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Abstract: Mathematical models to describe in vivo and in vitro immunological response to infection in humans by HIV-1 

have been of major concern due to the rich variety of parameters affecting its dynamics. In this paper, HIV-1 in vivo dynamics 

is studied to predict and describe its evolutions in presence of ARVs using delay differential equations. The delay is used to 

account for the latent period of time that elapsed between HIV – CD4+ T cell binding (infection) and production of infectious 

virus from this host cell. The model uses four variables: healthy CD4+T-cells (T), infected CD4+T-cells (T*), infectious virus 

(VI) and noninfectious virus (VN). Of importance is effect of time delay and drug efficacy on stability of disease free and 

endemic equilibrium points. Analytical results showed that DFE is stable for all � > 0. On the other hand, there is a critical 

value of delay �� > 0, such that for all � > ��, the EEP is stable but unstable for � < ��. The critical value of delay �� is the 

bifurcation value where the HIV-1 in vivo dynamics undergoes a Hopf-bifurcation. This stability in both equilibria is achieved 

only if the drug efficacy 0 ≤ � ≤ 1 is above a threshold value of �
. Numerical simulations show that this stability is achieved 

at the drug efficacy of �
 = 0.59 and time delay of �� = 0.65 days. This ratifies the fact that if CD4+T cells remain inactive for 

long periods of time � > �� the HIV-1 viral materials will not be reproduced, and the immune system together with treatment 

will have enough time to clear the viral materials in the blood and thus the EEP is maintain. 
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1. Introduction

Understanding transmission characteristic of any 

infectious diseases in a community, leads to better 

approaches to its management and therefore reducing the 

negative impacts on time. HIV is currently threatening the 

future generation and immense research on the understanding 

of its dynamics is ongoing. The mathematical point of view 

is inclined to understanding the evolution at cellular level 

through the use of mathematical models. 

The mathematical models seek to describe the evolution 

dynamics which help identify the drug targets, their optimal 

doses and modes of administration. [4]. 

The most virulent and most common HIV strain is HIV-1 

which is under study. After exposure, the viral materials find 

its way to the CD4
+
 T cells and gets entry into the cell where 

it gets both intracellular immunity and a mechanism for its 

replication. The infected cells are the same cells serving as a 

defense mechanism against pathogens. HIV-1 infection 

therefore disintegrates the immune system giving opportunity 

to other diseases. 

HIV virus possesses a reverse transcriptase enzyme 

making it vulnerable to mutation. The mutants may be 

resistant to therapy and also invisible to the body defense 

mechanism. This has prolonged the discovery of an effective 

wholesome treatment regimen that completely solves the 

pandemic. 

HIV-1 Infection and its Stages 

The stages of HIV infection from exposure to replication 

of new HIV viral materials undergoes 5 distinct phases 

namely: Binding, reverse transcription, integration, 
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transcription and assembly. These stages are aided by the 

following receptors and enzymes; CD4, reverse transcriptase, 

integrase, polymerase and protease respectively. The 

transition from one stage to the other is characterized by the 

presence of the respective enzymes and a chemical reaction 

which is not instantaneous. Notable time delay is evident 

between stage three and stage four where the HIV DNA will 

remain integrated in the host cell until the cell receives a 

signal to be active. In this stage, the HIV DNA will use the 

host polymerase enzyme to create copies from the HIV 

mRNA as blueprint. The newly assembled viral materials are 

ready for budding and once out of the cell, the cycle begins 

again. If the host cell remains dormant, the HIV DNA will 

remain residing in the host nucleus for as long as the cell is 

inactive and thus no new HIV materials are produced. This 

implies that once a cell is infected, it will remain infected for 

its lifetime and new viruses are produced whenever the cell is 

activated [2]. 

Mathematical modeling of this scenario involves 

categorizing the stages into distinct compartments and 

representing the transition rates from one compartment to the 

other using differential equations. [4]. In this paper, host 

CD4
+
T cells is put into two compartments; uninfected or 

naive cells referred to as susceptible (�) and infected cells 

referred to as Infectives (�∗). The viral population is also 

categorized into two compartments namely Infectious (��) 

and non-infectious viral materials (��) . The two viral 

products are created during the transcription stage, where 

mRNA is coded to make copies of new infectious viral 

materials. If this stage is interrupted, poorly coded 

noninfectious HIV viral materials will be produced. 

2. Literature Review 

The use of differential equations to model biological 

systems dates to Malthus [11]. These models give rise to 

better understanding of phenomenal dynamics but limited 

due to a large number of parameters used and assumptions 

made. The effects of treatment on the dynamics of HIV have 

been studied by [5]. The various scenarios including the 

effects of AZT on HIV virus dynamics was considered. The 

most common assumption usually made is instantaneous 

effect to a cause, which in this paper is addressed by 

introducing a delay to gather for intracellular latency periods 

and other biological processes that take time between action 

and reaction. 

