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Abstract: In this article, we will discuss some spectacularly beautiful images known as Fractals such as Sierpiński Triangle, 

Koch Curve, Dragon Curve, Koch Island, H Fractal, The Levy Curve Fractal, Box Fractal etc. We will investigate and calculate 

the area, perimeter and self-similar dimension of fractals. Observing the results we see some similarities about the said properties 

for some fractals those are generated by particular method. Our attention is restricted to find the mathematical behavior of 

Fractals so that we can establish mathematical formulas concerning the fractals. 
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1. Introduction 

In this article we will describe some of the wonderful new 

ideas in the area of mathematics known as fractal geometry. 

Today Fractal geometry is completely new area of research in 

the field of computer science and engineering. It has wide 

range of applications. Fractals in nature are so complicated 

and irregular that it is hopeless to model them by simply using 

classical geometry objects. Benoit Mandelbrot, the father of 

fractal geometry, from his book The Fractal Geometry of 

Nature, 1982. This paper explor various concepts of fractal i.e. 

fractal dimension, various techniques to generate fractal, their 

characteristics and their application in real life [14]. As we can 

see, fractals are incredibly complicated and often quite 

beautiful geometric shapes that can be generated by simple 

rules. We have tried to find out the mathematics behind these 

incredible geometric shapes called fractals. We have measured 

their shapes (perimeter & area) and the fractal dimension to 

predict the behavior of similar types of fractal. 

1.1. Background 

Fractal geometry is a branch of mathematics concerned 

with irregular patterns made of parts that are in some way 

similar to the whole. The images that we call fractals have been 

known in mathematics for well over a century. Objects such as 

the Cantor set, the c triangle, and the Koch curve have appeared 

often in the mathematical literature over the past hundred years. 

However, these objects were once regarded as almost 

pathological shapes mainly of interest in mathematical research 

[13, 18]. 

All of this has changed in the last 20 years. Two events 

occurred in that period that brought fractal geometry into the 

mainstream of contemporary science and mathematics. The 

first was the observation by the mathematician Benoit 

Mandelbrot that fractals are not just mathematical curiosities, 

but rather the geometry of nature. He observed that many 

objects in the natural world were fractal in appearance [15, 

17]. Ferns, clouds, trees, coastlines, and many other "irregular 

shapes" could best be understood using fractal geometry 

rather than Euclidean geometry. Indeed, while the straight 

lines, triangles, and circles of Euclidean geometry are 

important for humans to build bridges, houses, roads, and the 

like, nature seems to construct its objects differently [8]. 

Natural objects are often more complicated and have a richer 

geometrical property. As we will see, they can often be 

modeled with fractals. 

The second event that brought fractal geometry into the 

limelight was the availability of computers. Before people had 

access of computers and computer graphics, fractals could 

only be envisioned in the mind. They were often too 

complicated for a human to draw and also difficult to explain 
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to others. The computer changed this dramatically. When 

mathematicians could see the structure of the objects they 

were working with, they realized that the objects were much 

more interesting and beautiful than they had previously 

thought. 

Moreover, the computer allowed mathematicians to 

discover many more exciting examples of fractals that no one 

had imagined before. This includes the gorgeous images 

known as the Mandelbrot and Julia sets. 

1.2. Application 

People are now use and study fractals in many more areas 

than just mathematics. Fractals arise in medicine: Cancerous 

tumors, human lungs, and vascular systems are all examples 

of fractals. A large number of fractal antenna designs have 

been proposed. The purpose of this paper is to show various 

applications and remarkable growth of fractal antenna in the 

fields of wireless communication [12]. Art historians use 

fractals to date early Chinese paintings. Seismologists use 

fractals to study the fissures caused by earthquakes. Computer 

programmers use fractal techniques to encode large sets of 

data efficiently. Fractals even occur in Broadway plays (such 

as Tom Stoppard's Arcadia) and in films (such as Jurassic 

Park), where they are used to create extraterrestrial 

planet-escapes and other special effects. 

1.3. Definitions 

The word is related to the Latin verb “frangere”, which 

means “to break” [6]. In the Roman mind, frangere may have 

evoked the action of breaking a stone; since the adjective 

derived it combines the two most obvious properties of broken 

stones, irregular and fragmentation [6, 17]. This adjective is 

fractus, which lead to fractal. The etymological kinship with 

“fraction” is also significant if ones interprets “fraction” as a 

number that lies between integers. Indeed, a fractal set can be 

considered as lying between the shapes of Euclid. 

