	Data set is not stationary.  

The test results are presented in Table 4: 

Table 4. A KPSS test for level stationarity for insured patients. 

Data KPSS level 
Truncation lag 

parameter 
P-value 

Alpha 

value 

Raw Data 0.35626 2 0.09601 0.05 

Using KPSS test for the raw insured data, since the p-value 

≈ 0.10, greater than α = 0.05, we fail to reject the null 

hypothesis ��. Hence, we conclude that the series of the raw 

insured data is level stationary, therefore needs no 

differencing. 

Parameter Estimation and Model Validation for Insured 

Data. 

Table 6 indicates the selected ARIMA models with their 

AIC values. Figure 2 captures the model diagnostics. 

 

Figure 1. Autocorrelation and partial autocorrelation functions of insured 

data. 

The autocorrelation function (ACF) and partial 

autocorrelation function (PACF) as shown in Figure 1. The 

graphs suggest an AR process with order 1. Candidate 

models were obtained using the minimum AIC criteria to 

select more adequate model. To confirm the appropriate 

model, seasonal ARIMA model was obtained. 

Table 5. ARIMA (1,0,0) (0,1,0)12 model results. 

Model AIC Value S.E_ar1 

ARIMA (1,0,0) (0,1,0)12 15.66537 0.0842 

This model was used to modify the AR1 process chosen. 

The best SARIMA (1, 0, 0) (0, 1, 0)12 model with least AIC 

value of 15.66537 was fitted using the SARIMA function.  
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Figure 2. Model diagnostics of insured data by Ljung-Box test showing the residuals are uncorrelated (ACF plot), independent and normally distributed by the 

QQ-plot. 

The residual diagnostic test in Figure 2 is performed using the Ljung-Box test for further confirmation of the selected model.  

Table 6. Summary of models for insured data. 

Model AIC Value  S.E_ar1 S.E_ar2 S.E_ma1 S.E_ma2 

ARIMA (1,0,0) (0,1,0)12 15.66537 0.0842    

ARIMA (1,0,1) (0,1,0)12 15.66711 0.1634  0.1613  

ARIMA (1,0,2) (0,1,0)12 15.67878 0.2421  0.2475 0.1195 

ARIMA (2,0,0) (0,1,0)12 15.66835 0.0949 0.095   

ARIMA (0,0,1) (0,1,0)12 15.67968   0.0723  

ARIMA (0,0,2) (0,1,0)12 15.66958   0.0958 0.0940 

 

Table 6 presents summary of the possible models together 

with their AIC values. 

Test for Stationarity of Non-Insured Data 

KPSS Stationarity test is performed. 

KPSS Test 
(��): Data set is stationary 

(��8: Data set is not stationary.  

The test results are presented in Table 7: 

Table 7. A KPSS test for level stationarity for non-insured patients. 

Data KPSS level Truncation lag parameter P-value Alpha value 

Before differencing 2.616 2 0.01 0.05 

After differencing 0.045942 2 0.1 0.05 

 

With the raw insured data, since the p-value=0.01 is less 

than α=0.05, we reject the null hypothesis and conclude that 

the series of the raw non-insured data is not level stationary. 

For the differenced insured data, since the p-value=0.1 is 

greater than α=0.05, we fail to reject the null hypothesis and 

therefore conclude that the series of the differenced insurance 

data is level stationary. The differenced series can now be 

used for forecasting. 

Parameter Estimation and Model Validation for Non-

Insured Data 

Table 9 indicates the selected ARIMA models and 

corresponding AIC values. Figure 4 captures the model 

diagnostics. 

The autocorrelation function (ACF) and partial 

autocorrelation function (PACF) as shown in Figure 3 

suggest an AR process with order 1. Candidate models were 

obtained using the minimum AIC criteria to select more 

adequate model. The ACF and PACF plots suggest that, the 

series is a mixture of AR and MA process. The AIC of the 

candidate model shows that AR1MA is a better model. 
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Figure 3. Autocorrelation and partial autocorrelation functions of non-insured differenced data. 

