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Abstract: The paper is devoted to the study of optimal control of Quadratic Optimal Control of Fractional stochastic 

differential Equation with application of Economy Mode with different types of fractional stochastic formula (ITO, 

Stratonovich), By using the Dynkin formula, Hamilton-Jacobi-Bellman (HJB) equation and the inverse HJB equation are 

derived. Application is given to a stochastic model in economics. 
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1. Introduction 

In the following controlled Fractional stochastic 

differential equations was introduced 

1. x(t) = x(0) + �  (

� H(t)x(t) + M(t)u(t))dt + � b(t)dB� (t) 


� . 

2. x(t) = x(0) + �  (

� H(t)x(t) + M(t)u(t) −

 �� b(t) �� (
) 
�� )dt + � b (t)dB (t) 


� . 

3. x(t) = x(0) + �  (

� H(t)x(t) + M(t)u(t) −

 �� b(t) �� (
) 
�� )dt + � b (t)dB� (t) 


� .  

where x (t), t ∈ [0, T], is a given continuous process, u (t) is a 

control process, H (t) be n × n matrices, M (t) be n × k 

matrices, b (t) be n× m matrices, the control u(t) be k ×
1 vector, B� (t) and B (t) are Fractional Brownian Motion 

and Brownian Motion respectively.  

we presented Dynkin formula, This result can be obtained 

from Taylor formula for above Fractional stochastic 

differential equations and there generators, By using Dynkin 

formula and the property of expectation, the Hamilton-

Jacobi-Bellman (HJB) equation and the inverse HJB equation 

have been stated. The stochastic optimal control for the 

stochastic differential delay equation was found in the paper 

[1], we will give the proof for Dynkin formula, the Hamilton-

Jacobi-Belman (HJB) equation, the inverse HJB equation and 

the optimal control for each of the above equation. For a 

definitions related to optimal control see [2], a Ramsey 

model [4, 6] that takes into account the randomness in the 

production cycle.  

The models is described by the equations 

1. dk (t) = [H (t) k (t) + u (k (t))M (t)]dt + b (k (t))dB� 

2. dk (t) = [H (t) k (t) + M (t) u (k (t))]dt +b (k (t)) ○dB (t)  

3. dk (t) = [H (t) k (t) + M (t) u (k (t))]dt +b (k (t)) ○dB� 

(t)  

where k is the capital, M is the production, u is control 

process, H (t) be n×n positive matrices. For these stochastic 

economic models the optimal control for the first and second 

economic equation is found to be u (t) = − !� (") # (
) 
$(
) , and 

the optimal control for the third equation is found to be 

u(t) = − # (
) !� (") 
$(
) , and the optimal performance is 

2. Definitions and Basic Concept 

Definition (1), [3]  

A random experiment is a process that has random out 

comes.  

Definition (2), [3]  

A sample space is the set of all possible outcomes of a 

random experiment and is denoted by Ω.  

Definition (3), [3]  

A %-algebra Fof subset of a sample space Ω (which is the 

set of all possible outcomes) satisfies the following 

i. Ω ∈ F. 

ii. If A ∈ F, then A) where A) is the complement of all set 

A. 
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iii. For any sequence {A+} ⊆ F  Then . A+/01� ∈ F  and 

2 30/01� ∈ F  the element of Fare called measurable 

sets and the pair(Ω, F) is called a measurable space.  

Definition(4), [3]  

The probability p is a set function that p: F→ [0, 1], and p 

is called a probability measure if the following conditions 

hold 

i. P (Ω) =1.  

ii. P (A)) =1−p (A). 

iii. P (. A4+41� ) =∑ p+41�  (A4), if A4 ∩ A8=∅, for i≠j.  

Definition (5), [3]  

The triplet (Ω, F, p) consisting of the sample space Ω, the 

% -algebra F of subset ofΩ and a probability measure p 

defined on F is called a probability space.  

Definition (6), [3]  

A random variable x, in the probability space (Ω, F, p) is a 

function x: Ω→R such that the inverse x;� (A) ={w∈ Ω: x 

(w) ∈A}∈ F, for all open subset A of R.  

Definition (7), [3]  

A stochastic process x: [0, T] ×  Ω→ R, in probability 

space (Ω, F, p) is a function such that x (t,.) is a random 

variable in (Ω, F, p) for all t∈ (0, T) we will often write x (t) 

≡x (t,.).  

Definition (8), [3]  

A stochastic process x = {x (t),t ∈ [0, T] }is said to be 

Gaussian if for all n ≥1and allt�, t�, …….., t+ ∈ [0, T], (x
>, 

x
? , ………, x
@ ) is Gaussian random vector. if the mean 

ofxequal to zero then xis said to be centered.  

Definition (9), [3]  

A stochastic process x (t), t ≥ 0, on a probability space (Ω, 

F, P) is adapted to the filtration (AB) ≥ 0 if for each t ≥ 0, x 

(t) is AB − measurable.  

Definition (10), [8]  

The ordinary Brownian motion or (winer process) is 

Gaussian process B={B (t), t ≥  0} with zero mean and 

covarianceE (B (s) B (t)) = min {s, t}.  

Definition (11), [5]  

Let H be a constant belong to (0, 1). A one dimensional 

fractional Brownian motionB�  = { B�  (t), t ≥ 0 } ofHurst 

index His a continuous and centered Gaussian process with 

zero mean and covariance function:  

E (B (s) B (t))  =  �
�  (t��  +  s��– | t –  s |��) fort, s ≥ 0.  

Definition (12), [9]  

Let S be a linear space of smooth cylindrical V-valued 

random variable on (Ω, F, P) such that if F∈S then it has the 

form 

F =  ∑ JK0K1�  (� L�K
�

� dMN  … … … � r+8 dB��
� )ηK      (1) 

Where ηK ∈ V, LRK ∈ S�∅T  ([0, 1], S� (U, R)), 

JK ∈ WX/ (Y0Z)for j ∈  {1, . . . , n} and k ∈ {1, . . . , _K} and 

WX/ (Y0)  =  {f: Y0 →  R | f ∈ W/  and all of its derivatives 

havepolynomial growth}. Where 

∅N (s)  =  H (2H −  1) |s|2H − 2               (2) 

H ∈  (1
2 ,1), s ∈ Yc 

Definition(13), [9]  

The derivative D: S → SN� is a linear operator which is 

given for F ∈ S in equation (1) by 

D
F =  ∑ ∑ efZ
egh

0Z
i1�

0K1�  (� L�K
�

� dB�  … … … � r+8 dB��
� ) ηK ⊗ LiK  (t)                                  (3) 

where ηK ∈ V, LRK ∈ S�∅T  ([0, 1], S� (U, R)). 
Definition (14), [2]  

A measurable function f: Y+ →  [0, ∞] is called supermeanvalued with respect to x (t) iff (x)  ≥ E� [f (x"l)] for all stopping 

time T and all x ∈ Y+.  

