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Abstract: Computer simulations have been receiving a lot of attention in industrial engineering as the rapid growth in 

computer power and numerical techniques. In contrast to physical experiments which are usually carried out in factories, 

laboratories or fields, computer simulations can save considerable time and cost. From the statistical perspective, the current 

research work about computer simulations is mostly focusing on modeling the relationship between the output variable from 

the simulator and the input variables set by the experimenter. However, an experimental design with careful selection of the 

values of the input variables can significantly affect the quality of the statistical model. Specifically, prediction on the edge 

area of the experimental domain, which is extremely critical for an industrial engineering experiment often suffers from 

inadequate data information because the design points usually do not well cover the edge area of the experimental domain. To 

address this issue, a new type of design, called semi-LHD is proposed in this paper. Such a design type has the following 

appealing properties: (1) it encompasses a Latin hypercube design as a sub-design so that the design points are uniformly 

scattered over the interior of the design region; and (2) it possesses some extra marginal design points which are close to the 

edge so that the prediction accuracy on the edge area of the experimental domain is fully taken into account. Detailed 

algorithms for finding the marginal design points and how to construct the proposed semi-LHDs are given. Numerical 

comparisons between the proposed semi-LHDs with the commonly-used Latin hypercube designs, in terms of prediction 

accuracy, are illustrated through simulation studies. It turns out that the proposed semi-LHDs yield desirable prediction 

accuracy not only in the interior but also on the edge area of the experimental domain, so they are recommended as the 

experimental designs for simulation-based industrial engineering experiments. 
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1. Introduction 

Computer experiments are becoming widely used in 

industrial engineering where computational methods are used 

to simulate the real-world phenomena (see, for example, 

references [1-7]). Most computer experiments for industrial 

engineering are unique in that the response has no random-

error component. That is, replicates of the same inputs to the 

computer code will yield the same response. Since a 

computer experiment is typically treated as a black-box and 

is time demanding, the experimental design should be chosen 

judiciously and explore the experimental domain as 

thoroughly as possible. To this end, Mckay, Beckman and 

Conover [8] first proposed the Latin hypercube designs 

(LHDs) which possess the property that when projected onto 

any one dimension, they achieve maximum stratification. 

LHDs are the most popular designs for computer-based 

industrial engineering experiments and have enjoyed lots of 

development (see, for example, references [6, 7, 9-12]). 

The issue of building prediction models for computer 

experiments has drawn significant attention of researchers. 

Currin, Mitchell, Morris and Ylvisaker [13] applied Bayesian 

prediction to analyze the outputs of computer experiments; 

Joseph, Hung and Sudjianto [14] proposed blind kriging for 

developing surrogate models; Kennedy and O'Hagan [15] 

gave a method for predicting the output from a computer 

experiment when fast approximations are available. For a 
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detailed treatment of this topic, please refer to references [6, 

7]. Most of the existing work are paying attentions on 

modeling methods, while a design with careful planning can 

significantly affect the prediction accuracy of the model. 

When predicting the response at an unobserved site located 

in the interior of the design region, information is often 

sufficiently received from the design points around it. 

However, when the unobserved site is located on the edge of 

the design region, inadequate information may be received 

because the relatively small number of design points around 

it. As a result, the prediction accuracy on the edge of the 

design region may be poor, especially for industrial 

engineering experiments. The engine block and head joint 

sealing assembly experiment, the robot arm experiment and 

the integrated circuit experiment described by [1] are some 

good examples of this and very few experimental designs 

have been proposed to address this issue. 

Motivated by the aforementioned issue, a new design type 

called semi-LHD is proposed for computer-based industrial 

engineering experiments which pays extra attention to the 

edge area of the experimental domain. A semi-LHD adds 

extra points to the marginal points of an LHD so that the 

proposed design inherits the space-filling property of the 

LHD. Furthermore, the proposed semi-LHD helps to increase 

the prediction accuracy on the edge while not deteriorating 

the overall prediction accuracy. Methods for finding marginal 

points and choosing the added points are systematically 

proposed, which are the central contributions of this work. 

The remainder of this paper is organized as follows. 

Section 2 provides useful definitions and notations. Section 3 

presents the design construction method and gives some 

numerical examples that simulate industrial engineering 

experiments. Concluding remarks in Section 4 close this 

paper. 

