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Abstract: A Modified Three Step Block Hybrid Extended Trapezoidal Multistep Method of Second Kind (BHETR2s) with 

two off-grid points, one at interpolation and another at collocation point yielding uniform order six (6, 6, 6, 6, 6)
T
 for the 

Numerical Integration of initial value problems of stiff Ordinary Differential Equations was developed. The main method and 

additional equations were obtained from the same continuous formulation through interpolation and collocation procedures. 

The stability properties of the method was discussed and from the stability region obtained, the method is suitable for the 

solution Stiff Ordinary Differential Equations. Three numerical examples were considered to illustrate the efficiency and 

accuracy. 
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1. Introduction 

Consider the stiff initial value problem in the form: 

( ) ( , ),y x f x y′ = 0( )y a y=                       (1) 

on the finite interval 0 , NI x x=   , where  

[ ]0: , → m
Ny x x R  and [ ]0: , × →m m

Nf x x R R  are 

continuous. By considering the partition 

,jI a jh= + 0,..., 1,= −j N
1

b a
h

N

−=
−

 

one can consider the k step−  LMM 

0 0

( )+ +
= =

 
 =
  

∑ ∑
k k

j n j j n j

j j

y h x fα β                (2) 

to approximate the solution of problem (1) over the 

considered partition. As usual, n jy +  and n jf +  denote the 

approximations to ( )n jy x +  and ( , ( ))n j n jf x y x+ +  respectively. 

The initial value problem of stiff differential equations 

occurs in almost every field of science [see 3, 8, 10, 12 and 

15], particularly, in the fields of: 

A) Chemical Reactions: A famous chemical reaction is the 

Oregenator reaction between HBrO2, Br
−
, and Ce (IV) 

described by Field and Noyes in 1984. 

B) Reaction-diffusion systems: Problems in which the 

diffusion is modeled via the Laplace operator may become 

stiff as they are discretize in space by finite differences or 

finite elements, well-known example of such systems which 

appear so often in mathematical biology. 

Several further occurrences of stiffness can be found in 

electrical circuits, mechanics, meteorology, oceanography 

and vibrations. 

Definition 1: If the solution of the system contains 

components which change at significantly different rates for 

given changes in the independent variable, then system is 

said to be stiff [8, 15]. 

Stiff differential equations are characterized as those 

whose exact solution has a term of the form te λ− , where λ  is 

a large positive constant. The key features of stiff equations 

are that the derivative terms may increase rapidly as t 
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increases [12]. 

In the last three decades numerous works have been 

focusing on the development of more advanced and efficient 

methods for stiff problems [8, 12]. The situation becomes 

more complicated when stiffness coupled with nonlinearity. 

Carroll presents an exponential fitted scheme for solving stiff 

systems of initial value problems [15]. The numerical 

solution of linear and nonlinear system of stiff system can be 

found in [3, 11 and 12]. 

Block methods were introduced to both improve the 

stability of methods and provide the 1k −  starting values to

k step−  LMM. They can be seen as a set of linear multistep 

methods simultaneously applied to (1) and then combined to 

yield better approximations (Ajie, et al., 2014). 

2. Formulation of the Method 

A more elegant and computationally attractive 

procedurewas proposed in this paper, which leads to a class of 

stable general linear methods for stiff systems of initial value 

problems. Although the method was formulated in terms of 

multistep collocation methods, yet they preserve many of the 

Runge-Kutta properties, such as being self-starting and of 

permitting easy change of step length during implementation. 

The exact solution y(x) is approximated by seeking the 

continuous metho d�(�) of the form 

1 2

0 2

( ) ( ) ( ) ( ) ( )

−

+ + + +
= = −

 
 = + + +
  

∑ ∑
k

j n j q n q j n j q n q

j j k

y x x y x y h x f x fφ φ ψ ψ    (3) 

here, ( )j xφ , ( )j xψ  for 0(1)2j =  and ( )q xψ , ( )q xφ are 

coefficients of the method which are to be determined.