Remark(1), [2]  

Let f�, f�, ………, fm are bounded Borel function on Y+and T be a stopping time and A" is %-algebra, then 

E� [f� (x"cn>), f� (x"cn?), … . , fR (x"cno) |A"]  = E�p  [f� (x"cn>), f� (x"cn?), . , fR (x"cno)]                                      (4) 

For all 0 ≤ h� ≤  h� ≤………≤  hm, let g be the set of all real M/-measurable function for t≥0, we define the shift operator 

θ
: g→g, if ƞ=y� (x
>), y� (x
?),., yR (x
o), where yi is Borel measurable ti ≥0 then 

θ
ƞ =y� (x
c
>), y� (x
c
?),., yR (x
c
o), then it follows from (3) that 

E�[θ
ƞ)|A"] = E�p  [ƞ]                                                                                (5) 

For any stopping time u, the following property be satisfy 

E� [f (xv)] =  E�[E� [f (x"l)]]  =  E� [E� [wu. f (x"l) |A"]]  = E� [wuf. (x"l)]  = E� [f (x"lx)].                   (6) 

where Tv = inf{t>u} 

E� [f(xv)]  ≤ E� [f (x"l)] = f(x).                                                                    (7) 

So f is supermeanvalued 
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3. Fractional Stochastic Differential 

Equation 

Let a (x(t)), b (x (t)) are continuous functionaldefined on 

the metric space K, let the Fractional stochastic process x (t) 

satisfy the Fractional Stochastic Differential Equation 

dx (t)  = a (x (t)) dt + b (x (t)) dB�(t)          (8) 

and B� (t) is Brownian motion. 

Let H (t) be n×n matrices, M (t) be n×k matrices, b (t) be 

n×m matrices and thecontrol u (t) be k×1 vector and B� (t) 

is Brownian motion let 

a (x(t))  = H (t) x(t) +  M (t) u (t)               (9) 

and 

 b(x(t)) =  b(t)                                (10) 

then from (8) and (9) the stochastic process x(t) in (7) satisfy 

the linear Fractional Stochastic Differential Equation 

dx(t) = H(t)x(t) +  M(t)u(t) +  b (t)dB� (t)        (11) 

Remark (2), ”The IT'O Fractional Taylor formula”, [9]  

Let x (t) be the stochastic process given as 

x (t)  =  x (0)  + �  (

� H (t) x (t)  + M (t) u (t)) dt + � b (t) dB�


�   (12) 

Wherea (x(t)), b (x (t)) are continuous functional defined 

on the metric space K, the Hurst parameter H ∈ (
�
�, 1) and V 

is separable Hilbert space, Let f: V →  V be a twice 

continuously differentiable function such that f ': V → S� (V, 

V) and f '': V (�) → S� (V, V) where f ' and f '' are the first 

and second derivatives respectively for p, q ∈ [0, t] and V, 

then the process f (x (t)) satisfies the IT'O Fractional Taylor 

formula defined by the ITO Formula 

f (x(t))  = f (x (0))  + y d
dx 




�
 (x (t)) a (t) dt + y y d�

d�x 



�
 zx(p){




�
y  (

|

�
D}a (t)) dt b (p) ∅� (p − q) dqdp 

 + y y d�
d�x 

|

�




�
 zx (p){b (q)b (p)∅� (p– q) + y d�

d�x 



�
 zx (t){b (t)dB� (t) 

+ � � �?
�?� 



�



�  (x (P)) �  (|

� D}b (t)) dB� (t) b (p) ∅� (p − q) dqdp                                  (13) 

by taking the derivative of both saided one can get 

df zx (t){ = d
dx  zx (t){a (t)dt + y d�

d�x 



�
 zx (p){ y D} za(t){dtb(p)∅� (p − q)dqdp

|

�
dt + y d�f zx(p){

d�x 
|

�
b (q)b (p)∅� (p −  q)dqdpdt 

+ �?� (�(
)) 
�?� b (t) dB� (t) dt + � �?� (�(|)) 

�?� 



� �  (|
� D}b(t))dB�(t)b(p)∅�(p − q)dqdpdt. [5]                          (14) 

by applying (7) on (13) to get 

df (x (t)  = �� (�(
)) 
��  [H (t) x (t)  + M (t) u (t)] dt + � �?� (�(|)) 

�?� 
|

� b (q) b (p) ∅� (p −  q) dqdpdt + �?� (�(
)) 
�?� b (t) dB� (t) dt.  (15) 

Definition (15) [5]  

The generator A� of anFractional Stochastic differential equation (7) defined by 

A�f =  � [��z�(
){] 
�
                                                                                     (16) 

Remark (3)  

by substituting equation (15) in equation (16) eyelid that 

A�f = �� (� (
) 
��  [H (t) x (t)  + M (t) u (t)]  + � �?� (|))

�?� 
|

� b (q) b (p) ∅� (p −  q) dqdp.                                   (17) 

 

3.1. Fractional Martingale Problem 

If (7) is an ITO Fractional Stochastic Differential Equation with generator A� and f∈ W� (R) then the Fractional Martingale 

formula is 
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f (x(t))  = f (x (0))  + � A�B
� f dt + �?� (�(
)) 

�?� b (t) dB� (t) dt + � �?� (�(|)) 
�?� �  (|

� D}b (t)) dB� (t) b (p) ∅� (p − q) dqdpdt.

�  (18) 

3.2. Dynkine Formula for the Linear Quadratic Regulator Problem 

Let h∈ W� (R), C (t) be the n×n matrices and G (t) be the k×k matrices, Note that from equation (11) and equation (17) we 

obtain the following Fractional Taylor formula for the function h (x (t)) where h (x (t)) defined as 

h (x (t))  = x" (t)C (t) x (t)  +  G (t)                                                                (19) 

h zx (t){ =  h zx (0){ + y  [dh zx (t){
dx  [




�
(H (t)x (t) + M (t)u (t)] 

+ � �?n (� (|))
�?� b (q) b (p) ∅� (p −  q) dqdp] dt + �?n (�(
)) 

�?� b (t) dB� (t) dt|
�             (20) 

Let T be a stopping time for the stochastic processx (t) defined in equation (12) such that E (� A�"
� h (x (t)) dt <∞, by taking 

the expectation of two sides, one can get the following Dynkin formula 

E (h (x (T)))  = h (x (0))  + E [y  [
"