Table 8. ARIMA (1,1,1) (2,0,1)12 model results. 

MODEL AIC Value  S.E ar1 S.E ma1 S.E ma2 S.E sar1 S.E sar2 S.E smar1 

ARIMA(1,1,1) (2,0,1)12 13.94181 0.1034 0.0389  0.2479 0.2262 0.2264 

We fit the AR1MA (1, 1, 1) (2, 0, 1)12 model with the seasonality components and the least AIC value of 13.94181, which 

appears to be much better model is obtained. 

Table 9. Summary of models for non-insured data. 

MODEL AIC Value  S.E ar1 S.E ma1 S.E ma2 S.E sar1 S.E sar2 S.E smar1 

ARIMA(1,1,0) (2,0,1)12 14.14381 0.0920   0.2064 0.1972  

ARIMA(1,1,1) (2,0,1)12 13.94181 0.1034 0.0389  0.2479 0.2262 0.2264 

ARIMA(0,1,1) (2,0,1)12 14.00311  0.1516  0.2691 0.2400 0.2464 

ARIMA(0,1,2) (2,0,1)12 13.94305  0.0898 0.0904 0.2608 0.2363 0.240 

The summary of other candidate models are given in Table 9, from which the best model is SARIMA (1,1,1) (2,0,1)12 was 

chosen with least AIC value of 13.94181. 

 

Figure 4. Model diagnostics of non-insured data by Ljung-Box test showing the residuals are uncorrelated (ACF plot), independent and normally distributed 

by the QQ-plot. 

The residual diagnostic test as shown in Figure 4 is performed using the Ljung-Box test for further confirmation of the 

selected model.  
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4. Discussions 

Table 10. Forecasted values of insured hospital attendance. 

Age Group 
0-28 

days 

1-11 

month 

1-4  

Yrs. 

5-9  

Yrs.  

10-14 

Yrs.  

15-17 

Yrs.  

18-19 

Yrs.  

20-34 

Yrs.  

35-49 

Yrs.  

50-59 

Yrs.  

60-69 

Yrs.  

70+ 

Yrs 

Forecast 2018 2821 3921 7548 4019 2969 2474 1970 19631 16245 16095 15680 14004 

Forecast 2019 3226 4326 7953 4424 3374 28799 2376 200361 16650 16500 16085 14409 

Table 11. Forecasted values for non-insured patients. 

Age Group 
0-28 

days 

1-11 

month 

1-4  

Yrs. 

5-9 

Yrs.  

10-14 

Yrs.  

15-17 

Yrs.  

18-19 

Yrs.  

20-34 

Yrs.  

35-49 

Yrs.  

50-59 

Yrs.  

60-69 

Yrs.  

70+ 

Yrs. 

Forecast 2018 81 161 235 232 260 155 109 1973 1318 816 166 85 

Forecast 2019 130 196 237 227 232 192 164 1326 923 588 177 118 

 

It can be seen from Table 10 that attendance for insured 

patients on the various age groups over two years period 

exhibited an increasing trend. This trend shows how health 

insurance scheme mode of attending hospital will continue to 

be used by patients seeking healthcare. From Table 11, it can 

be observed that the specific age groups of 0-28 days to 5-9 

years, 15-17yrs.to 18-19yrs. and 60-69yrs. to 70+yrs have all 

experienced an increase over the two years period being 

forecasted for non-insurance. This suggests hospital 

attendance for these age groups will continue using the cash 

and carry system of paying hospital bills for the next two 

years. It can be observed that attendance for the various age 

groups on the forecasted two years period have experienced 

an increase over the last year under review which is 2017. 

Even though the increment is not a fast one, it recorded a 

gradual increase for the forecasted years. 

Table 12. 2018 Forecasted Values for Insured Age Group Hospital Attendance Compared with Actual 2017 Attendance Review. 

Age Group 0-28 days 1-11 month 1-4Yrs. 5-9 Yrs.  10-14 Yrs.  15-17 Yrs.  