= a
q

b
, a rational number in the form 2 1

, 1,2
2

+ =r
r  

where 

2 3 4 5 6

0 2 3 4 5 6

1225 8035 3419 3187 193 19
( ) 1

303 1212 606 1212 303 303
x

h h h h h h

ξ ξ ξ ξ ξ ξφ = − + − + − +  

3 2 5 4 6

1 3 2 5 4 6

22016 17268 3876 13329 5040 436
( )

101 101 101 101 101 101
x

hh h h h h

ξ ξ ξ ξ ξ ξφ = − + − + − +  

5 2 3 6 4

2 5 2 3 6 4

4017 60687 40631 475 4365 52203
( )

101 404 202 101 101 404
x

hh h h h h

ξ ξ ξ ξ ξ ξφ = − + − + − +  

2 5 6 3 4

3 2 5 6 3 4

2

29440 99328 23872 2752 128704 79936
( )

303 303 303 303 303 303
x

h h h h h h

ξ ξ ξ ξ ξ ξφ = − + − + −  

4 3 2 6 5

1 3 2 5 4

11947 6953 17704 1940 364 1112
( )

303 101 303 101 303 101
x

hh h h h

ξ ξ ξ ξ ξψ ξ= − + − + −  

4 2 3 6 5

2 3 2 5 4

7359 8167 5584 1155 142 1166
( )

202 202 101 101 101 101
x

hh h h h

ξ ξ ξ ξ ξψ ξ= − + + − +  

2 4 6 3 5

3 3 5 2 4

2

704 64 704 32 336 80
( )

303 101 303 303 101 101
x

h h h h h

ξ ξ ξ ξ ξψ ξ= − + + − −  

Evaluating the continuous formulation in (3) yields the BHETR2sassociated with the continuous scheme and converting it 

into , ,A B U  and V  of the General Linear Method (12) as: 

0 0 0 0 0 0 0 0 0 1

1 0 1 3 8 8 2 3 1 4 9 7 5 8 8 8 3 5
0 0 0

5 0 4 0 1 0 0 8 1 0 0 8 3 1 5 1 1 2 3 0 2 4 4 3 2

1 5 9 3 0 3 3 8 7 3 4 0 2 3 8 9 1 1 1
0 0 0

1 1 2 5 6 2 4 4 5 6 4 4 8 1 1 2 4 4 8

1 1 3 5 3 0 2 5 6 1 0 1 6 8 8 6 4 1 5 2
0 0 0

6 3 3 1 4 7 7 4 4 3 1 1 3 2 9 3 3 9 8 7 9 2 1 1

7 5 6 7 5 1 5
0 0 0

4 0 4 8 0 8 1 0 1

3 6 6 7 3 8 1 9 2
0 0 0

1 0 1 1 0 1 1 0 1

− − − − −

− − − − −

− − − −

−

−

2 5 7

3 9 8 7 9

6 7 5 2 2 5 3 2 5 9

1 6 1 6 1 0 1 4 0 4 1 6 1 6

2 1 8 7 3 5 8 4 1 4 8 5 1 3

1 0 1 1 0 1 1 0 1 1 0 1

3 6 6 7 3 8 1 9 2 2 1 8 7 3 5 8 4 1 4 8 5 1 3
0 0 0

1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1

1 1 3 5 3 0 2 5 6 1 0 1 6
0 0 0

6 3 3 1 4 7 7 4 4 3 1 1 3 2 9 3

1 5 9 3 0 3 3 8 7 3
0 0

1 1 2 5 6 2 4 4 5 6

1 0 1 3 8 8 2 3 1 4
0 0

5 0 4 0 1 0 0 8 1 0 0 8 3 1 5

− − −

−

− −

− −

− − −

− − −

8 8 6 4 1 5 2 2 5 7

3 9 8 7 9 2 1 1 3 9 8 7 9

4 0 2 3 8 9 1 1 1
0

4 4 8 1 1 2 4 4 8

9 7 5 8 8 8 3 5
0

1 1 2 3 0 2 4 4 3 2

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 − −
 
 
 
 − − 
 
 
 

− − 
 
  

                               (4) 
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3. Order, Convergence and Absolute 

Stability Region 

3.1. Order of BHETR2s 

Definition 2 

A linear multistep method (3) is consistent if it has order

1p ≥ . 

According to [9], a LMM is said to be of order p  if 

0 1 2 ... 0,pc c c c= = = = 1 0pc + ≠ , this approach can be 

extended to determine the order of the entire block method 

which can be expressed as: 

0 0

+ +
= =

=∑ ∑
k k

ij n j ij n j

i i

y h fα β                      (5) 

where, 0,1,...,j k=  is a positive integer, equation (5) can be 

expanded to give the following system of equation 

01 11 21 1 01 11 21 1

02 12 22 2 1 02 12 22 2

03 13 23 3 2 03 13 23 3

0 1 2

. . . . . .