�

dh zx (t){
dx  [(H (t) x (t)  + M (t) u (t)] dt + y d�h zx (p){

d�x 
|

�
b (q) b (p) ∅� (p −  q) dqdp] dtE (h (x (T)))  

=  h (x (0))  +  E [� A�"
� h (x (t)) dt]                                                               (21) 

3.3. The Quadratic Regulator Optimal Problem 

Assume that the cost function of the fractional linear quadratic regulator function is 

h (x, u)  =  E (x (T) " R x (T)  + �  (x" (t) C (t) x (t)  + u" (t) G(t)"
�  u (t)) dt)  [5]                               (22) 

where all of the coefficients C (t) be the n×n matrics, G (t) be the k×k, the control u (t) be k×1 vector, we assume that C (t) 

and Rare symmetric, non negative definite and G (t) is symmetric positive definite and T is the final time of the solution 

x (t) where x (t) defined in (3. 4) such that E�|T| <∞, the problem is to find the optimal control u∗ (t) such that 

h (x, u∗ (t))=min{h (x, u)}.  

4. Hamilton-Jacobi-Bellman Equation for Quadratic Regulator Problem Consider 

the Markova Control u(t) = u (x(t)) 

A�h=
�n (� (
) 

��  [H (t) x (t) +M (t) u(t)] +� �?n (� (|))
�?� 

|
� b (q) b (p) ∅� (p− q) dqdp.                                             (23) 

Theorem (1) “HJB equation “ 

Define h∗ (x) =min{ h (x, u): u = u (t) -Markov control}                                                        (24) 

Suppose that h∈ W� (R) and the optimal controlu∗exists Then 

min{x" (t) C (t) x (t) +u" (t) G (t) u (t) +A�h∗ (x) }= 0                                                          (25) 

where G(t) be the k×k metrics, the control u (t) be k×1 vector, and the generator A�is given by equation (22) and 

h∗ (x) =x (T) "R x (T)                                                                                             (26) 

The minim is a chivied when u∗is optimal. In other words 

x" (t) C (t) x (t) +u∗p
 (t) G (t) u∗ (t) +A�∗h∗ (x) = 0                                                         (27) 

Proof 

Now proceed to prove (7. 4), let u=Tv be the first exit time of the solution x (t) by using (2. 5) and (2. 6)  

E� [h (x (α),u)] = E� [E� [�  (x" (t) C (t) x (t)  + u" (t) G(t)"
�  u (t)) dt + x (T) " R x (T)] 
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=E� [E� [θv �  (x" (t) C (t) x (t)  + u" (t) G(t)"
�  u (t)) dt + x" (t) R x (T) / A�]  

=E� [�  (x" (t) C (t) x (t)  + u" (t) G(t)"
v  u (t)) dt 

− �  [v
� x" (t) C (t) x (t) +u" (t) G (t) u (t)] dt]  

E� [h (x, u)] = h (x, u) −E� [�  (x" (t) C (t) x (t)  + u" (t) G (t) u (t) �
� ) dt], Thus 

h (x, u) = E� [� x" (t) C (t) x (t)  + u" (t) G (t) u (t) v
�  dt] + E� [h (x, u)] (28) 

h∗ (x)  ≤h (x, u) = E� [� x" (t) C (t) x (t)  + u" (t) G (t) u (t) �
�  ds] + E� [h (x, u)]  

by equation (21), we get 

E� [h (x, u)] = h (x) +E� � A�∗h∗ (x) v
� dt 

h∗ (x)  ≤ h (x, u) = E� [� x" (t) C (t) x (t)  + u" (t) G (t) u (t) v
�  ds] + h (x)  

+ E� � A�∗h∗ (x) v
� dt 

Or 0 ≤ E� [� x" (t) C (t) x (t)  + u" (t) G (t) u (t) v
�  ds] +E� � A�∗h∗ (x) �

� dt 

Atα → 0. Thus 0 ≤ E�{x" (t) C (t) x (t) +u∗p
 (t) G (t) u∗ (t) + A�∗h∗ (x) } 

by equation (6) we have 

0 ≤ x" (t) C (t) x (t) +u∗p
 (t) G (t) u∗ (t) + A�∗h∗ (x)  

Theorem (2). (covers of the HJB equation)  

let h∗ (x) be a bounded function in C (G) � ∩ C (CL (G)), Suppouse that for all u ∈ Y where Y is the set of controlethe 

inequality 

x" (t) C (t) x (t) +u" (t) G (t) u (t) + A�h∗ (x)  ≥ 0 

then h∗ (x) ≤ h (x, u), for all u ∈ Y, moreover 

x" (t) C (t) x (t) +u∗p
 (t) G (t) u∗ (t) + A�∗h∗ (x) = 0, Then 

u∗ is an optimal controle 

Proof 

Let u be a Markov control, and let u be a Markova control then 

A�h∗(x) ≥ − [x" (t) C (t) x (t) +u" (t) G (t) u (t)] for u ∈ Y 

by equation (21)  

E� [h∗ (x))] = h (x) +E� � A�h∗ (x) "
� dt 

≥h (x) −E� � x" (t) C (t) x (t)  + u∗p  (t) G (t) u∗ (t) "
� dt 

Thus 

h (x) ≤ E� [h∗ (x)  +  � x" (t) C (t) x (t)  + u∗p  (t) G (t) u∗ (t) "
� dt] =h (x, u), then 

u∗ is an optimal controle.  

5. Application 1 [Economics Model and 

It's Optimization [Fractional 

Stochastic Differential Equation]]  

In 1928 F. R Ramsy introduced an economics model 

describing the rate of change of capital K and labor L in a 

market by a system of ordinary differential equation with P 

and C being the production and consumption rates − 

respectively the model is given by 

�m (
) 
�
  = p (t) –C (t), 

�� (
) 
�
 = a (t) L (t)                  (29) 

Where a(t) is the rate of growth Labor.  

The production, capital and labor are related by the 

Cobb−Douglas formula.  
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p (t) = A k (�) vL (�) � 

where A, α, β are some positive constant.  

in certain the dependence of P on K and L is linear these 

meanα = β = 1which will be our assumption throughout this 

section we shall also assume that the labor is constant, L (t) = 

L�; which is true for certain markets or relatively short time 

intervals of several years.  

Therefore the production rate and the capital are related by 

p (t) = H (t) k (t). [1]  

Another important assumption we make is that the 

production rate is subject to small random disturbances i.e 

p(t) = H (t) k (t) + b (k (t))dB�. therefore 

�m (
) 
�
  = H (t) k (t) + b (k (t))dB� − C (t)  

Where M (t) = − C (t)  

Which can be rewritten in the differential form as 

dk (t) = [H (t) k (t) + M (t)]dt + b (k (t))dB� 

Where B� is fractional Brownian motion b (k (t))is real 

function, characteristic of the noise.  

