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Abstract: In this paper, we consider a stochastic Gilpin-Ayala model under regime switching. Obtain the optimal harvesting 

effort and the maximum sustained yield by investigating the condition of average boundness of the system, and the ergodicity of 

the Markov chain. Also, through an example, we have proved our conclusion. 
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1. Introduction 

In recently, many authors have discussed population 

systems subject to the white noise (see [1-6, 10]). Also, the 

optimal harvesting in managing natural resources has received 

much attention. Because the growth of species in the natural 

world is inevitably affected by environmental noise, many 

scholars have considered the optimal harvesting of stochastic 

population systems. By solving the corresponding 

Fokker-Planck equation, Beddington and May(1977) 

established the optimal harvesting policy for a stochastic 

logistic model. Using the same method, Li and Wang (2010) 

obtained the optimal harvesting policy for a stochastic 

Gilpin-Ayala model. The optimal harvesting of the stochastic 

population model was also examined in Alvarez and 

Shepp(1998), Braumann (2002), Lande et al.(1995), Liu and 

Bai(2014), Ludwig and Varah(1979), Song et al.(2011) and 

Zou and Wang (2014). 

A famous Gilpin-Ayala population model with harvesting is 

described by the ordinary differential equation (ODE) 

( ) ( )( ( ) ( ) ( ))dN t N t a t h b t N t dt
θ= − −         (1) 

Where h  is the harvesting effort and 1θ >  is a constant. 

If we still use ( )a t  to denote the average growth rate, but 

incorporate white noise, and the intrinsic growth rate 

becomes 

( ) ( ) ( ) ( )a t a t t B tα→ +
i

 

Where ( )B t
i

 is white noise and 
2
( )tα  represents the 

intensity of the noise. Then this environmentally perturbed 

system may be described by the Ito's equation 

( ) ( )[( ( ) ( ) ( )) ( ) ( ) .]dN t N t a t h b t N t dt t dB t
θ α= − − +  

Where ( )B t  is the 1-dimensional standard Brownian 

motion with (0) 0B = . As we known, there are various types 

of environmental noise. Let us now take a further step by 

considering another type of environmental noise, namely 

color noise, say telegraph noise (see e.g. [7, 8]). In this context, 

telegraph noise can be described as a random switching 

between two or more environmental regimes, which differ in 

terms of factors such as nutrition or rainfall. The switching is 

memoryless and the waiting time for the next switch has an 

exponential distribution. We can hence model the regime 

switching by a finite-state Markov chain. Assume that there 

are n regimes and the system obeys 

( ) ( ) ( )1 1( ) ( )[( ( )) (1 )],dN t N t a h b N t dt dB tθ α= − − +  (2) 

When it is in regime 1, while it obeys another stochastic 

Gilpin-Ayala model 

( ) ( ) ( )2 2( ) ( )[( ( )) (2 ,)]dN t N t a h b N t dt dB tθ α= − − +  (3) 
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in regime 2 and so on. Therefore, the system obeys 

( ) ( )[( ( ) ( ) ( )) ( ) ( ) ,]dN t N t a i h b i N t dt i dB t
θ α= − − +    (4) 

In regime ( )1i i n≤ ≤ . The switching between these n 

regimes is governed by a Markov chain ( )r t  on the state 

space S={1,2,...,n}. The population system under regime 

switching can therefore be described by the following 

stochastic model 

( ) ( )[( ( ( )) ( ( )) ( )) ( ( )) ( ) ].dN t N t a r t h b r t N t dt r t dB tθ α= − − +   (5) 

This system is operated as follows: If ( ) 0
0r i= , the system 

obeys Eq.(4) with 0
i i=  until time 1

τ  when the Markov 

chain jumps to 1
i from 0

i ; the system will then obeys Eq.(4) 

with 1
i i=  from 1

τ  until 2
τ  when the Markovian chain 

jumps to 2
i  from 1

i . The system will continue to switch as 

long as the Markovian chain jumps. In other words, Eq.(5) can 

be regarded as Eqs. (4) switching from one to another 

according to the law of the Markov chain. The different Eqs.(4)

(1 )i n≤ ≤  are therefore referred to as the subsystem of 

Eq.(5). 