. . . . . .

. . . . . . . . . . . . .

. . . . . . . .

. . . . . . . .

. . .

+

+

+

   
   
   
   
   
   
    =
   
   
   
   
   
   
   

k n k

k n k

k n k

k k k kk n k

y

y

y h

y

α α α α β β β β

α α α α β β β β

α α α α β β β β

α α α α

1

2

0 1 2

. . .

. . . . . . . .

. . . . . . . .

. . .

+

+

+

   
   
   
   
   
   
   
   
   
   
   
   
   
   

n

n

n

k k k kk n k

f

f

f

fβ β β β

                (6)

The expression (6) is equivalent to (5) 

where, 

0

01

02

,03

.

.

.

0

 
 
 
 
 
 
 =
 
 
 
 
 
 
 

��

k

α 1

11

12

,...,13

.

.

.

1

 
 
 
 
 
 
 =
 
 
 
 
 
 
 

��

k

α

1

2

3

.

.

.

 
 
 
 
 
 
 =
 
 
 
 
 
 
 

��

k

k

k

k

kk

α  and 0

01

02

,03

.

.

.

0

 
 
 
 
 
 
 =
 
 
 
 
 
 
 

��

k

β

1

11

12

,...,13

.

.

.

1

 
 
 
 
 
 
 =
 
 
 
 
 
 
 

��

k

β  

1

2

3

.

.

.

 
 
 
 
 
 
 =
 
 
 
 
 
 
 

��

k

k

k

k

kk

β                     (7) 

Adopting the order procedure used in the single case for 

the block method and recall that 

0

( ) [ ( ) ( , ( ))]

=

= + − + +∑
k

jh j

i

L y x y x jh h f x jh y x jhα β    (8) 

where, ( )y x  is the exact solution satisfying (1). Carrying out 

Taylor series expansion on (8) about x  
yields the equation 

2 ( )
0 1 2( ) ( ) ( ) ( ) ... ( )′ ′′= + + + +
� � � �

q q
qhL y x c y x c hy x c h y x c h y x  (9) 

01

02

0 03

0

,

.

.

.

 
 
 
 
 
 
 =
 
 
 
 
 
 
 

�

p

c

c

cc

c

 

11

12

1 13

1

,...,

.

.

.

 
 
 
 
 
 
 =
 
 
 
 
 
 
 

�

p

c

c

cc

c

 

1

2

3

.

.

.

p

p

p p

pp

c

c

c c

c

 
 
 
 
 
 
 =  
 
 
 
 
 
 
 

�

                (10) 

From (4), the coefficients of (7) are obtained as 

0
13 9 257 11 1225

0
101 1616 303 2424 303

 = − − 
 

��

T

α  

1
1485 325 9576 297 5040

0
101 404 101 202 101

 = − − 
 

��

T

α  

3

2

3584 225 68864 56 29440
0

101 101 303 303 303

 = − − − 
 

��

T

α  

2
2187 675 13293 1341 4365

0
101 1616 101 303 101

 = − 
 

��

T

α  

( )3 1 0 0 0 0 0=
�� Tα
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( )5

2
0 1 0 0 0 0=

�� Tα  

and 

( )0 0 0 0 0 1 0
Tβ = −

��

 

1

366 150 2373 106
1 0

101 808 101 404

T

β  = − − − 
 

��

 

( )3

2

0 0 0 1 0 0=
�� Tβ

 

2

738 675 4770 129 1155
0

101 808 101 404 101

 = − 
 

��

T

β  

( )3 0 0 1 0 0 0=
�� Tβ

 

5

2

192 120 768 4 64
0

101 808 101 404 101

 = − − − 
 

��

T

β  

Applying (8)-(10), yields a uniformly sixth order for the 

BHETR2s, which is presented in table (1).