Assume that M (t) can be controlled 

dk (t) = [H (t) k (t) + u (k (t))M (t)]dt + b (k (t))dB� (30) 

Usually one wants to minimize the cost function let us 

choose the following cost function 

h (x, u) = E ( (x" (T) R x (T) + �  (x" (t) C (t) x (t)  +�
�u" (t) G(t) u (t)) dt)  

The operator onh∗ (x) =  (x" (T) Rx (T)) 

A�h∗(x) = [
�

�� ( (x" (T) R x (T))] (H (t) x (t) +M (t) u (t)) + 

� �?
�?�



�  ( (x" (T) R x (T))b (q) b (p) ∅� (p – q) ds.  

Since 

A� (x (t)) a (t) = [
�

�� (x (T) " R x (T))] (H (t) x (t) +M (t) u (t))  

� A�� (xB
�  (P) � Dq�(t)dtb(p)∅Nzp– q{dt�

�  = 0 

� A′′ (x (�)) � (q) � (p) ∅� (p − q) dtB
�  = � �?

�?�



�  (x (T) " R 

x (T))b (q) b (p) ∅� (p – q) dt.  

by Theorem (1)  

min {x"(t)c(t)x(t) + u"(t)G(t) u (t) + 2 R x (T) H (t) x (t) + 

2 R x (T) M (t) u (t) + � 2RB
� x (T) b (q) b (p) ∅� (p – q) dt = 

0 

by taking the derivative of two sides, one can get,  

�
��{x" (t) C (t) x (t)  + u" (t) G(t) u (t) + 2 R x (T) H (t) 

x (t) + 2 R x (T) M (t) u (t) + � 2R

� x (T) b (q) b (p) ∅� (p – 

q) dt = 0 

2 G(t) u (t) +2 R x (T) M (t) = 0 

u (t)  =  − Rx (T) M (t) 
G(t)  

Is optimal control for the linear-quadratic fractional 

Brownian motion differential equation and the optimal cost 

function is 

h (x, u) = E (x (T) " R x (T) + �  (x" (t) C (t) x (t)  +"
�

  (!� (") # (
)) 
$(
)

�
) dt)  

6. Stratonovich Stochastic Differential 

Equation 

Leta (x(t)), b (x (t)) are continuous functionaldefined on 

the metric space K, let the stochastic process x (t) satisfy the 

Stratonovich Stochastic Differential Equation 

dx (t) = ã (x (t)) dt+b (x (t)) ○dB (t)          (31) 

where 

ã (x (t)) =a (x (t)) − �
� b (x (t)) 

�� (� (
)) 
�� (
) ,     (32) 

b (x (t)) ○dB (t) = b (x (t)) dB (t) +
�
� b (x (t)) 

�� (� (
)) 
�� (
) , (33) 

and B (t) is Brownian motion. 

Let H (t) be n×n matrices, M (t) be n×k matrices, b (t) be 

n × m matrices and thecontrolu (t) be k × 1 vector, let 

a (x(t)) = H (t) x(t)+ M (t) u (t) and b (x (t)) = b (t), then (6. 

2) become 

ã (x (t)) = H (t) x(t)+ M (t) u (t) − �
� b (t) 

�� (
) 
�� (
)                                                           (34) 

And equation (30) become b (t) ○dB (t) = b (t) dB (t) +
�
� b (t) 

�� (
) 
�� (
)                                        (35) 

then from (31) and (32) the stochastic process x (t) in (28) satisfy the linear Stratonovich Stochastic Differential Equation 

dx (t) = H (t) x(t) +  M (t) u (t)  − �
�  b (t) �� (
) 

�� (
) + b (t) ○dB (t)                                        (36) 

Remark (4), ”The ITO Stratonovich Taylor Formula” 

Let the stochastic process x (t) defined as 
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x (t) = x (0) + � ã (x (t) dt

�  +� b (t) dB (t) 


�                                                       (37) 

where ã (x (t)), b (t) ○dB (t) are defined in equation (31) and equation (32) respectively, anda (x(t)), b (x (t)) are continuous 

functionaldefined on the metric space K, then x (t) satisfy the ITO Stratonovich Taylor Formula for f: R→R 

f (x (t)) =f (x (0)) + � ã (x(t)) 

�

�� (� (
)) 
�� dt+� b (t) 


�
�� (� (
)) 

�� dB (t)                                      (38) 

by applying (6. 4) and (6. 5) 0n (6. 8) to get the ITO Formula 

f (x (t)) =f (x (0)) +�  [

�  (H (t) x (t) +M (t) u (t)) 

�� (� (
)) 
�� − �

�b (t) 
�� (� (
)) 

�� (
) 
�� (� (
)) 

�� ] dt+�  [b (t) 

�

�� (� (
)) 
��  dB (t) +

�
� b (t) 

�� (� (
)) 
��

�� (
) 
�� (
) ] dt  (39) 

by taking the derivative of two sides, one can get,  

df (x (t)) = [(H (t) x (t) +M (t) u (t)) 
�� (� (
)) 

�� − �
�b (t) 

�� (
) 
�� (
) 

�� (� (
)) 
�� ] dt+ [b (t) 

�� (� (
)) 
�� dB (t) + 

�
� b (t) 

�� (� (
)) 
��

�� (
) 
�� (
) ] dt    (40) 

Remark (5)  

By definition (15) The generator A�of anStratonovich Stochastic different equation is 

(A�f) = (H (t) x (t) +M (t) u (t)) 
�� (� (
)) 

�� − �
�b (t) 

�� (
) 
�� (
) 

�� (� (
)) 
��  + 

�
�b (t) 

�� (� (
)) 
��

�� (
) 
�� (
)                       (41) 

6.1. The Martingle Problem 

If (30) is an Stratonovich Stochastic Differential Equation 

with generator A� and f∈ W� (R) then 

f (x (t)) =f (x (0)) +� A�

�  dt+� b (t) ��z�(
){

�� dB (t) 

� (42) 

6.2. Dynkin Formula for Fractional Stochastic Linear 

Quadratic Regulator Problem with Stratonovich 

Formula 

Let h∈ W� (R), C (t) be the n×n matrices and G (t) be the 

k×k matrices, Note that from (34), we obtain the following 

Stratonovich formula for the function h (x (t)) where h (x (t)) 

defined as 

h (x (t)) =x" (t) C (t) x (t) + G (t)                                     (43) 

h (x (t)) = h (x (0)) +�  [

�  (H (t) x (t) +M (t) u (t)) 