Takeuchi et al. [7] investigated a 2-dimensional 

autonomous predator-prey Lotka-Volterra system with regime 

switching and revealed a very interesting and surprising result: 

If two equilibrium states of the subsystems are different, all 

positive trajectories of this system always exit from any 

compact set of 2R +  with probability 1; on the other hand, if 

the two equilibrium states coincide, then the trajectory either 

leaves any compact set of 2R +  or converges to the 

equilibrium state. In practice, two equilibrium states are 

usually different, in which case Takeuchi et al. [7] showed that 

the stochastic population system is neither permanent nor 

dissipative. This is an important result as it reveals the 

significant effect of environmental noise on the population 

system: both its subsystems develop periodically but 

switching between them makes them become neither 

permanent nor dissipative. Therefore, these factors motivate 

us to consider the Gilpin-Ayala population system subject to 

both white noise and color noise, described by (SDE) 

( ) ( )[( ( ( )) ( ( )) ( )) ( ( )) )],(dN t N t a r t h b r t N t dt r t dB tθ α= − − +  (6) 

where for each ,) ), ( (i S a i b i∈  and ( )iα  are all nonnegative 

constants and 1.θ >  Our aim is to reveal the optimal harvesting 

of the system (6) with the environmental noise affects. 

2. Preliminaries 

Throughout this paper, unless otherwise specified, let 

} ), , ,{ 0(
t

F F t P≥Ω  be a complete probability space with a 

filtration  0{ }t tF ≥  satisfying the usual conditions (i.e. it is 

right continuous and 0
F  contains all P-null sets). Let 

( ) , 0,B t t ≥  be a scalar standard Brownian motion defined on 

this probability space. We also denote by R +  the open 

interval (0, )+∞ , and denote by R
+  the interval [0, )+∞ . Let 

r(t) be a right-continuous Markov chain on the probability 

space, taking values in a finite state space S={1,2,...,n}, with 

the generator ( )
uv

n nγΓ = ×  given by 

( )
{ ( ) |

 ,
( ) }

( )1 0 ,

uv

uv

o if u v
P r t v r t u

o if u v

γ δ δ
δ

γ δ δ
+ ≠

+ = = =
+ + ≥ =





 (7) 

where 0.δ >  Here uv
γ  is the transition rate from u to v and 

0
uv

γ ≥  if u v≠ , while 

,
uu uv

u v

γ γ
≠

= −∑  

we assume that the Markov chain ( )·r  is independent of the 

Brownian motion .(·)B  It is well known that almost every 

sample path of ( )·r  is right continuous step function with a 

finite number of jumps in any finite subinterval of R
+ . As a 

standing hypothesis we assume in this paper that the Markov 

chain r(t) is irreducible. This is a very reasonable assumption, 

as it means that the system can switch from any regime to any 

other regime. This is equivalent to the condition that for any 

,u v S∈ , one can find finite numbers 1 2
, ,...

k
i i i S∈  such that 

1 1 2, , ,,..., 0,
ku i i i i vγ γ γ >  Note that Γ  always has an eigen value 

0. The algebraic interpretation of irreducibility is that rank

( ) 1nΓ = − . Under this condition, the Markov chain has a 

unique stationary (probability) distribution
1

1 2  ,  ,. ),( .. ?
n

n Rπ π π π ×= ∈  which can be determined by 

solving the following linear equation 

0πΓ =                    (8) 

subject to 

1

1 0 .
n

i i

i

and for any i Sπ π
=

= > ∈∑  

For convenience and simplicity in the following discussion, 

define 

ˆ (min ,)
i S

f f i
∈

= ( )max ,
i S

f f i
∨

∈
=  

where ( ){ }
i S

f i
∈

 is a constant vector. 

Let ( )N t  be a solution of Eq.(6),by Itˆo’s formula 

2 ( ( ))( )
( ) ( )[( ( ( )) ( ( )) ( )) ( ( )) ( )

1
.