2. Definitions and Notations 

In this section, some useful definitions and notation will be 

given. A Latin hypercube design (LHD) is a n p×  matrix, 

denoted by LHD (n, p) in which the number of levels in each 

column equals to the sample size and the levels are equally 

spaced. Without loss of generality, suppose that the design 

region is the unit cube [0,1]
p

. That is, when the design points 

of an n-run LHD are projected on each dimension, there is 

exactly one point falling into each of the n equally spaced 

intervals on [0, 1]. In general, a random LHD can be 

constructed as follows. Let ( )ij n pA a ×= be an n p×  matrix 

each column of which is a random permutation of (1, 2,..., n), 

and the columns are generated independently. 

Via A, construct an n p×  matrix ( )ij n pD d ×=  where  

,
ij ij

ij

a u
d

n

−
=                                    (1) 

and iju is a random number drawn from U(0, 1) and ija and 

iju are independent, i=1,...n, j=1,...p. Then D is a random 

LHD. 

One primary goal of a computer experiment is to establish 

an emulator (also called a metamodel) which can capture the 

relationship between the inputs and the output of the 

computer code. In this paper the most commonly-used 

model, the Gaussian process model (see references [6, 7, 16]) 

is considered. Given an input [0,1]
p

x ∈ , the response ( )y x is 

modeled as 

( ) ( ) ' ( , ),y x f x Z xβ= + Θ                            (2) 

where 1( ) ( ( ),..., ( )) 'qf x f x f x= are some known functions 

defined on the design region, 1( ,..., ) 'qβ β β= is a vector of 

unknown parameters to be estimated and ( , )Z x Θ assumed to 

be a realization of a stationary Gaussian process with zero 

mean, variance 2σ and a vector of correlation parameters 

1( ,..., ) '.pθ θΘ =
 
Given two different inputs 1 11 1( ,..., )px x x=

 
 

2
1 2 1 2[ ( ), ( )] ( | ),Cov y x y x r x xσ= − Θ  

where ( | )r ⋅ Θ  is the correlation function defined by the 

parameter Θ .
 The most commonly-used correlation function 

is the Gaussian correlation function, which is given by 

2
1 2 1 2 1 2

1

( | ) [ ( ), ( )] exp{ ( ) },

p

i i i

i

r x x corr y x y x x xθ
=

− Θ = = − −∑     (3) 

where 'i sθ  are required to be positive. Throughout this 

paper, this correlation function is used since it is infinitely 

differentiable which is favorable in applications for industrial 

engineering [3]. 

A popular method for analyzing the model in (2) is through 

kriging [7]. Given a design of n  inputs 
' '
1( ,..., )nD x x=

 
on 

[0,1]
p

with the corresponding response vector 

1( ( ),..., ( )) 'ny y x y x= , according to the Gaussian process 

assumption, y follows the following multivariate normal 

distribution 

2
( , ),∼y MN F Rβ σ  

where 1( ( ),..., ( )) ', ( )n ij n nF f x f x R r ×= =
 
is the n n×  

correlation matrix with ijr
 
being ( | )i jr x x− Θ

 
defined in (3). 

The negative log-likelihood of y  is proportional to 

2 1 2
log( ) log(| |) ( ) ' ( ) / ,n R y F R y Fσ β β σ−+ + − −   (4) 

where | |A
 
denotes the determinant of matrix A . Following 

the maximum likelihood approach, the maximum likelihood 

estimates (MLEs) of β and 2σ  are given by 
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1 1 1( ' ) ' ,F R F F R yβ
∧

− − −=                      (5) 

2 1( ) ' ( ) / ,y F R y F nσ β β
∧

−= − −                  (6) 

respectively. It is easy to see that β
∧

,
 

2σ
∧

and R are functions 

of the parameter Θ . Plug the MLEs of β and 2σ into 

formula (4), the MLE of Θ is then given by 

2arg min ( log( ) log(| |)).n Rσ
∧∧

ΘΘ = +              (7) 

There are several optimization algorithms available to 

solve the problem in (7), see Fang, Li and Sudjianto [1] for 

details. Plug 
∧
Θ back into Eqs. (5) and (6), the best linear 

unbiased predictor (BLUP) of the response y at an untried 

point *x is given by  

1^
* *( ) ( ) ' r ' ( ),y x f x R y Fβ β

−∧ ∧ ∧
= + −               (8) 

where * *
1r ( ( ) | ),..., ( ) | )) 'nr x x r x x

∧ ∧
= − Θ − Θ and R

∧
is the 

n n× correlation matrix with the ( , )i j th entry being 

( ) | )i jr x x
∧

− Θ . It is easy to verify that predictor (8) 

interpolates the response at any observed point ix , which is a 

desired property for deterministic computer experiments. 

