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Abstract: The recent developments by considering a rather unexpected application of the theory of Independent component 

analysis (ICA) found in outlier detection, data clustering  and multivariate data visualization etc . Accurate identification of 

outliers plays an important role in statistical analysis. If classical statistical models are blindly applied to data containing 

outliers, the results can be misleading at best. In addition, outliers themselves are often the special points of interest in many 

practical situations and their identification is the main purpose of the investigation. This paper takes an attempt  a new and 

novel method for multivariate outlier detection using ICA and compares  with different outlier detection techniques in the 

literature. 
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1. Introduction 

Independent component analysis (ICA) is a Statistical and 

computational technique in which the goal is to find a linear 

projection of the data that the source signals or components 

are statistically independent or as independent as possible. It 

is probably fair to say that in the last 10 years, ICA has 

become a standard tool in machine learning and signal 

processing [11]. Among its numerous applications, ICA is the 

most natural tool for BSS [8] in instantaneous linear mixtures 

when the source signals are assumed to be independent. The 

plausibility of the statistical independence assumption in a 

wide variety of fields, including telecommunications, finance 

and biomedical engineering, helps explain the arousing 

interest in this research area witnessed over the last two 

decades. The above numerious applications of ICA suffer 

from the curse of outlier and dimensionality, hence, outlier 

identification is very tedious such large dimension. Even 

though there are existing methodologies attending to high 

dimensionality and outlier detection problems, most of them 

are computationally intensive and time consuming. The 

detection of outliers is an important problem in model 

building, inference and multivariate data analysis. Indeed, the 

presence of outliers, even in small quantity, can lead to 

biased estimation of the parameters, to a misspecification of 

the model and to inappropriate predictions.  

Many methods for outlier detection try to detect 

outliers .Outlier detection is carried out through the use of 

Principal Components Analysis (PCA) [9]. PCA is a dimension 

reduction procedure where some of the variables are highly 

correlated with each other. If this is to be used in a 

contaminated data, the nature of the estimated principal 

components may behave differently, implemented the principal 

components as a multivariate outlier detection method [1]. The 

basis for multivariate outlier detection is the Mahalanobis 

distance. The standard method for multivariate outlier 

detection is robust estimation of the parameters in the 

Mahalanobis distance and the comparison with a critical value 

of the Chi-Square distribution [21]. In this article, we will 

begin a general description of outlier detection, briefly 

describing the most popular methods of multivariate outlier 

detection such as PCA, ICA and proposed ICA on PCA. In this 

article, we take an attempt to visualize multivariate data using 

independent component analysis as well as to detect outlier 

and comparing their performance among other outlier 

detection method that found best in the literature. We briefly 

discuss univariate and multivariate outlier in section II. Section 

III and section IV we describe the methods of multivariate 

outlier detection PCA and ICA. In section V and VI we discuss 

classical and quantile measures of kurtosis estimators and 

proposed flowchart to detect outlier. We then apply quantile 

kurtosis estimator in sorting independents components to 

detect outlier. The final section gives conclusion. 
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2. Outlier 

In statistics, an outlier refers to a case that deviates to a 

notable extent from the typical range or pattern of 

observations exhibited for other cases. Outliers themselves 

are often the special points of interest in many practical 

Situations and their identification is the main purpose of the 

investigation. An exact definition of an outlier often depends 

on hidden assumptions regarding the data structure and the 

applied detection method. Yet, some definitions are regarded 

general enough to cope with various types of data and 

methods. Hawkins [5] defines an outlier as an observation 

that deviates so much from other observations as to arouse 

suspicion that it was generated by a different mechanism. 

Barnet and Lewis [3] indicate that an outlying observation, or 

outlier, is one that appears to deviate markedly from other 

members of the sample in which it occurs, similarly, Johnson 

[10] defines an outlier as an observation in a data set which 

appears to be inconsistent with the remainder of that set of 

data. 

A univariate outlier is a data point that consists of an 

extreme value on one variable. A multivariate outlier is a 

combination of unusual scores on at least two variables. Both 

types of outliers can influence the outcome of statistical 

analyses. Outliers exist for four reasons. Incorrect data entry 

can cause data to contain extreme cases. A second reason for 

outliers can be failure to indicate codes for missing values in 

a dataset. Another possibility is that the case did not come 

from the intended sample. And finally, the distribution of the 

sample for specific variables may have a more extreme 

distribution than normal. In many parametric statistics, 

univariate and multivariate outliers must be removed from 

the dataset. When looking for univariate outliers for 

continuous variables, standardized values (z scores) can be 

used. For continuous variables, univariate outliers can be 

considered standardized cases that are outside the absolute 

value of 3.29. However, caution must be taken with 

extremely large sample sizes, as outliers are expected in these 

datasets. Once univariate outliers have been removed from a 

dataset, multivariate outliers can be assessed for and removed. 