Culshaw [7] studied a delay-differential equation model of 

HIV infection of CD4
+ 

T-cells using three compartments: the 

healthy CD4
+
 T-cells infected CD4

+
 T-cells and the free virus. 

The study examines the effects of time delay on the stability 

of endemically infected equilibrium. They found out that the 

infected steady state was stable for all � ≥ 0. These results 

concur with the findings that ARV’s reduce the amount of 

HIV type 1 in the blood plasma of infected patients to 

extremely low undetectable levels (see for instance [6] and 

[12]). However, a small percentage of infected patients 

experience viral rebound [13]. This could be associated with 

periodicity in viral load due to the time delay during 

interaction [14]. 

[10] studied a delay-differential equation model of HIV 

infection of CD4
+
T-cells using a three compartment model: 

healthy CD4
+
T-cells, infected CD4

+
T-cells and the free virus. 

The study provided the restriction on the number of viral 

particles per infected cell in order for infection to be 

sustained. Under the restriction, the system has a positive 

equilibrium called the infected steady state. The study also 

provided the conditions on parameter values for the infected 

steady state to be stable together with the condition on delay 

for the stability of the steady states. 

Similar studies by [6] were able to predict an infected 

steady state, despite the choice of parameters which is highly 

individualized. An alternate strategy for the theoretical 

estimation of health and progression to AIDS in at-risk 

individuals was proposed, but the approach also has the 

problem that parameter estimation is highly individual. [7]. It 

does, however, address the problem of using viral load as a 

stand-in for patient health, and takes into account the 

particular type of decline in CD4
+
 T-cells that is specific to 

AIDS patients. 

In addition, the effect of time delay on the robustness of 

biological oscillators with respect to varying model 

parameters showed that time delay destabilize a stable steady 

state fixed point through Hopf Bifurcations implying 

oscillating behaviour [15]. This destabilization by Hopf 

Bifurcation creates a stable limit cycle. In turn, unstable 

fixed point cannot be stabilized by time delay. He found that 

time delays stabilize oscillations by enlarging the parameter 

space which correspond to periodic solutions. 

Studies on CTL Response to HTLV-1 infection at cellular 

levels of the immune system versus viruses showed the 

existence of Multiple Stable Periodic Oscillations. [14]. This 

study was an extension of the work, on the investigation of 

the effect of time lag on temporal dynamics of their model 

using rigorous bifurcation analysis and numerical simulations. 

This showed that time delays can destabilize an otherwise 

stable positive steady state and lead to a phenomenon of 

stability switch.[9, 15]. As the delay increase, the positive 

steady state switches between being stable and unstable for a 

finite number of times that is; stability switches occur. 

Coexistence of multiple stable periodic solutions which differ 

in amplitude and period with their own basins of attraction, 

implying that the interaction of the immune system and the 

virus is that initial dosages of the viral infection may lead to 

quantitatively and qualitatively different outcomes. 

The interaction between HIV-1, the human immune system 

and chemotherapy is a highly dynamic and multifactor 

process and as a result it is essential to base therapeutic 

interventions and preventions on more solid theoretical 

grounds. Kirschner and Webb [16] studied a model for 

treatment strategy in the chemotherapy of AIDS. The study 

looked at the interaction of HIV-1 and the immune system 

using a system of ODEs with the effect of chemotherapy 

modeled using a scalar function which was assumed to be on 

during treatment and off during off treatment. The results of 

the study were: One, periodicity of treatment during a given 

day does not reveal a significant difference in the overall 

effect, quantitatively or qualitatively. This means that 
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whether one receives a 500mg dose once a day or 100mg 

dose five times a day, the overall result is the same. This is 

because the treatment serves only to perturb the system of 

Aids into steady state. Two, chemotherapy should begin only 

after the second decline of CD4
+
T-cells. 

But according to Rotich [8], the control of HIV/AIDS 

depends not only on chemotherapy but also on the amount of 

time lag. In their analysis, they found that the higher the 

delay, the lesser the threshold drug efficacy required to lower 

reproductive ratio to less than one. Thus with a delay of 25 

days, the minimum drug efficacy required was 79% of which 

any more than this will unnecessarily expose the user to risks 

of toxicity 

Previous studies have considered different aspects on 

models of HIV-1 and examined local dynamics about the 

fixed points. Elaiw [3] studied a global dynamics of an HIV 

infection model with two classes of target cells and 

distributed delays. The study investigated the global 

dynamics of an HIV-1 infection with CD4
+ 

T-cells and 

macrophages. The incidence rate is modeled by a saturation 

functional response. Two types of distributed intracellular 

delays describing the time needed for infection of target cells 

and virus replication was been considered. Lyapunov 

functional was constructed to establish the global stability of 

infected and uninfected steady states of the model. In this 

study numerical investigation is not done nor the specific 

effect of time delay investigated. 