2
]

r t
dN t N t a r t h b r t N t dt r t dB tθ θ θα θθ α−= − + − +      (9) 



278 Juan Hou et al.: The Optimal Harvesting of a Stochastic Gilpin-Ayala Model under Regime Switching  

 

Let ( ) ( )Y t N t
θ= , then the system (9) can be written as 

2 ( ( ))( )
( ) ( )[( ( ( )) ( ( )) ( )) ( ( )) ( )]

1
.

2

r t
dY t Y t a r t h b r t Y t dt r t dB t

α θθ α−= − + − +               (10) 

Similarly to the Theorem 2.1 in [9], we have the following Lemma. 

Lemma 1. There exists a unique continuous solution N(t) to SDE (6) for any initial value N(0)=N0>0, which is global and 

represented by 

2

0

2

0 0
0

( ( ))( 1)
exp{( [ ( ( )) ] ( ( )) ( ))}

2( ) .
1 ( ( ))( 1)

( ( )) exp{( [ ( ( )) ] ( ( )) ( ))}
2

t

t t

r s
a r s h ds r s dB s

r u
b r s a r u h du r u dB u ds

N t

N

θ

θ

α θθ α

α θθ θ α

−− + +

−+ − + +
=

∫

∫ ∫
Since ( )Y t  and ( )N t  have the same 

monotone and extreme points in R
+ , then we can investigate the optimal harvesting of the system (10) instead of (6). 

The solution of system (10) with initial value ( ) ( )0 0
0  0Y Y N Nθ θ= = =  is 

2

0

2

0 0
0

( ( ))( 1)
exp{( [ ( ( )) ] ( ( )) ( ))}

2( )
1 ( ( ))( 1)

( ( )) exp{( [ ( ( )) ] ( ( )) ( ))}
2

t

t t

r s
a r s h ds r s dB s

r u
b r s a r u

Y t

h ds r u dB u ds
Y

α θθ α

α θθ θ α
=

−− + +

−+ − + +

∫

∫ ∫
 

which is positive and global. 

We first give some definitions about the optimal harvesting 

of the system (10) with the environmental noise affects. 

Definition. The harvesting effort h∗ is said to be optimal, if 

0

( ) { ( )}
h

h x h sup hx h
∗ ∗

>
=  

where
0

1
( ) lim ( )

t

t
x h x s ds

t→∞
= ∫ . 

For system (10), we introduce the following basic 

assumptions: 

(H1) For each , ( ) 0i S b i∈ > ; 

(H2) 2

1

1
[ ( ) ( )] 0

2

n

i

i

a i h i
θπ α

=

−− + >∑ ; 

(H3) For each i S∈ , 21
( ) ( ) 0.

2
a i h i

θ α−− + >  

For the system(10), we have the following results. 

3. The Main Results 

We firstly have the following lemma. 

Lemma 2. If assumption (H1) holds, for an arbitrary given 

positive constant p, the solution Y(t) of SDE (10) with any 

given positive initial value has the property that 

( ( ) ) ( )limsup p

t

E Y t K p
→∞

≤                 (11) 

where 

2

2

( 1)

2( ) , 0 1;
ˆ

( )

( 1)

2( ) , 1.
ˆ

p

p

a h

p
b

p
a h

p
b

K p

α θ

α θ

∨
∨

∨
∨


− − +

 < <

 − − +
 ≥


=         (12) 

Proof By the generalized Itˆo formula, we have 

1 2 2

2

2
2

( ) ( ) ( ) ( ) ( )( ( ))

( )[( ( ( )) ( ( )) ( ))

( ( )) ( )] ( ) ( ) ( (

1
 1

2

( 1) ( ( ))

2

))1 .
2

p p p

p

dY t pY t dY t p p Y t dY t

r t
pY t a r t h b r t Y t dt

r t dB t p p Y t r t dt

θ αθ

θα α

− −= + −

−= − + −

+ + −

 (13) 

Integrating it from 0 to t and taking expectations of both 

sides, we obtain that 

2

0

0

2
2

( )
( ( )) ( (0)) [ ( )( ( ( )) ( ( ))

2

( ( ))) ( )] ( ) [ ( ( )) ( )