�n (� (
)) 
�� − �

�b (t) 
�� (
) 
�� (
)  

�n (� (
)) 
�� ] dt+�  [b (t) 


�
�n (� (
)) 

��  dB (t) +
�
� b (t) 

�n (� (
)) 
��

�� (
) 
�� (
) ] dt (44) 

Let T be a stopping time for the stochastic processx (t) 

such that 

E (� A�"
� h (x (t)) dt <∞, by taking the expectation of two 

sides, one can get the following Dynkin formula 

E (h (x (T))) =h (x (0)) +E [�  ["
�  (H (t) x (t) +M (t) u (t)) 

�n (� (
)) 
�� − �

�b (t) 
�� (
) 
�� (
) 

�n (� (
)) 
�� + 

�
�b (t) 

�n (� (
)) 
��

�� (
) 
�� (
) ]  

E (h (x (T))) = h (x (0)) + E [� A�"
� h (x (t)) dt] (45) 

6.3. The Fractional Stochastic Quadratic Regulator 

Optimal Problem  

Assume that the cost linear quadratic regulator function is 

h (x, u) = E (x (T) " R x (T) + �  (x" (t) C (t) x (t)  +"
�u" (t) G(t) u (t)) dt)        (46) 

where all of the coefficients C (t) be the n×n matrics, G (t) be 

the k×k, the control u (t) be k×1 vector, we assume thatC (t) 

and Rare symmetric, non negative definite and G (t) is 

symmetric positive definite and T is the final time of the 

solution x (t) where x (t) defined in (25) such that E�|T|<∞, 

the problem is to find the optimal control u∗ (t) such that 

h (x, u∗ (t))=min{h (x, u)}                (47) 

6.4. Hamilton-Jacobi-Bellman Equation for Quadratic 

Regulator Problem 

Let the optimal control u∗  (t) ∈Y where Y is the set of 

control then the generator in equation (35) become

(A�∗h) = (H (t) x (t) +M (t) u∗ (t)) 
�n (� (
)) 

�� − �
� b (t) 

�� (
) 
�� (
) 

�n (� (
)) 
��  + 

�
�b (t) 

�n (� (
)) 
��

�� (
) 
�� (
)                (48) 

Theorem (3) “HJB equation” 

Defineh∗ (x) =min{ h (x, u): u = u (t) -Markov control}                                         (49) 

Suppose that h∈ W� (R) and the optimal controlu∗exists Then 

min{x" (t) C (t) x (t) +u" (t) G (t) u (t) +A�h∗ (x) }= 0                                               (50) 

where G(t) be the k×k metrics, the control u (t) be k×1 vector, and the generator A�is given in equation (42) and 
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h∗ (x) =x (T) "R x (T)                                                                                (51) 

The minim is a chivied whenu∗is optimal. In other words 

x" (t) C (t) x (t) +u∗p
 (t) G (t) u∗ (t) +A�∗h∗ (x) = 0                                                       (52) 

Proof 

Now proceed to prove (43), let u=Tv be the first exit time of the solution x (t) by using (4) and (5)  

E� [h (x (u),u)] = E� [E� [�  (x" (t) C (t) x (t)  + u" (t) G(t)"
�  u (t)) dt + x (T) " R x (T)] 

=E� [E� [θv �  (x" (t) C (t) x (t)  + u" (t) G(t)"
�  u (t)) dt + x" (t) R x (T) / A�]  

=E� [�  (x" (t) C (t) x (t)  + u" (t) G(t)"
v  u (t)) dt 

− �  [�
� x" (t) C (t) x (t) +u" (t) G (t) u (t)] dt]  

E� [h (x, u)] = h (x, u) −E� [�  (x" (t) C (t) x (t)  + u" (t) G (t) u (t) �
� ) dt], Thus 

h (x, u) = E� [� x" (t) C (t) x (t)  + u" (t) G (t) u (t) �
�  dt] + E� [h (x, u)] (53) 

h∗ (x)  ≤ h (x, u) = E� [� x" (t) C (t) x (t)  + u" (t) G (t) u (t) �
�  ds] + E� [h (x, u)]  

by equation (37)  

E� [h (x, u)] = h (x) + E� � A�∗h∗ (x) v
� dt 

h∗ (x)  ≤ h (x, u) = E� [� x" (t) C (t) x (t) v
�  +u" (t) G (t) u (t) dt] +h (x) +E� � A�∗h∗ (x) �

� dt 

Or 0 ≤ E� [� x" (t) C (t) x (t)  + u" (t) G (t) u (t) �
�  ds] +E� � A�∗h∗ (x) �

� dt 

At u → 0. Thus 0 ≤ E�{x" (t) C (t) x (t) +u∗p
 (t) G (t) u∗ (t) + A�∗h∗ (x) } 

by (37) we have 

0 ≤ x" (t) C (t) x (t) +u∗p
 (t) G (t) u∗ (t) + A�∗h∗ (x) 

Theorem (4). (convers of the HJB_ equation)  

let h∗  (x) be a bounded function in W (�) � ∩  C (CL (G)), 

Suppose that for all u ∈ Y where Y is the set of control the 

inequality 

x" (t) C (t) x (t) +u" (t) G (t) u (t) + A�h∗ (x)  ≥ 0 

then h∗ (x) ≤ h (x, u), for all u ∈ Y, moreover 

x" (t) C (t) x (t) +u∗p
 (t) G (t) u∗ (t) + A�∗h∗ (x) = 0, Then 

u∗ is an optimal controle 

Proof 

Let u be a Markov control, and let u be a Markova control 

then 

A�h∗ (x)  ≥ −x" (t) C (t) x (t) +u" (t) G (t) u (t) for u ∈ Y 

by equation (37)  

E� [h∗ (x))] = h (x) +E� � A�h∗ (x) "
� dt 

≥ h (x) −E� � x" (t) C (t) x (t)  + u∗p  (t) G (t) u∗ (t) "
� dt 

Thus 

h (x) ≤ E� [h∗ (x)  +  � x"(t) C (t) x (t)  +"
�

u∗p(t) G(t) u∗(t) dt] =h (x, u) 

therefore 

u∗ is an optimal controle. 

7. Application 2 [Economics Model with 

Brownian Stronovich Differential 

Equation] 

In 1928 F. R Ramsy introduced an economics model 

describing the rate of change of capital K and labor L in a 

market by a system of ordinary differential equation with P 

and C being the production and consumption rates − 

respectively the model is given by 

�m (
) 
�
  = p (t) –C (t), 

�� (
) 
�
 = a (t) L (t)        (54) 

Where a(t) is the rate of growth Labor.  