Multivariate outliers can be identified with the use of 

Mahalanobis distance, which is the distance of a data point 

from the calculated centroid of the other cases where the 

centroid is calculated as the intersection of the mean of the 

variables being assessed. Each point is recognized as an X, Y 

combination and multivariate outliers lie a given distance 

from the other cases. Some common multivariate techniques 

such as PCA, and recently developed ICA describe the next 

section. 

3. Principal Component Analysis 

Principal component analysis or PCA is one of the key 

tools in multivariate statistical analysis and is often used to 

reduce the dimension of data for easy exploration. As a 

multivariate analysis technique for dimension reduction, it 

aims to compress the data without losing much information 

the original data contains. The process of how PCA is done 

here is based on Johnson, R. [10]. It is concerned with 

explaining the variance-covariance structure of a set of 

variables through a few new variables. All principal 

components are particular linear combinations of the p 

random variables with three important properties which are: 

i. The principal components are uncorrelated. 

ii. The first principal component has the highest variance; 

the second principal component has the second highest 

variance, and so on. 

iii. The total variation in all the principal components 

combined is equal to the total variation in the original 

variables. 

Mathematically, 

Let X and Y are � × � matrices related by a linear 

transformation P. X is the original recorded data set and Y is 

a re-representation of that data set. 

PX =  Y                                   (1) 
Equation 1 represents a change of basis and thus can have 

many interpretations. 

1. P is a matrix that transforms X into Y. 

2. Geometrically, P is a rotation and a stretch which again 

transforms X into Y. 

3. The rows of P, {
�, . . . , 
�},  are a set of new basis 

vectors for expressing the columns of X. Where 

PX = � p�⋮p�
� (x� x� … x�)  

Y = � p�x� ⋯ p�x�⋮ ⋱ ⋮p�x� ⋯ p�x�
�  

We can note the form of each column of Y. The new 

variable Y is linear combination of original variables X. 

Y� = � p�x�⋮p�x�
�  

The first PC is the linear combination of the variables that 

explains the greatest amount of the total variation in x. The 

second PC is the linear combination of the variables that 

explains the next largest amount of variation and is 

uncorrelated with the first PC, and so on. If the first few (say, 

three) components contain most of the total variation (say, 

85%), then the original variables can be replaced by these 

components without too much loss of variance information. 

The principal components are computed from an eigen 

analysis of the covariance matrix or the correlation matrix, 

but results from the covariance matrix and the correlation 

matrix are usually not the same. If the variables are measured 

on scales with widely different ranges or if the units of 

measurement are not commensurate, it is better to perform 

PCA on the correlation matrix. The observations that are 

outliers with respect to the first few principal components or 

the major principal components usually correspond to 
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outliers on one or more of the original variables. On the other 

hand, the last few principal components or the minor 

principal components represent linear functions of the 

original variables with the minimal variance. The minor 

principal components are sensitive to the observations that 

are inconsistent with the correlation structure of the data, but 

are not outliers with respect to the original variables. 

4. Independent Component Analysis 

Independent component analysis (ICA) is a statistical 

method used to discover hidden factors (sources or features) 

from a set of measurements or observed data such that the 

sources are maximally independent. The ICA algorithms are 

able to separate the sources according to the distribution of 

the data. Independent component analysis (ICA) [8], and 

projection pursuit (PP) [11], are closely related techniques, 

which try to look for interesting directions (projections) in 

the data. To achieve separation of mixed data into 

independent components ICA exploits the independence 

between the sources in order to achieve their separation from 

mixed data. In order to formally define ICA model, consider  = (!� !� ⋯ !")  as a random vector, representing n 

sensor signals that are observable, and # = ($� $� ⋯ $%) 

as a random vector of latent mutually independent sources, 

where 
 ≤ �. The ICA model is then given by 

X =  AS  

Where A is a � × 
 matrix with full column rank, called 

the mixing matrix. A is assumed to be fixed, but unknown. 

ICA consists of estimating both the matrices A and S, when 

only X is known, i.e., finding a matrix W such that # =  ) . 
Here, S is obtained by ICA based on the following two main 

assumptions on each source signals si in S: i) si is statistically 

independent of sj in S (* ≠ ,), ii) si is non-Gaussian random 

variable. 