1
 

2
]1 .

t
p p p

p
t

E Y t p E Y s a r s h r

b r s Y s d

E

s p

Y s

p E r s Y s ds

θθ α

θ α

− =

−

−− +

+ −

∫

∫
 

Then we have 

2

2
2

( )
[ ( )( ( ( )) ( ( ))

2

( ( ))) ( )] ( ) [ ( ( )) (

( ( ))

)

1
 

]1
2

.

p
p

p

t t t
dE Y t

pE Y a r h r
dt

b r t Y t p p E r t Y t

θθ α

θ α

−−= +

+ −−
  (14) 

If 0<p<1. we obtain 
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2
1

2

2

1

1

( )
( ) ( )) ( ))

2

( )
( ) ( )

( ( )) 1
 ( (

1
( ( (

1
( ( (

) ( ))
2

( )
( ))[( ) ( )) ],

2

p
p p

p p

p

pp p

p

dE Y t
p a h E Y b pE Y

dt

p a h E Y b p E Y

pE Y a h

t t

t t

t tb E Y

θθ α θ

θθ α θ

θθ α

∨ ∨ ∧
+

∨ ∨ ∧

∨

+

∨ ∧

−

≤

−≤ − +

−− +

+ −−

−

= −

 (15) 

while if 1p ≥ , we obtain 

 
 
 
 
 
 

2 22
1

2 2
1

2

2
1

( )
[( ( )) ( ))] ( ) [ ( )]

2

( )
[( ( )) ( )) ] ( ) [ ( )]

2

( )
( ))[( ) ( )) ].

( ( )) 1
 ) ( ( 1

2

1
) ( ( 1

2

2

1
( (

p

p

p
p p p

p p p

p pp

dE Y t
p a h E Y b pE Y p p E Y s

dt

p a h E Y b pE Y p p E Y s

p
pE Y

t t

t t

t ta h b E Y

θ θθ α θ α

θ θθ α θ α

θθ α

∨ ∨ ∧ ∨
+

∨ ∨ ∧ ∨

∨ ∨ ∧

+

−≤ − + −

−− +

− +

≤ − +

= + −

−

−−

               (16) 

Therefore, letting ( ) ( ( )).
p

z t E Y t=  we have 

2
1

2 1

( )1
( ) (

1
( )

[( ) ( )) ], 0 1;
2( )

( )
[( ) ) ], 1( .

2
( )

p

p

z t p

z t

p

pz t a h b

p
pz t a h b z t

θθ α

θθ α

∨ ∨ ∧

∨ ∨ ∧

−
 − < <


 −

− +
≤

− ≥+


−

  (17) 

Notice that if 0<p<1, the solution of equation 

2
1

1
( )

( )
( ) [( ) ( ( )) ],

2

p
pz t a hz t b z t

θθ α
∨ ∨ ∧−= −− +ɶ ɶɶ  

obeys 

2
1( )

2( ) ( ) ,

p

z t

b

as

h

t

a
θ α

∨ ∨

∧

−− +
→ → ∞ɶ

 

similarly, if p≥1 the solution of equation 

12
1

( ) ( (
( )

( ) [( ) ) ]
2

) pp
pz t a h b z tz t

θθ α
∨ ∨ ∧−− += −  

as t → ∞  is such that

2
( )

2( ) ( )

1

.

p

p

b

z t

a h
θ α

∨ ∨

∧

− +
→

−
 

Thus by the comparison argument we get 

2

2

( )

2( ) 0 1;

limsup ( )
( )

2( ) , 1.

1

1

p

p
t

p

z

a h

b

h

b

t

p

p
a

θ α

θ α

∨ ∨

∧

∨ ∨→∞

∧

−− +

≤
−−



 < <


+




≥


      (18) 

By the definitions of z(t), we obtain the assertion (11). 

Lemma 3. Under (H1), the solution Y(t) of SDE (10) with 

any positive initial value has the property 

ln( ( ))
lim sup 1 . .

lnt

Y t
a s

t→∞
≤              (19) 

Proof By Lemma 1, the solution Y(t) with positive initial 

value will remain in R + . We have 

2

2

( ( ))( )
( ) ( )[( ( ( )) (( ( )) ( )) (( ( )) ( )]

( )
( ( ) ( ( )) (

1

2

1
) ( ).