The production, capital and labor are related by the 

Cobb−Douglas formula.  

p (t) = A k (t) vL (t) � 

where A, α, β  are some positive constant. in certain the 
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dependence of P on K and L is linear these meanα = β = 

1which will be our assumption throughout this section we 

shall also assume that the labor is constant, L (t) = L�; which 

is true for certain markets or relatively short time intervals of 

several years.  

Therefore the production rate and the capital are related by 

p (t) = H (t) k (t). [1]  

A nether important assumption we make is that the 

production rate is subject to small random disturbances i.e 

p(t) = H (t) k (t) + b (k (t)) ○dB (t). therefore 

�m (
) 
�
  = H (t) k (t) + b (k (t)) ○dB (t) −C (t)  

Where M(t) = − C (t)  

Which can be rewritten in the differential form as 

dk (t) = [H (t) k (t) + M (t)]dt +b (k (t)) ○dB (t) (55) 

Where B (t) is Brownian motion b (k (t)) is real function, 

characteristic of the noise, Assume that M (t) can be 

controlled then equation (55) become 

dk (t) = [H (t) k (t) + M (t) u (k (t))]dt +b (k (t)) ○dB (t) (56) 

usually one wants to minimize the cost function (38) let h∗ 

(x) = x"  (T) R x (T), and let h∗  (x (T)) ∈ D ( A� ) and 

then(A�h∗) is 

 (A�h∗) x=(H (t) x (t) +M (t) u (t)) 
�n∗ (� (")) 

�� − �
� b (k (t)) 

�� (m (
)) 
�m (
) 

�n∗ (� (")) 
��  + 

�
�b (k (t)) 

�n∗ (� (
)) 
��

�� (m (
)) 
�m (
)  

(A�h∗) = H (t) x(t) 2Rx(t) +M(t) u(t) 2Rx(t) − b(k (t)) 
�� (m (
)) 

�m (
)  R x (T) +b(k (t)) R x(T) 
�� (m (
)) 

�m (
)  

Then equation (43) becomeh∗ (x) + (A�∗h∗) =0 

x" (t) C (t) x (t) +u" (t) G (t) u (t) +H (t) x (t) 2Rx (t) + M (t) 

u (t) 2Rx (t) − b (k (t)) 
�� (m (
)) 

�m (
)  R x (T) +b (k (t)) R x (T) 

�� (m (
)) 
�m (
)  = 0 

bytaking the derivative of two sides, one can get,  

�
��  [x" (t) C (t) x (t) +u" (t) G (t) u (t) +H (t) x (t) 2Rx (T) + 

M (t) u (t) 2Rx (T) − b (k (t)) 
�� (m (
)) 

�m (
)  R x (T) +b (k (t)) R x 

(T) 
�� (m (
)) 

�m (
) ] = 0 

2u (t) G (t) + M (t) 2Rx (t) = 0 

u (t) = − # (
) !� (") 
$(
)  

is an optimal control for stratonovich stochastic linear 

quadratic differential equation and the optimal cost function 

is 

h (x, u) = E (x (T) " R x (T) + �  (x" (t) C (t) x (t)  +"
�

  (# (
) !� (")) 
$(
)

�
) dt)  

8. Fractional Stratonovich Stochastic 

Differential Equation 

Let a (x(t)), b (x (t)) are continuous functionaldefined on 

the metric space K, let the Fractional stochastic process x (t) 

satisfy the Fractional Stratonovich Stochastic Differential 

Equation 

dx (t) = ã (x (t)) dt+b (x (t)) ○dB� (t)            (57) 

where ã (x (t)) =a (x (t)) − �
� b (x (t)) 

�� (� (
)) 
�� (
) ,    (58) 

b (x (t)) ○ dB� (t) = b (x (t)) dB� (t) +
�
� b (x (t)) 

�� (� (
)) 
�� (
) , (59) 

and B� (t) Fractional is Brownian motion.  

Let H (t) be n×n matrices, M (t) be n×k matrices, b (t) be 

n × m matrices and thecontrol u (t) be k × 1 vector, let 

a (x(t)) = H(t) x(t)+ M(t) u(t) and b(x(t)) = b(t), then (34) 

become 

ã (x (t)) = H (t) x(t)+ M(t) u(t) − �
� b (t) 

�� (
) 
�� (
)            (60) 

and equation (35) become 

b (t) ○ dB� (t) = b (t) dB� (t) +
�
� b (t) 

�� (
) 
�� (
)        (61) 

then from equation (60) and equation (61) the Fractional 

stochastic process x (t) in equation (57) satisfy the Fractional 

linear Stratonovich Stochastic Differential Equation 

dx(t) = H (t) x(t) +  M (t) u (t)  − �
�  b (t) �� (
) 

��  + b (t) ○ dB�(t)  (62) 

Remark (6), ”The ITO Fractional Stratonovich Taylor 

Formula” 

Let the stochastic process x (t) defined as 

x (t) = x (0) + � ã (x (t) dt

�  +� b (t) dB� (t) 


�       (63) 

where ã (x (t)), b (t) ○ dB� (t) are defined in equation (58) 

and equation (59) respectively, and a (x(t)), b (x (t)) are 

continuous functionaldefined on the metric space K, then x 

(t) satisfy the ITO Fractional Stratonovich Taylor Formula for 

f: R→R 

f (x (t)) =f (x (0)) + 

�  (

�

�� (� (
)) 
�� ã (x(t)) dt+� �  (


�



�
�?� (� (|)) 

�?� ) � D}
|

�  (ã (x (t)) dtb (p)  

∅� (p−q) dqdp+� �  (|
�



�

�?� (� (|)) 
�?� b (q) b (p) ∅� (p−q) dpdq + 

�  (

�

�� (� (
)) 
�� b (t) dB� (t))+� �  (


�



�
�?� (� (|)) 

�?� � D}
|

�  (b (t)) dB� (t) b (p) 

∅� (p−q) dqdp                               (64) 

by applying equation (58) and equation (59) on equation (64) 
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to get the ITO Formula 

f (x (t)) =f (x (0)) +�  [

�

�� (� (
)) 
��  (H (t) x (t) +M (t) u (t)) 

− �� (� (
)) 
��

�
�b (t)  

�� (
) 
�� ] dt+� � �?� (� (|)) 

�?�



�



� � D}
|

�  [H (t) x (t) +M (t) u (t) − �
� b 

(t) 
�� (
) 

�� ] dtb (p)  

∅� (p−q) dqdp+� �  (|
�



�

�?� (� (|)) 
�?� b (q) b (p) ∅� (p−q) dpdt 

+�  [�� (� (
)) 
��



� b (t) dB� (t) +�

�b (t) 
�� (� (
)) 