One can recover the original sources up to a scaling and 

permutation provided that at most one of the underlying 

sources is Gaussian and the rest are non-Gaussian. Note that 

ideally )-�  should be equal to A. However, )-�  differs 

from A for practical cases due to limitations in ICA 

techniques, computational round off errors, and noise and 

outliers in mixed data. ICA methods find a transformation so 

that components extracted from mixtures are as independent 

as possible by maximizing or minimizing some objective 

function (e.g., kurtosis, entropy, negentropy, mutual 

information). In general, the input for ICA process is the 

mixed data X, while the output is the estimated source 

signals S. Data pre-processing' step is carried out to whiten or 

sphere the mixed data X. This helps in determining the 

number of independent components and can be carried out by 

classical PCA. After pre-processing steps an `optimization 

algorithm' based on the selected objective function, e.g. 

maximum likelihood estimation is employed to estimate the 

independent sources S from the pre-processed mixed data. 

Note that, in general, the order of signal sources are lost; thus, 

estimated S may not be identically ordered. 

5. Kurtosis 

The standardized fourth central moment is often regarded 

as the definition of kurtosis and has a history of usage for 

testing normality, multivariate normality and sorting 

independent components. Pearson [19] first introduced 

kurtosis as a measure of how flat the top of a symmetric 

distribution is when compared to a normal distribution of the 

same variance. This conventional measure can be formally 

defined as the standardized fourth population moment about 

the mean 

KR� = 0(1-μ)3
(0(1-μ)4)4 = μ353  

Where E is the expectation operator, µ is the mean, 67 is 

the fourth moment about the mean, and σ is the standard 

deviation. The normal distribution has a kurtosis of 3, so that 

the reference normal distribution has a kurtosis of zero. The 

centered conventional coefficients of kurtosis is 

KR� = � ∑(19-1:)4
(∑(19-1:)4)4 − 3  

Where   bar is the sample is mean and n is the number of 

observations. Some uses and improvement of classical 

kurtosis measures refer to the literature [14,16,17]. It is well 

known that the sample mean is very sensitive to outliers. 

Since the conventional measures of kurtosis are essentially 

based on sample averages, they are also sensitive to outliers. 

Moreover, the impact of outliers is greatly amplified in the 

conventional measures of kurtosis due to the fact that they 

are raised to the third and fourth powers. The conventional 

measure is also not possible if only a second moment doesn’t 

exist of a distribution. For these reasons, we take an attempt 

to use quantile based kurtosis in ICA for the first time. 

5.1. Quantile Kurtosis 

Moors [18] proposed a quantile kurtosis alternative to KR1. 

The quantity of moors kurtosis is 

KR� = (0=-0>)?(0@-0A)
(0B-04)   

Where Ei is the i
th 

 octile : that is, Ei = F
-1

(i/8). Moors 

justified this estimator on the ground that the two terms, (E7 

− E5) and (E3 − E1), are large (small) if relatively little 

(much) probability mass is concentrated in the neighborhood 

of E6 and E2, corresponding to large (small) dispersion 

around µ ± σ. As we do for, KR1 we center the Moors 

coefficient of kurtosis at the value for the standard normal 

distribution. It is easy to calculate that E1 = −E7 = −1.15, E2 

= −E6 = −0.68, E3 = −E5 = −0.32 and E4 = 0 for N (0,1) 

and therefore the Moors coefficient of kurtosis is 1.23. Hence, 

the centered coefficient is given by: 

KR� = (0=-0>)?(0@-0A)
(0B-04) − 1.23  

One advantage of the quantile measures of kurtosis is that 

they are defined for a wider class of distributions than the 
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conventional measure of kurtosis since they do not depend on 

the existence of the 4th moment; their resistance to outliers or 

robustness toward contaminating distributions are also 

discussed in the literature [12,13]. 

5.2. Role of Kurtosis in ICA 

In principal component analysis, PC’s are ordered by eigen 

value where first eigen value is first pc, second eigen value 

second pc and so on. But in independent component analysis, 

these components have no order [8]. For practical reasons to 

define a criterion for sorting these components to our interest. 

One measurement which can match our interest very well, is 

kurtosis. Kurtosis is a classical measure of non-Gaussianity, 

and is computationally and theoretically relatively simple. 

From purely Gaussian distributed data, no unique 

independent components can be extracted; therefore, ICA 

should only be applied to data sets where we can find 

components that have a non-Gaussian distribution. Examples 

of super-Gaussian distributions (highly positive kurtosis) are 

speech signals, because these are predominantly close to zero. 

However, for outlier identification super Gaussian 

distributions (positive kurtosis) are more interesting. 

Negative kurtosis can indicate a cluster structure or at least a 

uniformly distributed factor. Thus the components with the 

most negative kurtosis can give us the most relevant 

information. Since most negative kurtosis indicates cluster 

structure and highest positive kurtosis identify multivariate 

outlier [15, 20, 22].  