3. The Methodology 

3.1. The Design Construction Method 

In this section an easy-to-implement method is presented 

to construct a new type of design called semi Latin 

hypercube design (semi-LHD). This design type is useful for 

predicting the responses at untried points which are specially 

located on or close to the edge of the experimental region. As 

for the points far away from the edge, the proposed design 

can also yield good prediction accuracy. The main idea of the 

proposed design is to add points to an existing LHD, thus the 

resulting design contains an LHD as a subdesign. 

Suppose an n -run semi-LHD is to be constructed, the 

number of runs of the built-in LHD 0 ( )n n<  is determined 

according to the needs of the experiment. Determine the 

parameter m which is the number of “marginal points” of the 

built-in LHD. Given n , 0n  and m , the general framework 

of the proposed design construction method is presented as 

follows. 

Display 1 (Framework of the construction of semi-LHDs). 

Step 1. Construct an LHD ( 0n , p ), denoted as 1D . 

Without loss of generality, let 
01 1( ,..., ) 'nD x x= , where 

01,..., nx x are rows (points) of 1D . 

Step 2. For 01,..., ,i n= calculate the average distance from 

ix to the remaining points in 1D , denoted by ia . Let 

01( ,..., ) '.na a a= Sort the elements in vector a  in descending 

order and denote the resulting vector by 
0

* * *
1( ,..., ) '.na a a=

 

Rearrange the rows in 1D  by *a  and denote the resulting 

design by 
*

1D . 

Step 3. Let the first m rows of 
*

1D form a subdesign 
*

1d . 

For each point in 
*

1d , add l points around it following a pre-

specified regulation, where l is the smallest integer satisfying 

0ml n n≥ − . 

Step 4. Combine the ml  points added in the previous step 

to form a design *E . Let 
* * *

1( ', ') '.D D E= If 0ml n n= − ,

*D D= is the desired design. If 0ml n n> − , delete 

0( )ml n n− −  points from *E following some rule and still 

denote the resulting array by *E . Then 
* *

1( ', ') 'D D E= is the 

desired design. 

The steps in Display 1 are given in a general manner, 

hereafter the details surrounding the framework are 

presented. As alluded to earlier, 0n is determined according 

to the experimental needs. If n  is not large, say 

050, / 2 2 / 3n n n n≤ ≤ ≤ is recommended as a standard 

choice so that at least a small number of design points can be 

added; if n  is large, 0n  can be a relative large portion of n . 

In Step 1 of Display 1, a random LHD or a maximin distance 

LHD with sample size 0n can be used. Other optimal LHDs 

could also be considered at this step. For simplicity, a random 

LHD is used throughout this paper. In Step 2, the average 

distance ia  from ix  of 1D
 
to the remaining points in 1D  is 

calculated by 

0

2

0 1, 1

1
( ) .

1

n p

i ij kj

k k i j

a x x
n = ≠ =

= −
− ∑ ∑                   (9) 

The design points in 
*
1D in Step 2 is ordered so that the 

first row has the largest average distance from the others, the 

second row has the second largest average distance and so 

on. It is clear that points with relatively large average 

distance are located near the edge of the design region and 

far from the other points. 

Parameter m  in Step 3 is another value determined 

according to the practical needs. In applications, 0 / 4m n≈  

may be used as a standard choice, which represents the belief 

that about a quarter of the design points of the built-LHD are 

treated as the marginal points. The first m rows of 
*
1D  are 

thought to be marginal points since each of them has 

relatively large distance from the other points in 
*
1D . With a 

little abuse of notation, denote 
*
1 1( ,..., ) 'md x x= . where 

' '
1,..., mx x  are rows (points) in 

*
1d and 
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1( ,..., ) ', 1,..., .i i ipx x x i m= =
 
In Step 3, l  points are added 

around each point in 
*
1d . An algorithm for how to add the 

points is given as follows. 