��
�?� (� (
)) 

�?�
�� (
) 

�� ] dt 

+� � �?� (� (|)) 
�?�



�



� �  [D�

|
�  (b (t)) dB� (t) b (p) ∅� (p−q)  

+
�
� D} (b (t)) (D�} (b (t))] dqdqdt                   (65) 

By taking the derivative of two sides, one can get,  

df (x (t)) = [
�� (� (
)) 

��  (H (t) x (t) +M (t) u (t)) − �� (� (
)) 
��

�
� b (t) 

�� (
) 
�� (
) ] dt+ � �?� (� (|)) 

�?�



� � D}
|

�  

 [H (t) x (t) +M (t) u (t) − �
� b (t) 

�� (� (
)) 
�� ] dtb (p) ∅� (p−q) 

dqdt+ 

�  (|
�

�?� (� (|)) 
�?� b (q) b (p) ∅� (p−q) dpdt+ 

�� (� (
)) 
�� b (t) 

dB� (t) dt+
�
�b (t) 

�� (� (
)) 
��  

�?� (� (
)) 
�?�

�� (
) 
�� dt+� �?� (� (|)) 

�?�



� �  [|
� D�  (b (t)) dB� (t) b (p) ∅� 

(p−q) +
�
� D} (b (t)) (D�} (b (t))] dqdt              (66) 

Remark (7)  

by using substitution equation (66) in equation (16) one 

get that 

(A�f) =�� (� (
)) 
��  (H (t) x (t) +M (t) u (t)) − �� (� (
)) 

��
�
� b (t) 

�� (
) 
�� (
) + � �?� (� (|)) 

�?�



� � D}
|

�  

 [H (t) x (t) +M (t) u (t) − �
� b (t) 

�� (� (
)) 
�� ] dtb (p) ∅� (p−q) 

dq+ 

�  (|
�

�?� (� (|)) 
�?� b (q) b (p) ∅� (p−q) dp+ 

�
�b (t) 

�� (� (
)) 
��

�?� (� (
)) 
�?�

�� (
) 
�� +

�
� D} (b (t)) (D�} (b (t))] dq     (67) 

Let h∈ W� (R), C (t) be the n×n matrices and G (t) be the 

k×k matrices, Note that from equation (33) and equation (34) 

we obtain the following Stratonovich formula for the 

function h (x (t)) where h (x (t)) defined as 

h (x (t)) =x" (t) C (t) x (t) + G (t)                  (68) 

h (x (t)) =h (x (0)) +�  [

�  (2C (t) x (t) H (t) x (t) +2C (t) x (t) 

M (t) u (t)) dt+� � 2|
�



�  C (t) b (q) b (p) ∅� (p−q) dqdt+� 2B

� C 

(t) x (t) b (t) dB�                        (69) 

Then equation (35) become 

(A�h) = 2C (t) x (t) H (t) x (t) +2C (t) x (t) M (t) u (t) +� 2|
� C 

(t) b (q) b (p) ∅� (p−q) dq                             (70) 

8.1. The Fractional Stratonovich Martingle Problem 

If (62) is an ITO Fractional Stratonovich Stochastic 

Differential Equation withgenerator A� and f∈ W� (R) then 

f (x (t)) =f (x (0)) +� A�

� f dt+�  [�� (� (
)) 

��



� b (t) dB� (t) +�
�b (t) 

�� (� (
)) 
��

�?� (� (
)) 
�?�

�� (
) 
�� ] dt+ 

� � �?� (� (|)) 
�?�



�



� �  [D�

|
�  (b (t)) dB� (t) b (p) ∅� (p−q) +  

�
� D} (b (t)) (D�} (b (t))] dqdqdt              (71) 

8.2. Dynkin Formula for the Fractional Linear 

Stratonovich Quadratic Regulator Problem 

Let h∈ W� (R), C (t) be the n×n matrices and G (t) be the 

k×k matrices, Note that from equation (33) and equation (34) 

we obtain the following Stratonovich formula for the 

function h (x (t)) where h (x (t)) defined as 

h (x (t)) =x" (t) C (t) x (t) + G (t)                 (72) 

h (x (t)) =h (x (0)) +�  [

�  (2C (t) x (t) H (t) x (t) +2C (t) x (t) 

M (t) u (t)] dt+� � 2|
�



�  C (t) b (q) b (p) ∅� (p−q) dqdt+� 2


� C 

(t) x (t) b (t) dB�                                (73) 

Let T be a stopping time for the stochastic processx (t) 

such that 

E (� A�"
� h (x (t)) dt <∞, by taking the expectation of two 

sides, one can get the following Dynkin formula 

E (h (x (T))) =h (x (0)) +E [�  ["
� 2C (t) x (t) H (t) x (t) +2C (t) 

x (t) M (t) u (t)  

+� 2|
� C (t) b (q) b (p) ∅� (p−q)] dqdt 

E (h (x (T))) = h (x (0)) + E [� A�"
� h (x (t)) dt]      (74) 

8.3. The Fractional Stochastic Quadratic Regulator 

Optimal Problem with Stratonovich 

We assume that the cost linear quadratic regulator function 

is 

h (x, u) = E (x (T) " R x (T) + �  (x" (t) C (t) x (t)  +"
�u" (t) G(t) u (t)) dt)                       (75) 

where all of the coefficients C (t) be the n×n matrics, G (t) be 

the k×k, the control u (t) be k×1 vector, we assume thatC (t) 

and Rare symmetric, non negative definite and G (t) is 

symmetric positive definite and T is the final time of the 

solution x (t) where x (t) defined in(12. 7) such that E� |T| 
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<∞, the problem is to find the optimal control u∗ (t) such that 

h (x, u∗ (t))=min{h (x, u)}                    (76) 

9. Hamilton-Jacobi-Bellman Equation 

for Fractional Stochastic Quadratic 

Regulator Problem 

Let the optimal control u∗  (t) ∈Y where Y is the set of 

control then the generator in equation (16) become 

(A�∗h) = 2C (t) x (t) H (t) x (t) +2C (t) x (t) M (t) u∗ (t) 

+� 2|
� C (t) b (q) b (p) ∅� (p−q) dq             (77) 

Theorem (5) “HJB equation “ 

Defineh∗ (x) =min{ h (x, u): u = u (t) -Markov control} (78) 

Suppose thath ∈ W�  (R) and the optimal controlu∗ exists 

Then 

min{x" (t) C (t) x (t) +u" (t) G (t) u (t) +A�h∗ (x) }= 0   (79) 

where G(t) be the k×k metrics, the control u (t) be k×1 

vector, and the generator A�is given by equation (77) and 

h∗ (x) =x (T) "R x (T)                     (80) 