 Definition 3A-Stability[4] 

A numerical method (4) is said to be A-stable if its region 

of absolute stability contains, the whole of the left-hand half 

plane ��ℎ� < 0 

Definition 4 

The method presented in (4) is said to be of order p  if 

0 1 2 ...= = = = pc c c c  and 1 0,+ ≠pc 1+pc  is called 

the error constant and the local truncation error given by 

1 ( 1)
1 ( )+ +

+=
�

p p
pn nT c h y x                 (11) 

3.2. Absolute Stability Region 

To determined the absolute stability region of the block 

method, they are reformulated into General Linear Methods 

of [2] where they used as partition ( )( )s r s r+ +  matrix 

containing , ,A B U  and V  expressed as (4) in the form 

1

( )
, 1,2,...,−

 
    = =    
     

i i

A U
Y hf Y

i N
y y

B V

                (12) 

Where the matrices , ,A B U  and V  are substituted into a 

stability matrix 

1( ) ( )−= + −M z V zB I zA U                      (13) 

Which is in-turn substituted into a stability function 

( , ) det( )= −z I Mzρ λ λ                      (14) 

The values of A, U, B, V in (7) are substituted in (5) to 

obtained the stability matrix. Plotting the stability matrix in 

MATLAB codeto obtained the region of absolute stability of 

the block hybrid method as shown in Figure 1. 

 

Figure 1. Region of absolute stability of the block hybrid method. 

Note: 

a. Figure 1 presents the region of absolute stability of the block hybrid method and is shown to be the entire shaded portion including the left hand half 

complex plane (in agreement with definition 3) 

a. Analysis from the graph (Figure 1) suggests that the block hybrid method proposed in this paper would be suitable to solve stiff ordinary differential 

equations. 

3.3. Convergence 

Following [5], the BHETR2s (4) can be represented by a 

matrix finite difference equation in 

the form: 

( ) ( ) ( )0
1 1 1

1 0

+ + −
= =

= +∑ ∑
k k

i i
m m m

i i

A y A y h B f             (15) 

where 
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( )0

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

 
 
 
 =
 
 
  

A

, ( )1

0 0 0 0 1

0 0 0 0 1

0 0 0 0 1

0 0 0 0 1

0 0 0 0 1

 
 
 
 =
 
 
  

A
, 

1

673 104 211 32 43

360 45 120 45 360

1323 77 1053 27 73

640 40 640 40 640

92 224 29 32 16

45 135 15 45 135

2375 125 875 35 125

1152 72 384 72 1152

81 8 81 11
0

40 5 40 40

 − − 
 
 
 

− − 
 
 
 
 = − −
 
 
 
 − − 
 
 
 

− 
 

B  and 

0

11
0 0 0 0

40

35
0 0 0 0

128

37
0 0 0 0

135

35
0 0 0 0

128

11
0 0 0 0

40

 
 
 
 
 
 
 
 
 
 =
 
 
 
 
 
 
 
 
 
 

B  

Definition 5: A block method is zero stable provided the 

roots 1,2,...,ij kλ =  of the first characteristic polynomial 

( )ρ λ  specified as 

( ) ( )

0

det 0
−

=

 
= = 

  
∑

k
i k i

i

Aρ λ λ                 (16) 

satisfies 1jλ ≤ , the multiplicity must not exceed two, [6] 

Following (16), we have that 

( )

1 0 0 0 0 0 0 0 0 1

0 1 0 0 0 0 0 0 0 1

det 0 0 1 0 0 0 0 0 0 1

0 0 0 1 0 0 0 0 0 1

0 0 0 0 1 0 0 0 0 1

    
    
    
    = −
    
    
        

ρ λ λ  

( )

0 0 0 1

0 0 0 1

det 0 0 0 1

0 0 0 1

0 0 0 0 1

 − 
  −  
  = −
  −  
  −  

λ
λ

ρ λ λ
λ

λ

 

( ) 4 ( 1) 0ρ λ λ λ= − =

 
Thus, 1 1,λ = 2 3 4 5 0λ λ λ λ= = = = . By definition 5, the 

BHETR2s method is zero stable. 

4. Implementation Strategies 

In this section, we have tested the performance of our 

three-step block method on three (3) numerical Initial Value 

Problems of first order ODEs. For each example; we find the 

absolute errors of the approximate solution. 

Example 4.1: We consider the Initial Value Problem with 

step-size 0.1h =  

0,− =dy
xy

dx
(0) 1y =  

Analytical Solution of the given problem is

2

2( ) =
x

y x e  

Table 1. Maximum Errors for Example 4.1. 