Many object in the nature can be created by applying the 

concept of classical geometry like- lines, circles, conic 

sections, polygons, spheres, quadratic surface and so on. 

There are various objects of nature which can not be modeled 

by applying Euclidean geometry, hence there is need to deal 

with such complicated and irregular object which can only be 

constructed by fractal geometry [14]. 

A [fractal is a] rough or fragmented geometric shape that 

can be subdivided in parts, each of which is (at least 

approximately) a reduced-size copy of the whole [3]. 

Mathematical Definitions: A fractal is a subset of R
n
 which 

is self-similar and whose fractal dimension exceeds its 

topological dimension [1]. 

1.4. An Examples of Famous Fractal 

The Sierpinski Triangle or Gasket: 

The Sierpinski triangle is created by replacing an equilateral 

triangle of unit size, 0
E , by three triangles of half its size, 

leaving the middle region empty, giving 1E , see Fig-1. 2E  is 

created by replacing each of the three triangles of 1E by three 

half-sized triangles, leaving the middle region empty as before, 

see Fig-1. Thus, applying the rules on 1k
E − , we obtain k

E , and 

when k tends to infinity, we get the Sierpinski triangle of 

Figure. 

We see that the set k
E consists of (3)k

triangles, each with 

side length 2 k− . Thus, the total area of the Sierpinski triangle is

(3)k
.

2(2 )k−
. 3 / 4  which tends to zero when k → ∞ , i.e. 

3 3

4 4
lim ( ) 0k

k→∞
=  

We note that at everysteps of iteration, we always keep the 

line segments that constitute the boundary of the triangles 

from the lastiteration, and we always get new line segments 

from the new triangles. Starting with three line segments, we 

get one new for each triangle of the k
th

 iteration. Thus, in the 

k
th

 iteration we have 
1

3 3
k

k

∞

=

+∑ line segments. This goes to ∞

as k → ∞ , which means that the length of the Sierpinski 

triangle is infinite. 

We have displayed the results of randomly iterating this 

procedure 6 times. (We have not pictured the first 50 points on 

this orbit so that only the eventual behavior is shown). We note 

the intricate shape of the resulting orbit. This figure, called the 

Sierpinski triangle or gasket, is a classical example of a fractal. 

 

Fig. 1. Sierpinski Triangle or Gasket (after 6 iteration). 

Area of the Sierpinski Triangle 

As we know, at each level, one quarter of the triangle is 

removed. That is, three quaters of the area of the original 

triangle is left after the first iteration. Thus, it is not hard to 

infer that after n iterations, the area of the Sierpinski's Triangle 

would be (0.75)
n
 

times the area of the original triangle. So 

after an infinite number of iterations, you would find there was 

no area at all. [5] 

Number of Triangles Grow 

After observing the number of triangles pointing down for 

several iterations, we have the following table: 
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Table 1. Number of Triangles Grow (up to 5 iteration). 

Iteration No. of Triangles pointing down 

1 1 

2 4 

3 13 

4 40 

5 121 

From the table, we can come up with a general formula to 

predict the number of triangles being removed for any 

iteration: 

At nth iteration, the number of triangles being removed. 

2. Methodology 

2.1. Iteration Rules 

In Fractal geometry the geometrical fractal set should be 

considered as an infinite ordered series of geometrical objects 

defined on a metric space [13]. We begin the study of fractals 

by introducing one of the main process by which fractals are 

generated, namely, iteration. Iteration means to repeat a 

process over and over again [4]. There are many types of 

iterative process in mathematics. Most of the iteration will 

involve a geometric rule or construction. We begin with some 

geometric shape or figure called the seed. Then we perform a 

geometric operation on this seed. This geometric operation is 

called the iteration rule. The rule might involve rotating or 

squeezing or cutting apart the shape [2]. After we perform this 

operation we obtain a new figure. Then we iterate; this means 

we perform the same operation on the new figure to produce 

the next figure. We then repeat this process, continually 

applying the iteration rule to produce a sequence of figures. 

2.2. Some Iteration Rules 

2.2.1. Shrinking Iteration Rules 

(i) The Seed is the Straight Line Segment Below. The 

Iteration Rule is to Shrink the Segment so that its Length 

is Half the Length of the Original one [11]. 

 

Fig. 2. Shrinking Iteration (after 4 iteration). 

Mathematical Approach: 

Assume the length of the original straight line segment is 1 

unit. 