In this paper, the effect of time delay on stability of 

CD4
+
T-cells infection and production of HIV-1 infectious 

virus in presence of treatment was studied. The model is 

formulated using ODEs and the analysis of the effect of 

chemotherapy and time delay on stability of the system is 

considered and numerical solutions used to validate 

theoretical results. 

3. Model Formulation 

The mathematical model under study is formulated based 

on compartmental analysis of the rates of transitions between 

the compartments using differential equations. The equations 

are founded by the following assumptions. 

3.1. Model Assumptions, Variables and Parameters 

The analysis and results in this paper are obtained from the 

analysis of a model formulated using the following 

assumptions. 

A1. The model used in this study assumes that there are 

only four interacting cell populations namely; 

Susceptible CD4
+ 

T cells  (�) , Infected CD4+T 

cells (�∗), Infectious HIV materials (��) and Non-

infectious HI materials (��). 

A2. The model assumes that the action of cell mediated 

immunity (CMI) response and humoral immune 

response are not significant to the intracellular viral 

dynamics. 

A3. The model does not distinguish the existence and 

infection by different viral strains. It is only 

concerned with drug sensitive HIV-1 viral strain. 

A4. Only ��4� � cells are infected and upon infection, 

cells become latent for some fixed time �  then 

during cell division, both infectious and 

noninfectious viral materials bud out. 

A5. Infection of ��4� � cells is by mass action principle. 

A6. Antiretroviral drugs acts in two stages, inhibition 

Reverse transcriptase and inhibition of Protease 

actions. 

The model will be formulated using the above assumptions 

together with the following parameters that will be used in 

the model and their descriptions.  :  Production rate of 

infectious and non-infectious free virus from infected CD4+ T 

cells, ": Production rate of uninfected CD4+ T cells (T), #: 
Infection rate of uninfected CD4+ T cells (T), $%: & =�,  �∗, �� ,  �� Death rates of uninfected CD4+ T cells, Infected 

CD4+ T cells, infectious virus and noninfectious virus, (�: Efficiency of reverse transcriptase inhibition, (): Efficiency of protease inhibition, *: Rate of recovery of 

infected T cells due to treatment and �: Time delay from 

infection of the cell to the time of production of new 

infectious viruses. 

3.2. Modeling the Effects of Therapy on HIV Infection 

As expected, drugs have a negative impact on the 

production of pathogens. In this case, the use of HAART has 

two effects, not directly on the pathogen, but on the enzymes 

that facilitate its replication. As discussed in section 1, under 

the HIV life cycle, HIV-1 requires two enzymes for its 

successful multiplication. One is the Reverse Transcriptase 

(RT) enzyme necessary to change viral RNA to viral DNA. It 

is at this point that reverse transcriptase inhibitor (RTI) works 

by inhibiting the process. If this inhibition is successful, the 

viral RNA materials will be cleared and the host cell is said 

to have recovered. Second is the Protease (P) necessary in 

assembling the viral protein so that new copies of HIV are 

formed. It is at this point that protease inhibitor (PI) works. If 

this process is successfully inhibited, noninfectious viruses 

will be produced. HAART drugs therefore have negative 

effects on the production rate of infectious HIV viral 

materials. The cell population dynamics is hereby studied 

with respect to the drug efficacy and the length of time delay. 

3.3. Model Equations and Description 

The model variables, parameters and the assumptions 

above will lead to the following delay differential equations. 

�+(,) = " − (1 − (�)#�(,)��(, − �) − $��(,) + *(��∗(,)                                              (1) 

�+∗(,) = (1 − (�)#�(,)��(, − �) − $)�∗(,) − *(��∗(,) (2) 

��+(,) = (1 − (�)(1 − ()) �∗(, − �) − $/��(,)     (3) 

��+ (,) = (1 − (�)() �∗(, − �) − $0��(,)         (4) 

Define equation (1 – 4) as system (1), thus system (1) 

describes the dynamics of HIV-1 life cycle and its 
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interaction with treatment. Equation (1) represents the 

population of naive CD4+ T cells. In absence of the disease, 

a constant recruitment rate of " and natural death rate of $� 

affects their numbers. Equation (2) models infected CD4+ T 

cells. Infection is said to have occurred if the viral material 

successfully gets entry into the CD4+ T cell. Infected cells 

are recruited as follows: Probability of sufficient contact 

enough to cause attachment/binding #  multiplied by the 

proportion of viruses that elude RTI treatment (1 − (�) 

times the number of infective viruses produced � units of 

time ago ��(, − �) multiplied by the number of naïve cells. 

These cells die at a rate of $) and some recover at a rate of *(). Equation (3) represents infective viral materials which 

is the proportion that eludes the action of both RTI and PI (1 − (�)(1 − ()) multiplied by the burst size   for every 

previously infected cell  �∗(, − �) . The last equation (4) 

represents the proportion of poorly coded viral materials 

due to inhibition of PI by ()  but eluded RTI (1 − (�) 

multiplied by the burst size   per every previously infected 

cell �∗(, − �). The classes of virus will be cleared at the 

rate of $/ and $0 respectively. 