Algorithm 1. 

Step 1. For 1,..., , 1,...,i m j l= = and 1,...,k p= , let  

( )

0

2
( )(0.5 0.5 ),k

ij ike x sign
n

α γ= + +  

where ( )sign x
 
returns 1 if 0x ≥  and -1 if 0,x < α is a 

random sample drawn from standard normal distribution and 

γ is a random sample drawn from uniform distribution on 

(0,1).
 

Step 2. For 1,..., , 1,...,i m j l= = and 1,...,k p= , if ( ) 1,k
ije >

 
let ( ) 1 0.1(0.5 0.5 )k

ije γ= − +
 
or if ( ) 1,k

ije < let 

( ) 0.1(0.5 0.5 ).k
ije γ= +  

Step 3. For 1,...,i m= and 1,...,j l= , let 

( ) ( )( ,..., ) '.k p
ij ij ije e e= For 1,...,i m= , 

' '
1( ,..., ) '.i i ile e e=

 
Then let 

* ' '
1( ,..., ) '.mE e e=  

Step 4. Let 
* *' *'

1 1( , ) '.D D E= Calculate the minimum 

distance between different points in *D , denoted by a . If 

0 / 3a a< , go to Step 1; otherwise, return *D . 

The main idea of Algorithm 1 is to add points in the 

neighborhood of the marginal design points. Step 1 of 

Algorithm 1 defines the scope of the neighborhood which is 

neither too close to nor too far away from the marginal points 

and chooses points from this neighborhood. Fraction 02 / n  

controls the degree of farness which could be altered to other 

values according to the practical needs and 0.5 0.5γ+  

controls the degree of closeness which could also be 

changed. Since the coordinates of the points added according 

to Step 1 of Algorithm 1 may exceeds the scope of the design 

region, Step 2 is needed to deal with this issue. Step 3 of 

Algorithm 1 assesses the combination of the added and 

existing points, i.e. *D , so they are not too close from each 

other. If the points in *D are too close from each other, 

during the analysis of the experiment some computational 

issues, such as the singularity problem, may be encountered. 

Moreover, Algorithm 1 still maintains the space-filling 

property of the resulting design. 

After implementing Algorithm 1, Step 3 of Display 1 is 

completed and one needs to go on to Step 4 of Display 1. In 

this step, since ml  may be larger than 0n n− , 0( )ml n n− −

points should be deleted from *E .
 The way to delete points 

from *E is described as follows. For each point e  in *E , 

calculate the average distance between e  and points in 
* \{ }D e  which is the subset of *D  lying outside { }e . Record 

the first 0( )ml n n− −  smallest distances and delete the 

corresponding points from *E , then a semi-LHD with 

sample size n  is obtained. The proposed design is denoted 

by semi-LHD 0( , ; )n p n . 

The proposed semi-LHDs have appealing properties. First 

of all, semi-LHDs inherit the space-filling property of their 

built-in LHDs. Secondly, with extra points added to the 

marginal points of the built-in LHDs, semi-LHDs would 

yield good prediction on the edge area. In practice, the 

behavior of an industrial engineering experiment on (or near) 

the edge of the experimental domain is usually of great 

importance to practitioners since it may be unstable or 

variable to influence the statistical inference. The proposed 

designs not only spread points over the experimental region 

but also put effort on the edge area, which benefits 

predictions on both the edge area and interior of the 

experimental region. 

An example illustrating the construction of semi-LHDs is 

given below. 

Example 1. Suppose one would like to construct a semi-

LHD (40, 2;24). Firstly, an LHD (24, 2), denoted by 1D  is 

generated as the built-in LHD. Next, eight marginal points 

are found from 1D . Following the steps of Algorithm 1, two 

extra points are added to each of the marginal points. 