Actual 2017 1766 3208 6997 3545 2531 2053 

Forecast 2018 2820.982 3920.967 7547.956 4019.213 2968.860 2473.640 

Table 12. Continued. 

Age Group 18-19 Yrs.  20-34 Yrs.  35-49 Yrs.  50-59 Yrs.  60-69 Yrs.  70 Yrs. & Above 

Actual 2017 1558 19222 15838 15689 15274 13599 

Forecast 2018 1970.483 19630.619 16244.789 16094.922 15679.511 14004.317 

Table 13. 2018 Forecasted Values for Non-Insured Age Group Hospital Attendance Compared with Actual 2017 Attendance Review. 

Age Group 0-28 days 1-11 month 1-4 Yrs. 5-9 Yrs. 10-14 Yrs. 15-17 Yrs. 

Actual 2017 29 89 151 140 161 139 

Forecast 2018 80.84241 161.07327 234.91726 232.21231 260.00504 155.30869 

Table 13. Continued. 

Age Group 18-19 Yrs. 20-34 Yrs. 35-49 Yrs. 50-59 Yrs. 60-69 Yrs. 70 Yrs. & Above 

Actual 2017 116 2201 1520 929 221 136 

Forecast 2018 108.56674 1972.86489 1318.01079 815.51885 166.34544 85.25510 

 

From Table 12, one can observe that the values for the forecast 

age groups are greater than the actual values across the various 

age groups. This means that patients using health insurance will 

be increasing for the year under forecast as compared to the 

number of attendance of the year under review. Continues use of 

the insurance system will see an increase in attendance for 20-34 

years in the coming year recording the age group that has the 

highest number of hospital visits. 

From Table 13 there is an increase in the forecasted values for 

age groups 0-28 days to 15-17 years under 2018 with the hospital 

attendance of patients using cash and carry system as compared to 

the actual hospital attendance for 2017. Meaning this categorical 

of age group will continue to use Cash and Carry System in 

seeking healthcare more than other categories under the age limits 

specified. From 18-19 years, the forecasted values incline to 

decrease to the ending of the age group 70 Yrs. & above. Though 

age group 20-34 years recorded the highest forecasted value, it 

also reduced compared to the actual value of attendance in the 

year 2017. Comparing the forecasted with the actual values of 

attendance, we can observe that there are changes in the age 

groups attendance recording an increase and decrease trend in the 

forecast values. This trend indicate patients using cash and carry 

system will increase with specific age groups (0-28 days to 15-17 

6years) using the system and reduce with age groups (18-19 years 

to 70 Yrs. & Above) for attendance in year 2018. 
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5. Conclusions 

The study applied time series methodology to hospital 

attendance data with the aim of analysing the Cash and Carry 

and the Insurance systems of payment of hospital bills at 

Cape Coast Teaching hospital. The study also determined the 

association between the two systems using Chi-square tests. 

The study formulated tentative models for the two systems of 

paying hospital bills with selected models for insured and 

non-insured data. These models were selected as a result of 

their lowest AIC values. The study used the best model fit to 

forecast for 2018 and 2019.  

There is an established significant association of hospital 

attendance for patients using both systems (health insurance 

and cash and carry) with gender and years confirmed by the 

Chi-square tests. The number of health insurance user’s 

differs across levels of cash and carry patients in years with 

hospital attendance seeking healthcare. Hence, the use of the 

health insurance scheme to seeking medical care has 

increased hospital attendance with time while patients using 

cash and carry system continues to increasing attendance 

particularly for the age groups, 1 day throughout to 17 years. 

6. Recommendations 

Education should be given to the general public about the 

importance of health insurance, it registration and operations 

especially age group 0-28days to 15-17 years because they 

seem to continue the use of Cash and Carry System in 

seeking healthcare regardless of the introduction of NHIS. 

The government should promote the continuation of the use 

of the national health insurance scheme to all categories of 

patients. There should be an expansion of the existing health 

insurance registration centres and establishing new centres 

especially in the rural communities since the hospital 

receives mostly referral. 
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