 

3.4. Model Preliminary Analysis 

Since the model represents the dynamics of cell 

populations, it is required that the solutions are positive, 

bounded and feasible. This is confirmed from the following 

analysis. 

3.4.1. Positivity 

Define a positive quadrant space � = ��(1−�, 02;  ℝ0) 

equipped with the norm 5Φ5 = "(7Φ(,)8∈1:;,<2 as a Banach 

space of continuous functions Φ(,) mapping the interval 

]0,[ τ−  into ℝ0 with the topology of uniform convergence. 

Let the positive initial conditions of system (1) at time , = ,< 

to be �(,<) = �< ≥ 0, �∗(,<) = �<∗ ≥ 0, ��(,<) = ��< ≥0, ��(,<) = ��< ≥ 0, ,< ∈ 1−�, 02. In this case, we define a 

positive quadrant space of solutions as, ℝ�< = {(�, �∗, �� , ��)|� ≥ 0, �∗ ≥ 0, �� ≥ 0, �� ≥ 0}  and ℝ� = {{�, �∗, �� , ��}|� > 0, �∗ > 0, �� > 0, �� > 0}. By the 

fundamental theory of differential equations, it is shown that 

there exists a unique solution �(,), �∗(,), ��(,), ��(,)  of 

system (1) with initial data in ℝ� as follows. 

From system (1), by integration we have 

�(,) = �(0)@: A BCD�(�:ED)FGD(H:;)IJHKL + A 1*(��∗(M) + "2@: A BCD�(�:ED)FGN(H:;)IJHKO PM8
< ,                (5) 

�∗(,) = �∗(,)@: A 1CQ�RED2JHKL + A 1(1 − (�)#�S(M − �)�(M)2@: A 1CQ�RED2JHKO PM,8
<                  (6) 

��(,) = �S(0)@: A CTJHKL + A 1(1 − (�)(1 − ()) �∗(M − �)28
< @: A CTJHKO PM                             (7) 

and 

��(,) = ��(0)@: A CUJHKL + A 1(1 − (�)() �∗(M − �)28
< @: A CUJHKO PM                                             (8) 

Positivity immediately follows from the above integral 

forms and (5) to (8). 

3.4.2. Boundedness 

For boundedness, we define V(,) = �(,) + �∗(,) +��(,) + �:EQEQ ��(,)  and define W = min($%), & = 1,2, 3, 4 

then  V+(,) ≤ " − WV(,) . Which implies that V(,)  is 

bounded, and so are �(,), �∗(,), ��(,) and �:EQEQ ��(,). 

3.5. Equilibrium Points and Their Stability 

We analyze system (3.6) by first finding the equilibrium 

points of the system and then study their stability. There are 

usually two important equilibrium points to consider in 

mathematical epidemiology. These equilibriums points are 

the Disease Free Equilibrium Point (DFE) and the Endemic 

Equilibrium Point (EEP). 

3.5.1. Disease Free Equilibrium (DFE) 

The disease free equilibrium point is the set of point(s) of 

system (1) obtained in absence of the virus. For our system, 

the disease free equilibrium (DFE) is the set of points (�<, �∗<, ��<, ��<) = ( ]
CD , 0, 0, 0) , corresponding to the 

maximal level of CD4+ T -cells. 

 

(i). Stability of DFE 

Local asymptotic stability of nonlinear system about 

equilibrium points is governed by the stability matrix 

obtained from a linearized system about the equilibrium 

points. This stability is determined by the nature of 

eigenvalues of the linearization matrix. It is stable if all the 

eigenvalues are negative and unstable if at least one of the 

eigenvalues is positive. The linearization matrix ^ of system 

(1) about the DFE is given by; 

^ =
_
à−$� *(� −(b�#�<@:c; 00 −($) + *(�) (b�#�<@:c; 00 (b�(b) @:c; −$/ 00 (b�() @:c; 0 −$0d

ef     (9) 

where (b� and (b)  are the complements of The characteristic 

roots of the equation |^ − gh| = 0  are all negative if the 

following condition is satisfied. 

(�:ED)Q(�:EQ)Fi]jkQlm
CDCT(CQ�RED) < 1 ≔ o<@:)c;            (10) 

For stability of DFE, we require that  o<@:)c; < 1. The 
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parameter defined in equation (10) is called basic 

reproductive ratio. It defines the ratio of new recruits into the 

infected CD4+ T cells class versus clearance from the same 

class. This parameter determines whether the infection will 

grow to an epidemic or decay and become endemic.