The minim is a chivied whenu∗is optimal. In other words 

x" (t) C (t) x (t) +u∗p
 (t) G (t) u∗ (t) +A�∗h∗ (x) = 0  (81) 

Proof 

Now proceed to prove equation (81), let u=Tv be the first 

exit time of the solution x (t) by using (4) and equation (5)  

E� [h (x (α),u)] = E� [E� [�  (x" (t) C (t) x (t)  + u" (t) G(t)"
�  

u (t)) dt + x (T) " R x (T)] 
=E� [E� [wv �  (x" (t) C (t) x (t)  + u" (t) G(t)"

�  u (t)) dt + x" 

(t) R x (T) / A�]  

=E� [�  (x" (t) C (t) x (t)  + u" (t) G(t)"
�  u (t)) dt 

− �  [�
� x" (t) C (t) x (t) +u" (t) G (t) u (t)] dt]  

E�  [h ( x , u)] = h  (x , u) −E� [�  (x" (t) C (t) x (t)  +�
�u" (t) G (t) u (t) ) dt], Thus 

h (x, u) = E� [� x" (t) C (t) x (t)  + u" (t) G (t) u (t) �
�  dt] + 

E� [h (x, u)]                                (82) 

h∗ (x)  ≤ h (x, u) = 

E� [� x" (t) C (t) x (t)  + u" (t) G (t) u (t) �
�  ds] + E� [h (x, u)] 

By equation (74)  

E� [h (x, u)] = h (x) + E� � A�∗h∗ (x) v
� dt 

h∗ (x)  ≤ h (x, u) = 

E� [� x" (t) C (t) x (t)  + u" (t) G (t) u (t) �
�  ds] + h (x) 

+E� � A�∗h∗ (x) �
� dt 

Or 0 ≤ E� [� x" (t) C (t) x (t)  + u" (t) G (t) u (t) �
�  ds] 

+E� � A�∗h∗ (x) �
� dt 

At u → 0. Thus 0 ≤ E�{x" (t) C (t) x (t) +u∗p
 (t) G (t) u∗ 

(t) + A�∗h∗ (x) } 

by equation (7) we have 

0 ≤ x" (t) C (t) x (t) +u∗p
 (t) G (t) u∗ (t) + A�∗h∗ (x)  

Theorem (6). (convers of the HJB_ equation)  

let h∗  (x) be a bounded function in W (�) � ∩  C (CL (G)), 

Suppose that for all u ∈ Y where Y is the set of control the 

inequality 

x" (t) C (t) x (t) +u" (t) G (t) u (t) + A�h∗ (x)  ≥ 0 

Then h∗ (x) ≤ h (x, u), for all u ∈ Y, moreover 

x" (t) C (t) x (t) +u∗p
 (t) G (t) u∗ (t) + A�∗h∗ (x) = 0, Then 

u∗ is an optimal controle 

Proof 

Let u be a Markov control, and let u bea Markova control 

then 

A�h∗ (x)  ≥ −x" (t) C (t) x (t) +u" (t) G (t) u (t) for u ∈ Y 

By equation (74)  

E� [h∗ (x))] = h (x) +E� � A�h∗ (x) "
� dt 

≥ h (x) −E� � x" (t) C (t) x (t)  + u∗p  (t) G (t) u∗ (t) "
� dt 

Thus 

h (x) ≤ E� [h∗ (x)  + � x"(t) C(t) x(t)  +"
�

u∗p(t) G(t) u∗(t) dt] =h (x, u)  

therefore 

u∗ is an optimal controle.  

10. Application 3 [Economics Model with 

Fractional Stratonovich Differential 

Equation] 

In 1928 F. R Ramsy introduced an economics model 

describing the rate of change of capital K and labor L in a 

market by a system of ordinary differential equation with P 

and C being the production and consumption rates - 

respectively the model is given by 

�m (
) 
�
  = p (t) –C (t), 

�� (
) 
�
 = a (t) L (t)          (83) 

Where a(t) is the rate of growth Labor.  

The production, capital and labor are related by the 

Cobb−Douglas formula.  

p (t) = A k (t) �L (t) � 
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where A, u, β are some positive constant.  

in certain the dependence of P on K and L is linear these 

mean u = β = 1which will be our assumption throughout this 

section we shall also assume that the labor is constant, L (t) = 

L�; which is true for certain markets or relatively short time 

intervals of several years.  

Therefore the production rate and the capital are related by 

p (t) = H (t) k (t), [1]  

A nether important assumption we make is that the 

production rate is subject to small random disturbances i.ep 

(t) = H (t) k (t) + b (k (t)) ○dB (t). therefore 

�m (
) 
�
  = H (t) k (t) + b (k (t)) ○dB� (t) −C (t)  

Where M(t) = − C (t)  

Which can be rewritten in the differential form as: - 

dk (t) = [H (t) k (t) + M (t)]dt +b (k (t)) ○dB� (t)   (84) 

Where B� (t) is Fractional Brownian motion b (k (t)) is 

real function, characteristic of the noise, Assume that M (t) 

can be controlled the equation (84) become 

dk (t) = [H (t) k (t) + M (t) u (k (t))]dt +b (k (t)) ○dB� (t)  (85) 

usually one wants to minimize the cost function (75) let g (x 

(T)) =x"  (T) R x (T), and let h∗  (x) ∈D (A� ) and from 

definition (15) then (16) become 

(A�h∗) x= 2Rx (T) H (t) x (t) +2Rx (T) M (t) u (t) +� 2|
� Rb 

(q) b (p) ∅� (p−q) dq                            (86) 

Then (81) become 

h∗ (x) + (A�∗h∗) =0                           (87) 

x" (t) C (t) x (t) +u" (t) G (t) u (t) +2Rx (T) H (t) x (t) +2Rx 

(T) M (t) u (t) +� 2|
� Rb (q) b (p) ∅� (p−q) dq = 0 

by taking the derivative of two sides, one can get,  

�
��  [x" (t) C (t) x (t) +u" (t) G (t) u (t) +2Rx (T) H (t) x (t) 

+2Rx (T) M (t) u (t) +� 2|
� Rb (q) b (p) ∅� (p−q) dq] = 0 

2G (t) u (t) +2Rx (T) M (t) = 0 

u (t) = − !� (") # (
) 
$(
)  

Is optimal control for the linear-quadratic fractional 

Brownian motion differential equation and the optimal cost 

function is 

h (x, u) = E (x (T) " R x (T) + �  (x" (t) C (t) x (t)  +"
�

  (!� (") # (
)) 
$(
)

�
) dt)  
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