The length of the second segment is 1/2 

The length of the second segment is 1/4 

The length of the segments on further iterations is like 1/8 

→ 1/16 → 1/32 

Fate: The fate of the orbit is a single point but the length of 

the orbit’s segments tends to zero since the series of its length 

1→1/2 →1/4 → 1 / 8 → 1 / 16 → 1 / 32converges to zero. 

(ii) The Seed is a Square Whose Sides have Length 1. 

Shrink the square so that each side is half as long. 

We can picture the orbit as a sequence of squares. Each 

succeeding square has linear dimensions equal to half that of 

the preceding square. 

 

Fig. 3. Shrinking Iteration (after 4 iteration). 

Mathematical Approach: 

Assume the length of each side of the original square is 1 

The side length is decreasing by a scale factor of 1 / 2 

The perimeter is decreasing by a scale factor of 1 / 2 

The area is decreasing by a scale factor of 1 / 4 

Perimeter = 4• Side Length 

Square Area = (Length)^2 

The table below represented the Side length, Perimeter and 

Area of the iterations 

Table 2. Calculation for Shrinking Iteration (up to 4 iteration). 

 
Side length (as 

a fraction) 

Perimeter 

(in units) 

Area (in square 

units) 

Original square 1 4.1 = 4 1² = 1 

First iteration ½ 4. ½ = 4/2 = 2 (½ )² = 1/2² =1/4 

Second iteration ¼ 4. ¼ = 1 (1/4)² = 1/4² = 1/16 

Third iteration 1/8 4. 1/8 = ½ (1/8)² = 1/8² = 1/64 

Fourth iteration 1/16 4. 1/16 = ¼ (1/16)² = 1/16² =1/256 

Fate: The limiting shape or the fate of this orbit is a single point and the side 

length, perimeter and area tends to zero. 

2.2.2. Replacement Iteration Rules 

The seed is the circle below and the iteration rule is to 

replace a circle by two smaller copies of itself (lined up side 

by side) whose diameters are each one half of the original[11]. 

 

Fig. 4. Replacement Iteration (after 4 iteration). 

Mathematical Approach: 

Assume that diameter’s length of the original circle is 2 

units. 

Remember: 

Circumference = 2 • π• radius = π• diameter Circle Area = 

π• r². 

 

 



101 Md. Nurujjaman et al.:  A Review of Fractals Properties: Mathematical Approach   

 

Table 3. Calculation for Replacement Iteration (up to 4 iteration). 

 Diameter Radius Perimeter(in units) Area (in square units) 

Original quare 2 1 π.2 = 2 π π.1² = π. 1 = π 

First iteration 1 ½ π· 1 = π π (1/2)² = π/4 

Second iteration 1/2 ¼ π· 1 / 2 = π/ 2 π· (1/4) ² = π/4²= π/16 

Third iteration 1/4 1/8 π· 1 / 4 = π/ 4 π. (1/8)² = π/8² = π/64 

Fourth iteration 1/8 1/16 π· 1 / 8 = π/ 8 π. (1/16) ² = π/16² = π/256 

Fate: The limiting shape or the fate of this orbit is a single point and the side length, perimeter and area tends to zero. 

3. Fractal Dimension 

It is a fascinating fact that certain geometric images have 

fractional dimension. The Sierpinski triangle provides an easy 

way to explain why this must be so. 

To explain the concept of fractal dimension, it is necessary 

to understand what we mean by dimension in the first place. 

Obviously, a line has dimension 1, a plane has dimension 2, 

and a cube has dimension 3.It is interesting to struggle to 

enunciate why these facts are true. What is the dimension of 

the Sierpinski triangle? 

A line has dimension 1 because there is only 1 way to move 

on a line. Similarly, the plane has dimension 2 because there 

are 2 directions in which to move. There are really 2 directions 

in a line -- backward and forward -- and infinitely many in the 

plane. Actually there are 2 linearly independent directions in 

the plane [9]. Of course, it is right. But the notion of linear 

independence is quite sophisticated and difficult to articulate. 

We often say that the plane is two-dimensional because it has 

``two dimensions,'' meaning length and width. Similarly, a 

cube is three-dimensional because it has ``three dimensions,'' 

length, width, and height [7]. Again, this is a valid notion, 

though not expressed in particularly rigorous mathematical 

language. 

Another pitfall occurs when try to determine the dimension 

of a curve in the plane or in three-dimensional space. An 

interesting debate occurs between teachers and students when 

a teacher suggests that these curves are actually 

one-dimensional. But they have 2 or 3 dimensions, the 

students object. 