(ii). Effects of Delay on the Stability of DFE

Our definition of reproductive ratio in equation (10) 

indicates that the parameter is a function of drug efficacy of 

both PI and RTI and delay  � . Fixing the value of drug 

efficacy (� � () � (  (constant) in equation (10), 

condition of stability o<@:)c; � 1 implies that;

� � �
)c log�o<�                           

Since delay is always positive  � � 0
system is guaranteed if the value of o<@:)c;

Figure 3.1. Effects of Delay and R0 on Stability of DFE

(iii). Effects of Drug Efficacy on the Stability of DFE

The graph of equation (10) is an exponential decay 

crossing the vertical axis at o< when g� �
all time , � 0, the first quadrant of the graph

represents the region when g � 0. This condition is 

even at values of o< � 1. This implies that 

not only on delay but also on the value of drug efficacy

The graph in Figure 3.2 shows that there is a critical value of 

drug efficacy 0 � (
 � 1 such  o<@:)c; �
s� � � - �

which transforms system (1) into; 

st ��,� � -
st )�,� � �1

st /�,� � �1 - (���1 - ()� s)�, - ��
st 0�,� � �1 - (��() s)�, - �� -

Denote equations (14 – 17) as system (2). 

solution of the form s�,� � s<@:c8 and linearize

about the equilibrium �s�, s), s/, s0� �
to obtain, 

sut �,� � vsu �,�                           
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Our definition of reproductive ratio in equation (10) 

indicates that the parameter is a function of drug efficacy of 

Fixing the value of drug 

(constant) in equation (10), the 

implies that; 

�                           (11) 

, stability of the c; is less than unity. 

 

on Stability of DFE. 

Effects of Drug Efficacy on the Stability of DFE 

The graph of equation (10) is an exponential decay 0. Since � � 0 for 

graph in Figure 3.2 

condition is achieved 

. This implies that stability depends 

value of drug efficacy (. 

there is a critical value of � 1. At this point, 

DFE is stable and the disease w

assertion is confirmed by the following 

limEDw�EQw�
�1 - (��)�1 -

$�$/�$)
The graph of reproductive ratio versus drug efficacy is 

illustrated in the figure below with a reference line of  o<@:)c; � 1. 

Figure 3.2. Reproductive ratio 

3.5.2. Endemic Equilibrium Point (EEP)

This is the critical point of system (1) 

presence of the disease, when

equilibrium x n ��j , ��j, ��j , �
(1) yields 

� n y ]
CDzL , ]�zL:��

CQzL , CD�CQ�RED�
CQ��:E

3.5.3. Stability of EEP 

Like for the DFE, system (1) is stable if all the eigenvalues 

of linearization matrix about EEP are negative, and otherwise 

unstable. Analysis of stability is simplified

the equilibrium point to the origin. This is facilitated by the 

transformation 

�j , s) � �� - ��j , s/ � �� - ��j, s0 � �� - ��j                                                 

-$�s� - �1 - (��#1s��,���j . s/�, - ���j2 . *(�s
� - (��#1s��,���j . s/�, - ���j2 - �$) . *(��s)�,
� - $/s/�,�     (16) 

� - $0s0�,�       (17) 

) as system (2). Assume a 

and linearize system (2) � � ��j , ��j, ��j , ��j� 

                          (18) 

where �
_
à-�$� . {��j� *(�{��j -|0 }@:c;

0 P@:c;
Bs��,�, s)�,�, s/�,�, s0�,�I~
�$) . *(��, } � �1 - (���1 - (
 

1 in Vivo Dynamics in the Presence of ARVs  

DFE is stable and the disease will be eliminated. This 

following limit. 

� - ()�# "@:)c;
� ) . *(�� � 0 

The graph of reproductive ratio versus drug efficacy is 

illustrated in the figure below with a reference line of 

 

Reproductive ratio o< versus -g eigenvalue. 

Endemic Equilibrium Point (EEP) 

of system (1) which exists in 

, when o< � 1. Define the endemic ��j�. Computation from system 

��zL:��
� ED�F , ��:ED�CQi]�zL:��

CQCUzL �   (12) 

Like for the DFE, system (1) is stable if all the eigenvalues 

of linearization matrix about EEP are negative, and otherwise 

unstable. Analysis of stability is simplified by transforming 

the equilibrium point to the origin. This is facilitated by the 

                                                (13) 

s)                                       (14) 

,��                                      (15) 

-{�j@:c; 0{�j@:c; 0-$/ 0
c; 0 -$0d

ef su �

� �I~
, { � �1 - (��#, | �� ()� , P � �1 - (��()  
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(i). Stability of EEP in Absence of Delay (� = �) 

In order to determine stability, we find the condition for 

which all the eigenvalues of the linearization matrix in 

system (18) are negative. The characteristic equation of the 

linearization matrix is 

(g + $0)(g/ + g){� + g{) + {/) = 0           (19) 

where; {� = | + $/ + $� + CD�(zL:�)
CQ , {) = |($) + 2$/) +

$�$/ + CD(CQ�CT)�(zL:�)
CQ  and {/ = $�$/|(o< − 1) . Clearly, 

one of the factors g0 = −$0  in (19) gives a negative 

eigenvalue, and using Routh - Hurwitz condition, the other 

three eigenvalues are negative if the following condition is 

satisfied. For a polynomial of degree three, we require that, {� > 0,  {�{) − {/ > 0  and {/ > 0 . In this case all the 

conditions for stability are satisfied as required, hence we 

conclude that; 

In absence of delay  � = 0 and for o< > 1 , the EEP is 

stable. This equilibrium creates people living with 

HIV/AIDS. 