2
)

r t
dY t Y t a r t h b r t Y t dt r t dB t

a h Y t dt r t Y t dB t

α θθ α

α θθ θα
∨

∨

−= − + − +

−≤ − + +

 

We can also derive from this that 

2

1

1

1

( )
( ( ))

( ( )) ( )

1
( sup ( )) ( ( )) ) (

2

( s (up ).)

t

tt u t

u

tt u t

E Y u E Y t a h E Y ds

E s s sY dB

s

r

α θθ θ

θ α

∨
∨ +

≤ ≤ +

≤ ≤ +

−≤ + − +

+

∫

∫
 

From Lemma 2, we know that 

limsup (1)( ) .( )
t

E Y t K
→∞

≤                (20) 

But, by the well-known Burkholder-Davis-Gundy 

inequality and the H"older inequality, we derive that 

121
2

1

121
2 2

121
2 2

1

1
1

2 2 2 2

1

2

1

( sup ) 3 [ ( ) ]

[9 ( ) ]

[ sup ( ) 9 ( ) ]

1
[( sup ( )) (9 ( ) ) ]

2

1
[

( ( )) ( ) ( ) ( ( ))

sup ( ) 9

( )

( )

( )

(

)

)

( )(
2

u t

t tt u t

t

t

t

tt u t

t

tt u t

tt u t

E r Y dB E r Y ds

E Y ds

E Y u Y d

s s s s s

s

s

s

s

s

E Y u Y ds

E Y u Y

α α

α

α

α

α

+

≤ ≤ +

∨ +

∨ +

≤ ≤ +

∨ +

≤ ≤ +

∨

≤ ≤ +

≤

≤

≤

≤ +

≤ +

∫ ∫

∫

∫

∫

i

1

1
2

1

]

1
( sup ( ) 9 ( )) ]( .

2

t

t

tt u t

ds

E Y u E Y dssα

+

∨ +

≤ ≤ +
≤ +

∫

∫

 (21) 

Therefore 

1

2
2

1 1( )
(

( sup ( )) 2 ( ( ))

1
2 ) ( 18 .

2
( )) ( )

t u t

t t

t t

E Y u E Y t

a h E Y ds EYs ss d

θ

α θθ θ α

≤ ≤ +

∨
∨ ∨+ +

≤

−+ − + +∫ ∫
 

This, together with (20), yields 
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2
2

1

1
limsup ( sup ( )) 2 9 )

(
(1).

2

)
(1

t t u t

E Y u a h K
α θθ α
∨

∨ ∨

→∞ ≤ ≤ +

−≤ ++ − +  (22) 

To prove assertion (19), we observe from (22) that there is a 

positive constant K  such that 

1

( sup ( )) , 1, 2,3
k t k

E Y t K k
≤ ≤ +

≤ = …  

Let 0ε >  be arbitrary. Then, by the well-known 

Chebyshev inequality, we have 

1

1
1

{ sup ( ) } , 1,2,3
k t k

K
P Y t k k

k

ε
ε

+
+

≤ ≤ +
> ≤ = …  

Applying the well-known Borel-Cantelli lemma, we obtain 

that for almost all ω ∈Ω  

1

1

sup ( )
k t k

Y t k ε+

≤ ≤ +
≤               (23) 

holds for all but finitely many k. Hence, there exists a 0
( )k ω , 

for almost all ω ∈Ω , for which (23) holds whenever 0
k k> . 

Consequently, for almost all ω ∈Ω and 1k t k≤ ≤ + , 

ln( ( )) (1 ) ln
1 .

ln ln

Y t k

t k

ε ε+ = +≤  

Therefore 

ln( ( ))
lim sup 1 . .

lnt

Y t
a s

t
ε

→∞
≤ +  

Letting 0ε →  we obtain the desired assertion (19). The 

proof is therefore complete. 