Combine all the added points with points in 1D  to obtain the 

destined design which is denoted by (1)D . Similarly, a semi-

LHD (40, 2; 30) is constructed which is denoted by (2)D . To 

show the difference between semi-LHDs and LHDs, an LHD 

(40, 2), denoted by (3)D , is constructed. The bivariate 

projections for (1)D , (2)D  and (3)D  are visualized in Figure 

1. It is not difficult to observe that (1)D  has more points near 

to the edge than (2)D  since the built-in LHD of (1)D  has less 

samples than that of (2)D  while the sample sizes of (1)D and 
(2)D are the same. As alluded to earlier, it is up to the 

practical needs to determine the sample size of the built-in 

LHD. On the other hand, the LHD spreads design points 

more evenly over the design region. 
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Figure 1. Bivariate projetions for (1)D
 (panel on the left), (2)D

(panel in 

the middle) and (3)D
 (panel on the right). Triangles represent the points in 

semi-LHDs apart from the built-in LHDs. 

It worthwhile to note that Steps 1-4 of Algorithm 1 may 

suffer from an endless loop since the condition 0 / 3a a≥  in 

Step 4 of Algorithm 1 may be hard to achieve. It is thus 

recommended that the number of circulation should be 

preset. 

3.2. Simulation Studies 

Two simulative examples are given in this section to 

illustrate the usefulness of the proposed design. The 

prediction performances between random LHDs and semi-

LHDs are compared. As for the criteria assessing the 

prediction performance, the leave-one-out cross-validation 

error (CVE) and the empirical mean squared prediction error 

(MSPE) are adopted. Suppose 1( ,..., ) 'nD x x=  is an n -run 

design and 
*

1( ,..., ) 'ny y y=
 
is the corresponding response 

vector, CVE is then defined as  

ɵ 21
[ ( ) ( )] ,

i

i

i ix

x D

CVE y x y x
n

−
∈

= −∑                  (10) 

where ɵ
ixy−  is the predicted value of y  based on data 

\{ }iD x  and 
* \{ }iy y . The definition of MSPE is given by 

ɵ 2

1

1
[ ( ) ( )] ,

N

k k

k

MSPE y x y x
N =

= −∑                 (11) 

where 1,..., Nx x  are testing points selected from the design 

region. In the simulation, model (2) is established by setting 

( ) 1f x =  and β µ= and the parameters are estimated 

through the maximum likelihood approach introduced in 

Section 2. 

In the simulative examples, the following steps are carried 

out to assess the prediction performance. 

Step 1. Create two data sets A  and B . Let A  be the 

collection of 1N  random points drawn from [0,1]p
 and B  be 

the collection of 2N  points drawn from the area near the 

edge of [0,1]p
. 

Step 2. Let 1,..., rt N= . Given t , this step proceeds as 

follows: 

(1) Construct a semi-LHD ( 0, ;n p n ), denoted by 1tX , and 

conduct the computer experiment based on 1tX  to obtain the 

response vector 1ty . Fit model (2) based on 1 1{ , }t tX y . 

Calculate CVE in (10) and denote the result by 1tc . Calculate 

MSPE in (11) based on A  and B  and denote the results by 

1ta  and 1tb , respectively. 

(2) Construct an LHD ( ,n p ), denoted by 2tX , and 

conduct the computer experiment based on 2tX to obtain the 

response vector 2ty . Fit model (2) based on 2 2{ , }t tX y . 

Calculate CVE in (10) and denote the result by 2tc . Calculate 

MSPE in (11) based on A  and B  and denote the results by 

2ta  and 2tb , respectively. 

Step 3. Let 1 1( ,..., ) ', ( ,..., ) '
r rj j jN j j jNa a a b b b= =

 
and 

1( ,..., ) '
rj j jNc c c=  for 1,2.j =

 

Step 4. Calculate the mean and standard deviation of 

elements in the vectors obtained in Step 3. 

Example 2. Consider a function from Currin, Mitchell, 

Morris and Ylvisaker (1991) which is given by 

3 2
1 1 1

3 2
2 1 1 1

2300 1900 2092 601
[1 exp( )] .