(ii). Stability of EEP with Delay 

In presence of delay, the eigenvalues of matrix (19) are 

obtained from the following transcendental equation 

g/ + |�g) + |)g + |/g@:)c; + |0@:)c; + |� = 0     (20) 

where: |� = {�, |) = {) + |$/, |/ = −|$/, |0 =
−|/ �$� + CD�(zL:�)

CQ + (�:ED)F]
CDzL � and |� = {/ − |0. 

The characteristics equation (20) compares to the one 

analyzed by Rebecca and Shigui, (2000) and we use the same 

approach to locate the roots of this equation analytically. Let g = M(�) + &�(�)  be the eigenvalue of the characteristic 

equation (20). Since EEP of system (2) is stable in absence of 

delay, it implies that o@(g) = M(0) < 0. As � increases from 

zero, there is a value �< > 0 such that the EEP is stable for � = 10, �<) and unstable for � > �<. At this threshold value, 

EEP loses stability and undergo Hopf bifurcation. The 

bifurcation value of �< > 0 occurs when g = M(�<) + &�(�<) 

is purely imaginary, that is M(�<) = 0. Define this eigenvalue 

as, g = ±&�< . Substituting this in to equation (20) and 

writing the exponential in terms of trigonometric ratios, we 

obtain the following equations, 

h�: �</ − |)�< = |/ cos 2�<� − |0 sin 2�<�     (21) 

o@: |��<) − |� = |/ sin 2�<� + |0 cos 2�<�      (22) 

Squaring each side of equations (21) and (22) and adding 

yields 

�<� + (|�) − 2|))�<0 + (|)) − 2|�|�)�<) + |�) − |/) − |0) = 0                                                 (23) 

Let �� = |�) − 2|),  �) = |)) − 2|�|�, �/ = |�) − |/) − |0) 

and let � = �<) . Substituting these in to Equation (23) 

reduces to; 

�/ + ���) + �)� + �/ = 0                     (24) 

The following two propositions are made about stability 

and critical delay. 

��: If in equation (24), �� > 0, ���) − �/ > 0 and �/ ≥ 0, 

then all the eigenvalues of equation (23) have negative real 

parts for all delay � ≥ 0  and therefore the infected steady 

state � for system (1) is stable for all � ≥ 0. 

The eigenvalue of equation (20) with M(�<) = 0  and �(�<) = �<, is obtained from equations (21) and (22) as; 

�� = �
�L arccos ��T�LU�(�D�U:�Q�T)�LQ:�U���UQ��TQ�LQ � + )��

�L  � = 0, 1, 2, …                                                   (25) 

with the Hopf-Bifurcation critical value �< as; 

�< = �
�L arccos ��T�LU�(�D�U:�Q�T)�LQ:�U���UQ��TQ�LQ �           (26) 

�): Also if in equation (24) either �/ < 0 or �/ ≥ 0 and �) < 0 , then �  is stable when � < �<  and unstable when � > �< where the bifurcation value �< is defined in equation 

(26). 

4. Numerical Simulations and Results 

The analytic solutions in section three are illustrated by 

numerical simulation of system (1) using a list of parameters 

and their estimated values given in Table 4.1. Much of these 

parameters were adopted from [6]. 

In the simulation of the system (1), the following initial 

values in each compartment at the onset of infection are 

assumed to apply, B�(0), �∗(0), ��(0), ��(0)I = (1200, 0, 0.01, 0.01) . Values of other parameters are 

provided in Table 4.1 below. 

Table 4.1. Table of Simulation Parameters and their Values. 