Corollary 1. Under (H1), the solution of SDE (10) with any 

positive initial value has the property 

ln( ( ))
lim sup 0 . .

t

Y t
a s

t→∞
≤            (24) 

Proof From Lemma 3, we have 

ln( ( )) ln( ( )) ln ln
limsup limsup limsup limsup 0.

lnt t t t

Y t Y t t t

t t t t→∞ →∞ →∞ →∞
= ≤ =  

Consequently, we will get some results about SDE(10). 

Theorem 1. The solution of SDE (10) with any positive 

initial value has the property 

ln( ( ))
0 . .

Y t
a s

t
=            (25) 

Proof From Corollary 1, we have 

ln( ( ))
lim sup 0 . .

t

Y t
a s

t→∞
≤  

Hence, we only need to prove the following conclusion 

ln( ( ))
lim inf 0 . .

t

Y t
a s

t→∞
≥            (26) 

Let 

0
( ) ( ( )) ( ).

t

M t r s dB sα= ∫  

The quadratic variation of this martingale is 

2

2

0
( ( )), ?

t

M M r s ds tα α
∨

〈 〉 = ≤∫  

By the strong law of large numbers for martingales, we 

therefore have 

( )
lim 0 . .
t

M t
a s

t→∞
=  

For any positive constant 0ε >  and small enough, there is 

a positive constant T < ∞ , such that 

0
| ( ( )) ( ) . |

t

r s dB as s tt Tα ε≤ ≥∫  

Therefore, for any t>s>T, there have 

0
| ( ( )) ( ) ( ( )) ( ) | | ( ( )) ( ) | ( ) . .

t t

s

s

o
ar dB r dB r dB s stα τ τ α τ τ α τ τ ε≤ + ≤ +∫∫ ∫                (27) 

By (27), for any t>T, we have 

2

0

2

0 0

2

0

1

0

1 1 ( ( ))( 1)
( ) ( )exp{ ( [ ( ( )) ] ( ( )) ( ))}

2

( ( ))( 1)
( ( ))exp{ ( [ ( ( )) ] ( ( )) ( ))}

2

( ( ))( 1)
( ) exp{ ( [ ( ( )) ] ( ))}

2

( ( ))e

t

t s

t

t

r s
T a r s h ds r s dB s

r u
b r s a r u h du r u dB u ds

r s

Y t Y

Y T a r s h ds t T

b r s

α θθ α

α θθ θ α

α θθ ε

θ

− −

−

−− − + +

−+ − − + +

−

=

≤ − − + + +

+

∫

∫ ∫

∫

∫
2

0

( ( ))( 1)
xp{ ( [ ( ( )) ] ( ))} .

2

s r u
a r u h du t s ds

α θθ ε−− − + + +∫

 

There has a constant 0K >  such that 
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2

0

2

2

( 1

0

) 1

0

( ( ))( 1)
( ) ( ) exp{ ( [ ( ( )) ] ( ))}
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t
ε

−
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≤  

or 
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t

Y t
a s

t
ε

−
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≥ −  

Therefore we obtain the assertion (26) and complete the proof. 

Theorem 2. Suppose (H1), (H2) hold and the Markov chain r(t) is irreducible, then the solution Y(t) of SDE (10) with any 

positive initial value has the property 
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1
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2

t

n

i
t

i
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a i h i a s

t
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Proof From Itˆo equation, 
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Obviously, 0ln
0( )

Y
t

t
→ → ∞ , from Theorem 1, 

ln ( )
0

Y t

t
→  a.s for t → ∞ . 

By the ergodicity of the Markov chain r(t), as t → ∞ , 

0 2
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2
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that is 0
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i

i

a i h i
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=

−− +∑ . 

On the optimal harvesting effort and the maximum 

sustainable yield, we have the following results. 

Theorem 3. Under (H1)， (H2) and (H3), the optimal 

harvesting effort of (10) is 

* 2

1

1 1
[ ( ) ( )]

2 2

n

i

i

h a i i
θπ α

=

−= +∑            (29) 

and the maximum sustainable yield satisfied 
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Proof  By the theorem 2, we have 
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and 
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2
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It is easily to know that 
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be the sustainable yield function, while F'(h)=0, we can get the 

unique extreme point. Noticed the h such that F'(h)=0 is 

independent on b(r(t)), therefore 

2
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1
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a i h i
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=
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and 
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=
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this is the optimal harvesting effort, taking it into (31)(32) and 

we can get the (30) easily. The proof is complete. 