6. Proposed Method 

Given this emerging interest in kurtosis in independent 

component analysis, one should ask the following question: 

how useful are the measures of kurtosis used in previous 

empirical studies? Practically all of the previous work 

concerning kurtosis in ICA has used the conventional 

measures of kurtosis [15,20,22]. It is well known that the 

sample mean is very sensitive to outliers. To overcome the 

problem of conventional measures of kurtosis we use 

quantile based kurtosis. It is well known that quantile based 

kurtosis is robust against outlier [12,13] and take an attempt 

to use quantile based kurtosis to ordering independent 

components for multivariate outlier detection first time in 

ICA. The proposed method flowchart given below  

 

Fig. 1. By applying PCA for outlier detection we have to assume that the 

most interesting information is directly related to the highest variance in the 

data. Minimize the dependence using ICA then define a criterion for sorting 

these components to our interest using robust measure of Kurtosis. 

7. Application 

7.1. Real Data (Kola Data, Data Source: R) 

 

Fig. 2. On the left, by applying PCA to the total data, the result is worse than the result of ICA. However, by using PCA for preprocessing before applying ICA, 

a more strongly outlier can be extracted. On the left, by applying PCA to the total data, the graph shows two pc’s wrongly identified more than two outlier but 

in IC’s, last two IC’s and ICA on PC’s gives strongly identified only two observation 33 and 56 as a outlier when IC’s ordering based on quantile measures of 

kurtosis. 
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Fig. 3. On the left, by applying symbol plot (25%, 50%, 75% and adjusted quantile) in PCA to the total data, first two PCA symbol plot found that at least 20 

observations are outlining the adjusted quantile where in ICA and ICA on PCA only two observations are outlier that also identified in fig-2. 

The Kola Data were collected in the Kola Project (1993-

1998, Geological Surveys of Finland (GTK) and Norway 

(NGU) and Central Kola Expedition (CKE), Russia). More 

than 600 samples in five different layers were analyzed; this 

dataset contains the humus layer. A data frame with 617 

observations and 44 variables. Source of data: R (“mvoutlier” 

package). In humus data first seven PC’s can explain 79% 

variability of the total variation. So we plot first PC’s that 

chosen according to eigen value and comparing their 

performance IC’s. Since IC’s has no order. For this reason we 

used kurtosis measure to ordering independent components 

where highest positive kurtosis considered IC1, second 

largest positive kurtoses consider IC2 and so on.  

7.2. Simulation Study 

In this paper we conducted a simulation study and generate 

20 variables each 150 observations where each variable has 

50 observation come from normal distribution with mean 100 

and standard deviation (s.d) 10, 50 from normal with mean 

110, s.d 5 and 50 from normal distribution with mean 112, 

s.d 4. According to our method, at first we apply PCA to the 

simulated data where 20 variables each 150 observations. We 

found that first 6 PC’s can explain 82% variability of the total 

variation, and then we apply ICA to the simulated data and 

ICA applying to PCA scores. The following table gives the 

ordering procedure of 20 independent components (IC’s). 

From table highest kurtosis value 27.34 found sixteen 

number components treated as IC1 and second largest 

kurtosis value extracted in 9-th components treated as IC2 

and so on. Since most negative kurtosis indicates cluster 

structure and highest positive kurtosis identify multivariate 

outlier. 

Tab. 1. Ordering IC’s by using quantile measure of Kurtosis (Simulated data). 

IC’s Com-1 Com-2 Com-3 Com-4 Com-5 Com-6 Com-7 Com-8 Com-9 Com-10 

KR2 14.55 16.24 7.70 7.05 12.34 9.22 9.75 9.72 18.57 13.65 

IC’s Com-11 Com-12 Com-13 Com-14 Com-15 Com-16 Com-17 Com-18 Com-19 Com-20 

KR2 8.44 6.06 13.09 10.22 13.45 27.34 17.32 7.55 8.32 17.94 

IC’s Ordering      IC1   IC2  

 

Fig. 4. On the left, by applying PCA to the simulated data and plotting first two PC’s found that PC’s couldn’t detect outlier where in IC’s and PCA on ICA 

detect three outliers from simulated data. 
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8. Conclusion 

In this paper we have illustrated three techniques to detect 

multivariate outlier detection PCA, ICA and ICA on PCA. To 

overcome ordering independent components we used 

quantile measure of kurtosis, we then apply our measure in 

sorting independent components in Humus data and 

simulated data, and try to examine the capacity of PCA, ICA 

and ICA on PCA for finding outliers through normal dot plot 

and symbol plot. In both data sets, our proposed quantile 

based kurtosis (Moors) ordering ICA on PCA a new 

visualization technique correctly diagnosis outlier than PCA. 

Although in our study, we considered classical method of 

outlier detection. In future we have to use some robust based 

outlier detection procedure and comparing their performance 

ICA based techniques. 
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