No Parameter description Symbol Value 

1 Production rate of uninfected CD4+T cells (T) " 10 

2 Death rate of uninfected CD4+T cells (T) $� 0.02 

3 Infection rate of uninfected CD4+T cells (T) # 0.00024 

4 Death rate of Infected CD4+T cells (T*) $) 0.26 

5 Burst size of free virus from infected CD4+ T cells. V 13 

6 Clearance rate of free infectious virus from the body $/ 2.4 

7 Clearance rate of free noninfectious virus from the body $0 2.4 
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No Parameter description Symbol Value 

8 Efficiency of reverse transcriptase inhibition (� 0 ≤ (� ≤ 1 

9 Efficiency of protease inhibition () 0 ≤ () ≤ 1 

10 Rate of recovery of infected T cells due to treatment. * 0.53 

11 Time delay from infection to production of new viruses � To be determined 

 

Numerical and graphical representations of simulated 

results using MATLAB dde23 function are provided to 

validate the analytic theoretical solutions presented in the 

previous sections. The parameters given in Table 4.1 above 

are used in the simulation. Graphs presented begin with 

population dynamics of CD4
+ 

T cells and viral cells without 

treatment and with different levels of treatment beginning 

with 20%, 50% and the minimum threshold of 79% drug 

efficacy. Also, stability threshold values of drug efficacy and 

delay are simulated. 

4.1. Cell Population Dynamics 

The population dynamics of the CD4
+ 

T cells and the viral 

cells are illustrated in Figure 4.1 and 4.2. The population of 

CD4
+ 

T cells is expected to fall while that of HIV is expected 

to increase due to its multiplicative burst size. The use of 

drugs is expected to reverse the scenario, depending on the 

efficacy of the drug. The HIV viral cells are elimination 

target. This is achieved through two ways, namely; use of 

highly effective drugs and use of time delay from infection 

(viral entry into the cell) to budding of infectious virus. If 

this time is prolonged, the drop in CD4
+ 

T cell population 

will not be depleted within a short time. 

From Figure 4.1 (a), immediately after infection, the viral 

levels shoot to over "V ≈ 130  times the level of CD4+ T 

cells, where N is the burst size. Since the CD4+ T cells die as 

a result, this trend will be reversed so that within in 40 days, 

the victim will succumb to death due to very low levels of 

CD4+ T cells of below200��:/. In the second figure 4.1 (b), 

a treatment level of 20% efficacy improves the situation but 

because of continued presence of CD4+ T cells, the HIV viral 

cells will also be maintained at about 400��:/ while CD4+ 

T cells remain stable at about 200��:/. 

 
Source: Author’s Simulation Results. 

Figure 4.1.(a). Population Dynamics of T cells and Viral cells in absence of 

Treatment and no Immune Response.  

 

Source: Author’s Simulation Results. 

Figure 4.1.(b). Population Dynamics of T cells and Viral cells with 20% 

Treatment Efficacy and in no Immune Response. 

If drug efficacy is increased to 50%, the CD4
+ 

T cells 

levels increase to 400/mm
3
 while viral cells drop to below 

70/mm
3 

as shown in Figure 4.2 (a) below. Here, the victim 

will live with HIV and remain sick ling due to opportunistic 

diseases. 

Increasing drug efficacy to above minimum threshold 

value of 79%, the CD4
+ 

T cells rise to above 1000/mm
3
. The 

original CD4
+ 

T cell level of 1200/mm
3
 cannot be restored 

due to permanent infection of cells, that is, once a cell is 

infected, the viral material will remain integrated in the cell 

nucleus forever. However, the viral materials remain at very 

low undetectable levels in the blood stream as seen in Figure 

4.2 (b) below. 

 

Source: Author’s Simulation. 

Figure 4.2.(a). Cell Population Dynamics at 50% Level of Drug Efficacy.  
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Source: Author’s Simulation. 

Figure 4.2.(b). Cell Population Dynamics at 79% Level of Drug Efficacy. 

4.2. Drug Efficacy and Time Delay Stability Threshold 

Values 

The desired threshold drug efficacy level is determined as 

the minimum required to reduce the reproductive ratio to less 

than one. Using the parameters in Table 4.1 above, this 

threshold value was found to be 59%. This threshold value is 

easily achieved when the delay is long. The minimum delay 

for stability of the system is 0.65 days or equivalent to about 

16 hours. This is the desired time enough for the drug to be 

effective before the viral materials are replicated. The Figure 

below illustrates this. For values of delay less than 16 hours, 

the system is unstable. The value of delay � = 0.65 is the 

Hopf bifurcation value, where the system changes stability. 

The threshold value of delay and the corresponding threshold 

drug efficacy is illustrated in Figure 4.3 (a) and Figure 4.3 (b) 

below. 

 

Source: Author’s Simulation. 

Figure 4.3.(a). Threshold Value of Delay that Guarantee Stability of the 

System. 

 

Source: Author’s Simulation. 

Figure 4.3.(b). Threshold Value of Drug Efficacy Corresponding to 

Minimum Delay of 0.65days.  

5. Summary of the Main Findings and 

Recommendations 

The main objective of the study was to formulate an HIV-1 

in vivo dynamics using delay differential equations and then 

study the effects of delay and efficacy on the stabilities of 

EEP and DFE. The effects of these two are analyzed 

analytical and numerical using MATLAB and parameter 

values from literature. 