Corollary 2. Assume for some ( ), 0i S b i∈ > , the 

subsystem of SDE(10) with Markov switching is 

2
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2
dY t Y t a i h i b i Y t dt i dB t
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It has the optimal harvesting effort 
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and the maximum sustainable yield satisfied 
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4. Conclusions and example 

In this paper, we investigate the optimal harvesting effort 

and the maximum sustainable yield of a stochastic 

Gilpin-Ayala model under regime switching, we get the 

optimal harvesting effort of the SDE (10) and estimate the 

value of the maximum sustainable yield. we get the value of 

the maximum sustainable yield of the subsystem of (10) 

without the SDE (10). 

Making use of the results, we shall illustrate these 

conclusions through the following example. 

Example. Consider a 3-dimensional stochastic differential 

equation with Markovian switching of the form 

( ) ( )[( ( ( )) ( ( )) ( )) ( ( ))       0.( )]dN t N t a r t h b r t N t dt r t dB t on t
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Where r(t) is a right-continuous Markov chain taking values in S = {1,2,3}, and 

θ=2, r(t) and B(t) are independent. Here 
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We rewrite the (33) as (34) 
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Let the generator of the Markov chain  r(t) be 

2 1 1
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By solving the linear equation (8) we obtain the unique 

stationary distribution 
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Then the optimal harvesting effort of (34) is 
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and the maximum sustainable yield separately, for i=1,2,3 
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We get the optimal harvesting effort of 
2
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, 

then the optimal harvesting effort of
2
( )N t  is
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. 

Acknowledgments 

This work was supported by the Science Foundation of 

Hengyang Normal University (15B18)(15B17); The Xinjiang 

Uygur Autonomous Region Natural Science Foundation 

(2015211B004); the Hunan Provincial Key Laboratory of 

Intelligent Information Processing and Application, 

Hengyang, 421002, China. 

 

References 

[1] X. Mao, G. Marion, E. Rensgaw, Environmental Brownian 
noise suppresses explosions in population dynamics, Stochastic 
Process. AppL. 97(2002)95-110. 

[2] X. Mao, Delay population dynamics and environment noise, 
Stoch, Dyn., 5 (2)(2005)149-162. 

[3] X. Mao, G. Marion, E. Rensgaw, Asymptotic behavior of the 
stochastic Lotka-Volterra model, J. Math. Ana. Appl., 287 
(2003) 141-156. 

[4] T.C, Gard, Stability for multispecies population models in 
random environments, Nonlinear Anal. 10(1986)1411-1419. 

[5] D. Jiang, N. Shi, A note on nonautonomous logistic equation 
with random perturbation,. Math. Ana. Appl., 303 (2005) 
149-162. 

[6] D. Jiang, N. Shi, X. Li, Global stability and stochastic 
permanence of a non-autonomous logistic equation with 
random perturbation, J. Math. Ana. Appl.,340 (2008) 588-597. 

[7] Y. Takeuchi, N. H, Du, N. T. Hieu, K.Sato,Evolution of 
predator-prey described by a Lotka-Voterra equation under 
random environment, J. Math. Ana. Appl., 323 (2006) 938-957. 

[8] Q, Luo. X. Mao, Stochastic population dynamics under regime 
switching,J. Math. Ana. Appl., 334 (2007) 69-84. 

[9] X. Y. Li, Alison Gray, D. Q. Jiang, X. Mao, Sufficient and 
necessary conditions of stochastic permanence and extinction 
for stochastic logistic populations under regime switching, J. 
Math. Ana. Appl., 376 (2011) 11-28. 

[10] JianhaiBaoa, XMaob, Geroge Yin c, ChengguiYuana, 
Competitive Lotka–Volterra population dynamics with jumps, 
Nonlinear Analysis 74 (2011) 6601–6616. 

 