So why a line is one-dimensional and the plane is 

two-dimensional? Note that both of these objects are 

self-similar. We may break a line segment into 4 self-similar 

intervals, each with the same length, and each of which can be 

magnified by a factor of 4 to yield the original segment [1, 16]. 

We can also break a line segment into 7 self-similar pieces, 

each with magnification factor 7, or 20 self-similar pieces with 

magnification factor 20. In general, we can break a line 

segment into N self-similar pieces, each with magnification 

factor N. 

A square is different. We can decompose a square into 4 

self-similar sub-squares, and the magnification factor here is 2. 

Alternatively, we can break the square into 9 self-similar 

pieces with magnification factor 3, or 25 self-similar pieces 

with magnification factor 5. Clearly, the square may be broken 

into N
2
 self-similar copies of itself, each of which must be 

magnified by a factor of N to yield the original figure. See 

Fig-5. Finally, we can decompose a cube into N
3
 self-similar 

pieces, each of which has magnification factor N. 

 

Fig. 5. A square may be broken into N2 self-similar pieces, each with 

magnification factor N. 

Now we see an alternative way to specify the dimension of 

a self-similar object: The dimension is simply the exponent of 

the number of self-similar pieces with magnification factor N 

into which the figure may be broken. 

So what is the dimension of the Sierpinski triangle? How do 

we find the exponent in this case? For this, we need logarithms. 

Note that, for the square, we have N
2
 self-similar pieces, each 

with magnification factor N [10, 16]. So we can write 

Dimension = ( )
   ?  

 

log( )

 

Number of self similar pieces

log magnification factor
 

2log

log

N

N
= 2log

log

N

N
= =2 

Similarly, the dimension of a cube is 

Dimension = ( )
   ?  

 

log( )

 

Number of self similar pieces

log magnification factor
 

3log

log

N

N
= 3log

log

N

N
= =3 

Thus, we take as the definition of the fractal dimension of a 

self-similar object 

Fractal dimension = 

( )
   ?  

 

log( )

 

Number of self similar pieces

log magnification factor
 

Now we can compute the dimension of S. For the Sierpinski 

triangle consists of 3 self-similar pieces, each with 

magnification factor 2. So the fractal dimension is 
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( )
   ?  

 

log( )

 

Number of self similar pieces

log magnification factor

log 3
1.58

log 2
= ≈  

so the dimension of S is somewhere between 1 and 2, just as 

our ''eye'' is telling us. But wait a moment; S also consists of 9 

self-similar pieces with magnification factor 4. No problem -- 

we have 

Fractal dimension 
log 9 2 log 3 log 3

1.58
log 4 2log 2 log 2

= = = ≈  

as before. Similarly, S breaks into 3
N
 self-similar pieces with 

magnification factors 2
N
, so we again have 

Fractal dimension 
log 3

log 2

N

N
=

log 3 log 3
1.58

log 2 log 2

N

N
= = =  

Fractal dimension is a measure of how "complicated" a 

self-similar figure is. In a rough sense, it measures "how many 

points" lie in a given set. A plane is "larger" than a line, while 

S sits somewhere in between these two sets [1]. 

4. Calculation Method 

4.1. The Koch Island Fractal 

The Koch Island has the following base and generator: 

 

Here are the steps that we will need to follow in order to 

draw each level of the Koch Island Fractal. 

This fractal will be completed using the “Copies of Copies” 

method. 

We will copy the generator shape using a "contraction 

factor" of 1/4 (reducing each segment in the Generator shape 

by 1/4) and replacing each segment in the current level with 

the smaller copy of the generator. 

Level 1 

On a large piece of construction paper, draw a large square 

with sides that are 1 foot in length. (Fill in the perimeter and 

area for level 1 into the chart below. We will say that each side 

of the initial triangle has length s and therefore has a perimeter 

of 4s. Also, we can say that the original area is 1A.) 

 

Level 2 

Now, replace all the sides (segments) of the square with the 

Generator shape. The generator shape has 8 small segments to 

it (the horizontal segment in the middle has two regular 

segments put together). Each of those smaller segments is 1/4 

the size of the original side of the square that we replaced. (Fill 

in the perimeter and area for level 2 into the chart below.) 

 

Level 3. 

Now it gets a little more challenging. Replace each of the 

small segments from level 2 with the generator shape (smaller 

version). Each of those segments is 1/4 the size of the 

segments used in the previous level. (Fill in the perimeter and 

area for level 3 into the chart below.) 