2 100 500 4 20

x x x
y

x x x x

+ + +
= − −

+ + +
    (12) 

The shape of (12) is visualized in Figure 2. This function is 

treated as a deterministic computer model for this example. 
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Once an experimental design is arranged, the response vector 

can be obtained from Eq.(12). As described at the beginning 

of this section, two testing data sets A  and B  are created 

where the former are collections of 40 points of a random 

LHD in 
2[0,1] and the latter 40 points drawn from area near 

the edge of 
2[0,1] . The simulation is repeated 1000 times 

(i.e., 1000rN = ) and and in each time a semi-LHD (30, 2, 

20) and an LHD (30, 2) are generated. The prediction 

performances of the semi- LHD (30, 2, 20) and the LHD (30, 

2) are listed in Tables 1 and 2. 

From Table 1 it is easy to see that when the testing data set 

is A , the prediction performance of semi-LHDs compares 

favorably to that of LHDs. On the other hand, when the 

testing data set is B , the mean and standard deviation of 

MSPE of semi-LHDs are considerably smaller than those of 

LHDs. This indicates that the proposed designs benefit the 

prediction capability on the area near to the edge while still 

behave well over the entire design region. Note that both of 

these design types have lower prediction accuracies on set B  

than set A . This is expected because predicting on the edge 

of the design region usually has more uncertainty, especially 

for industrial engineering experiments. Table 2 displays the 

CVE values from which the advantage of semi-LHDs over 

LHDs is also obvious. 

Example 3. In this example, the following function 

1 2 3log(0.01 ) 10exp( ) 5 30y x x x= − + + +            (13) 

 

Figure 2. Plots of the function in (12). 

Table 1. Means and standard deviations of the MPSE in Example 2, where the number in the parentheses is the standard deviation. 

 Data set A (LHD) Data set B (edge) 

semi-LHD 0.1235(0.1174) 0.1622(0.2726) 

LHD 0.1196(0.1378) 0.2721(0.3916) 

Table 2. Means and standard deviations of the CVE in Example 2, where the number in the parentheses is the standard deviation. 

 CVE 

Semi-LHD 0.1434(0.1462) 

LHD 0.2665(0.3060) 

 
is used as the deterministic computer model. Similar to 

Example 2, two testing data sets A  and B  are created where 

the former are collections of 40 points of a random LHD in 
3[0,1] and the latter 40 points drawn from area near the edge 

of 
3[0,1] . The simulation is repeated 1000 times (i.e., rN  = 

1000) and in each time a semi-LHD (30, 3, 20) and an LHD 

(30, 3) are generated. The prediction performances of the 

semi-LHD (30, 3, 20) and the LHD (30, 3) are listed in 

Tables 3 and 4. 

 

Table 3. Means and standard deviations of the MPSE in Example 3, where 

the number in the parentheses is the standard deviation. 

 Data set A (LHD) Data set B (edge) 

semi-LHD 0.7178(0.6164) 0.8275(1.0019) 

LHD 0.6961(0.4032) 1.0059(0.8824) 

Table 4. Means and standard deviations of the CVE in Example 3, where the 

number in the parentheses is the standard deviation. 

 CVE 

Semi-LHD 0.2149(0.2395) 

LHD 0.2315(0.2427) 
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From Tables 3 and 4, similar conclusions as in Example 2 

can be drawn. That is, Semi-LHDs benefit the prediction 

accuracy on the edge area while still behave well over the 

entire design region. 

4. Conclusion 

With the advent of computing technology and numerical 

methods, industrial engineers frequently use computer 

simulations to study actual or theoretical physical systems. 

Typically, the simulation model is resource-intensive in terms 

of model preparation, computation, and output analysis. As a 

result, the availability of a “cheap-to-compute” statistical 

model as a surrogate to the original complex simulation 

model is particularly useful. To establish a high quality 

statistical model, choosing a good set of design points is an 

important issue. In this paper, a novel type of experimental 

design, namely semi-LHD is proposed and applied to 

simulation-based industrial engineering experiments. 

Compared to the most commonly-used Latin hypercube 

design [8], the proposed design has advantage in helping 

making predictions on the edge of the design region where 

the behavior of the response often exhibits substantial 

uncertainty for an industrial engineering process. An explicit 

design construction algorithm is given and simulation studies 

confirm that the proposed semi-LHDs are desirable for 

computer simulation-based industrial engineering 

experiments because they can yield good prediction accuracy 

not only in the interior but also on the edge area of the 

experimental domain.  
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