The disease free equilibrium in the absence of delay is 

affected by efficacy of both drugs used in our model: 

protease inhibitor and reverse transcriptase inhibitor since 

reproduction number which determine stability depend on 

their efficacy. The study reveals that a higher efficacy of RTI 

and a moderate efficacy of PI could easily lower 

reproduction number below one if other factors like death 

rates are kept constant. Numerical simulations using data 

from literature in the absent of delay puts PI and RTI 

efficacies at 0.59 and 0.59 respectively for reproduction 

number to go below one as earlier as possible. Any values of 

efficiency above this value for RTI may result in no change 

in the dynamics of DFE, and any value of PI below this value 

may not be as good in reducing reproduction number. 

The delay on the onset of infectious virus production as an 

effect on DFE in that its stability depends on it. The study 

reveals that there is a critical value �< of delay for which the 

DFE is stable. The value of this delay depends on � and � as 

define in the analysis of DFE in section three. 

In fact for � > 0 the DFE is stable. Numerical solution of 

the model with delay using MATLAB DDE23 solver. 

The characteristics equations of the linearization matrix of 

our model at EEP has both delay and recovery rate. The 

solution of this equation determines the stability of the EEP, 

therefore this two parameters affects EEP stability. The fact 

that this stability is affected by recovery rates implies that 

chemotherapy affect stability of EEP. The variable R� 

defined in the analysis of EEP is a function of drug efficacy 
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of both PI and RTI and the signs of the eigen-values is 

determined using the Routh Hurwitz condition for stability. 

In presence of delay, the EEP stability changes with the 

change in the value of the delay. The analysis reveals that 

there is a critical value of delay � > �� = 0.65 days. This 

threshold value acts as a stability switch of the Hopf type as 

revealed by the transversality analysis similar to that in [10]. 

5.1. Discussions and Conclusions 

The efficacy threshold on the two drugs in the study is 

established numerically to be 0.59 in order for the stability of 

the DFE. Biologically, stability of DFE means being free of 

infection after a small dose of the virus that comes into the 

body is cleared by chemotherapy. The finding agrees with the 

current practice in which prophylaxis is administered on 

suspecting exposure to HIV-1 virus within a small duration 

after exposure. However the efficacy of the drugs is still a 

moving target for researchers. These findings form a stronger 

theoretical foundation and therefore provide a basis for 

clinical trials. The current duration allowable after exposure 

is 24 hours or less (see for instance CDC and WHO website). 

This is the period that HIV-1 is thought to require before it 

can multiply to a number able to overcome the body immune 

system. The finding of this research suggest the time as 

15hours on the onset of exposure, which is again within the 

allowable time for the administrations of prophylaxis. The 

model therefore can be used in the predictions of hiv-1 in 

vivo dynamics. In conjunctions with clinical trial, the model 

can be used in determinations of HIV-1 infection parameters 

like viral death rates, CD4
+
T-cell turnover rates, viral 

clearance rate to mention a few. 

Biologically, the stability of endemic equilibrium implies 

the co-existence of hiv-1 and the CD4
+
T-cells in the plasma 

fluids of a person without the virus affecting the functioning 

of the CD4
+
T-cells. This implies that the person will have 

HIV-1 and don’t become sick due to this presence, very good 

news for the human populations because of the negative 

impact that HIV-1 sickness has on economic, social and 

political development. The study reveals that drug efficacy 

and time delays play an important role in the stability of EEP. 

That can also be seen in the analysis of EEP that drug 

potency play a role in lowering Reproduction number and 

therefore it is not only efficacy of a drug but it potency 

matters. The model finding again agrees with the current 

practice where post-exposure prophylaxis is administered to 

perturb HIV-1 progression in vivo. 

The facts that delay has an effect on stability of EEP 

provide a strong theoretical foundation of the new practice of 

ARV treatment called STI (structural treatment interference). 

This treatment strategy involves a deliberate stopping of 

ARV treatment for sometime then recovering the treatment 

again. The strategy has many advantages for instance 

reduction in cost of treatment and toxicity to mention a few. 

The duration (delay) between treatments is what is important 

for effective ARV treatment of persons infected by HIV-1. 

5.2. Suggestions for Further Research 

This study has not exhausted all about HIV-1 in vivo 

dynamics. The effect of an individual’s immune response is 

not captured. The carrying capacity of CD4
+
T-cells and their 

proliferations is also a possible factor in another research on 

in vivo dynamics of HIV-1. 

Clinical trials on efficacies of ARV treatment can now be 

carried around the threshold suggest by this study. Studies on 

ARV using STI regime can now be narrowed to the value of 

delays for stabilities of EEP. 

Emphasis is hereby given that the above model results 

contains numerical simulation but still theoretical and it is 

recommended, that infectious disease models, which are to 

be used in control programmes, must have a realistic 

validation, which can only come from a comparison of their 

solutions and predictions with actual data collected from the 

field. This should, of course, apply to all disease control 

models. 
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