 

Table 4. Table for Koch Island Fractal. 

Level Segments Segment Length Perimeter Area 

1 4 1s 4s A 

2 32 (1/4)s 8s A 

3 256 (1/16)s 16s A 

n (8n)/2 (1/4)n-1s 4(2)n-1s A 

The perimeter of the Koch Island fractal is infinite but the 

total area stayed constant at each level. 

We know the self- similarity Dimension =

( )
   ?  

 

log( )

 

Number of self similar pieces

log magnification factor
 

Therefore the self- similarity dimension of Koch Island = = 

1.5 

4.2. The Box Fractal 

This fractal is made by using the "method of successive 

removals." 
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Level 1 

On a large piece of construction paper, draw a square that 

has a side length of 1 foot. Shade in the entire square. 

 

Level 2. 

Lightly draw a square again that has a side length of 1 foot. 

Lightly divide that square up into 9 smaller squares. Shade in 

all of the squares except the middle squares on each side. We 

should have shaded in 5 out of 9 of the squares. 

 

Level 3 

Lightly draw a square again that has a side length of 1 foot. 

Lightly divide that square up into 81 smaller squares. Level 2 

drawing had 4 shaded squares in the corners and 1 shaded 

square in the middle. Copy that drawing except this time do 

not shade the middle (3x3) squares from each side of the 5 

previously shaded squares. 

 

Table 5. Table for Box Fractal. 

Level 
Line of 

Segments 

Length of Each 

Segment 
Perimeter Area 

1 4 1s 4s A 

2 20 (1/3)s 6.67s (5/9)A 

3 100 (1/9)s 11.11s (25/81)A 

n N (1/3)n-1s (n)(1/3)n-1s (5/9)n-1A 

The perimeter increases at each successive level and as the 

level n approaches infinity, the perimeter will approach 

infinity. 

The area decreases at each successive level and as the level 

n approaches infinity, the area will approach 0. 

We know the self- similarity Dimension =

( )
   ?  

 

log( )

 

Number of self similar pieces

log magnification factor
 

Self-similarity dimension of Cantor square fractal == 1.46 

5. Experiments 

Using the formulas and techniques discussed above we now 

calculate the mathematical properties (area, perimeter & 

dimension) of some fractals. We determine the ultimate fate of 

the fractals by analyzing the data calculated. Finally we 

tabulated all the data to observe them and to come a decision 

concerning the fractals. 

We tabulated the result of all the mathematical approaches 

of fractals that we have studied. We can visualize all the 

properties together so that we can come into a decision to 

generalize them. 

Table 6. Table for Some Fractal. 

Fractal Shape Method Perimeter Area Dimension 

The Koch Island Fractal 

 

Copies of Copies Infinite Constant 1.5 
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Fractal Shape Method Perimeter Area Dimension 

The Box Fractal 

 

Successive 
Removals 

Infinite Zero 1.46 

The Cantor Square 

Fractal 

 

Successive 

Removals 
Infinite Zero 1.26 

The Cesaro Curve 

Fractal 

 

Copies of Copies Infinite Converging 1.691 

The Levy Curve 

Fractals 

 

Replacing generator Infinite Converging 2 

The Peano Curve 

Fractal 

 

Copies of Copies Infinite Filling the space 2 

The Sierpinski 

Arrowhead Fractal 

 

Copies of Copies Infinite Converging 1.58 

The H fractal 

 

Copies of Copies Infinite Filling the space 1.46 

The Sierpinski Carpet 

Fractal 

 

Successive 

Removals 
Infinite Zero 1.89 
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Fractal Shape Method Perimeter Area Dimension 

The Dragon Curve 

Fractal 

 

Replacing generator 

or Paper folding 
Infinite Converging 2 

 

Observing the above fractals we can say that the fractals 

made by any method, their perimeter always approaches to 

infinity. 

Only those fractals which are made by method of 

successive removals has the area tends to zero. 

6. Conclusion 

Here we try to understand fractal with their mathematical 

properties. A mathematical approach is done for some of the 

known fractals. We calculate the area, perimeter and 

self-similarity dimension of several fractals. We observe that 

there is a similarity in fractals about the said property. The 

fractals generated by similar method have same mathematical 

property. Perimeter always approaches to infinity for the 

studied fractals and the area of fractals generated under certain 

method becomes zero. This result can be general for fractals. 

Further research is needed to come into a decision. 
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