X Maximum Error in[13] Maximum Error in the New Block Hybrid Method 

0.1 5.29E-007 3.165E-009 

0.2 1.77E-007 3.172E-009 

0.3 8.99E-007 3.439E-009 

0.4 3.09E-007 1.625E-008 

0.5 1.91E-006 1.683E-008 

0.6 4.48E-006 1.843E-008 

0.7 1.02E-005 5.456E-008 

0.8 7.74E-005 5.833E-008 

0.9 1.44E-005 6.522E-008 

1.0 2.93E-005 1.668E-007 

 
Example 4.2: The SIR model is an epidemiological model 

that computes the theoretical numbers of people infected with 

a contagious illness in a closed population over time. The 

name of this class of models derives from the fact that they 

involves coupled equations relating the number of 

susceptible people ( )S t , number of people infected ( )I t  and 

the number of people who have recovered ( )R t . This is a 

good and simple model for many infectious diseases 

including measles, mumps and rubella [13-15]. The SIR 
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model is described by the three coupled equations. 

(1 )= − −ds
S IS

dt
µ β  

dI
I I IS

dt
µ γ β= − − +

 

= − +ds
R I

dt
µ γ  

where ,µ γ  and β  are positive parameters. 

Define y  to be = + +y S I R  

Adding all these equations give 

(1 )′ = −y yµ  

Taking 0.5µ =  and attaching an initial condition 

(0) 0.5y =  (for a particular closed population), we obtain 

( ) 0.5(1 ),′ = −y t y (0) 0.5=y  

Whose analytical solution is 
0.5( ) 1 0.5 −= − ty t e  

Table 2. Maximum Errors for Example 4.2. 

X Analytical Solution 
Numerical Solutionforthe New 

Block Hybrid Method 
Maximum Error in [18] 

Maximum Error in the New Block 

Hybrid Method 

0.1 0.524385287749643 0.524385287750215 5.574430E-012 5.72E-013 

0.2 0.547581290982020 0.547581290982560 3.946177E-012 5.40E-013 

0.3 0.569646011787471 0.569646011787959 8.183232E-012 4.88E-013 

0.4 0.590634623461009 0.590634623461945 3.436118E-011 9.36E-013 

0.5 0.610599608464298 0.610599608465186 1.929743E-010 8.88E-013 

0.6 0.629590889659141 0.629590889659952 1.879040E-010 8.11E-013 

0.7 0.647655955140644 0.647655955141798 1.776835E-010 1.154E-012 

0.8 0.664839976982180 0.664839976983277 1.724676E-010 1.097E-012 

0.9 0.681185924189114 0.681185924190118 1.847545E-010 1.004E-012 

1.0 0.696734670143684 0.696734670144944 3.005770E-010 1.260E-012 

Example 4.3: Consider the test problem 0,− =dy
y

dx
λ  (0) 1,y =  with solution = xy eλ

 is solved with h = 0.01 and 5= −λ . 

Table 3. Maximum Errors for Example 4.3. 

X Analytical Solution 
Numerical Solutionforthe New 

Block Hybrid Method 

Maximum Error in 

[1]0rder 7 

Maximum Error in the New Block 

Hybrid Method0rder6 

0.02 0.904837418035960 0.904837418034642 8.57E-012 1.318E-012 

0.04 0.818730753077982 0.818730753075408 7.79E-012 2.574E-012 

0.06 0.740818220681718 0.740818220679243 7.00E-012 2.475E-012 

0.08 0.670320046035639 0.670320046032424 1.33E-011 3.215E-012 

0.10 0.606530659712633 0.606530659708700 1.18E-011 3.933E-012 

1.12 0.548811636094026 0.548811636090359 1.07E-011 3.667E-012 

Table 4. Order and Error Constants of the Method. 

Method  
Order p  Error tanCons ts  

4  

6  
71

56560
 

6  
15

361984
−  

6  
243

28280
−  

6  
29

1357440
 

6  
107

33936
 

 

5. Conclusions 

We have developed a modified three-step block hybrid 

extended trapezoidal multistep method of second kind with 

two off-grid points, yielding uniform order six (table 4) for 

the numerical integration of initial value problems of stiff 

ordinary differential equations. The new block methods are 

self- starting and all the discrete schemes used were obtained 

from the single continuous formulation and its derivative 

which are of uniform order of accuracy. Implementation of 

our method in block form tends to speed up computational 

process. Results obtained from our method shows significant 

improvement when compared with results of existing 
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authors. Our sixth order block hybrid method performs better 

than the seventh order method of Ajie et al., (see table 3). 
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