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Abstract: Seasonal Autoregressive Integrated Moving Averages (SARIMA) model has been applied in most research work to 

forecast seasonal univariate data. Less has been done on Vector Autoregressive (VAR) process. In this research project, seasonal 

univariate time series data has been used to estimate a VAR model for a reshaped seasonal univariate time series for forecasting. 

This was done by modeling a reshaped seasonal univariate time series data using VAR. The quarterly data is reshaped to vector 

form and analyzed to vector form and analyzed using VAR for the year 1959 and 1997 to fit the model and the prediction for the 

year 1998 is used to evaluate the prediction performance. The performance measures used include; mean square error (MSE), 

root mean square error (RMSE), mean percentage error (MPE), mean absolute percentage error (MAPE) and Theil’s U statistic. 

Forecasting future values from the fitted models in both SARIMA and VAR using Box Jenkins procedures, (Box and Jenkins; 

1976) was done. The results showed that both models are appropriate in forecasting but VAR is more appropriate model than 

SARIMA model since its predictive performance was shown to be the best. Other data sets were also used for analysis and 

comparison purpose. 

Keywords: Vector Autoregressive Process, Seasonal Autoregressive Integrated Moving Average Process,  

Vector Error Correction Model, Akaike Information Criterion 

 

1. Introduction 

1.1. Background of the Study 

The goal of a time series analysis is to obtain the 

parameters of the underlying physical process that governs 

the observed time series and used it to forecast future values. 

The modelling and predictions is meant to determine the best 

model for forecasting. This is useful to many areas of study 

such as meteorological forecasting, electricity consumption, 

demographic forecasting and Economic growth. In these 

forecasts, both short term and long term seasonal trends can 

be forecasted. To model these variations for forecasting, 

usually a seasonal ARIMA model of Box and Jenkins (1976) 

is used. ARIMA time series is a popular models used for 

studying weather and market data 

Seasonal ARIMA is a model of ARIMA class suitable for 

forecasting seasonal data variations and trends. SARIMA model 

exhibit some disadvantages that; constructing it is expensive. 

Also, adapting it for use requires expertise and consumes a lot of 

time. Most of the univariate data are seasonal. Hence, fitting the 

model that gives the best performance prediction helps a lot in 

future predictions and analysis. This will be of great importance 

to economic and planning purposes. For seasonal univariate time 

series data, SARIMA model is usually used to do forecasting, 

with its advantages and limitations. In this project SARIMA 

model is reshaped and forecast using Vector Autoregressive 

(VAR) model. 

This Project applied VAR in the reshaped seasonal 

univariate time series data, test and distinguish between the 

two models in terms of its predictive performance results. 

The results show that although both models are appropriate 

in forecasting, VAR model gives the best performance 

compared to the SARIMA model. 

1.2. Literature Review 

Sims (1980) introduced VAR as a technique that could be 

used by microeconomics to characterize the mutual dynamic 

behavior of collection of variables without requiring strong 

restrictions of the kind needed to identify underlying structural 

parameters. Sims developed a VAR model with p lags, VAR (p) 
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for expressing a set of variables as a weighted linear 

combination of each variable's past values and the past values 

of the other variables in the set. However, multivariate data 

analysis in the context of VAR has evolved as standard 

instrument in econometrics. 

The VAR (p) models are more flexible than AR models. Mei, 

Liu and Jing (2011) constructed a multi-factor dynamic system 

VAR forecast model of GDP by using six important economic 

indicators. This included the fiscal revenue, social retail goods, 

secondary industry output, and investment in fixed assets, 

employment rate and tertiary industry output which based on data 

from the shanghai region in china. In their analysis, the model 

showed high significance and the results show that the relative 

error forecast is quite small. The authors therefore conclude that 

the VAR model has a considerable practical value. 

Clarida and Friedman (1984) use a VAR model to forecast 

the United States short-term interest rates during April 1979 to 

February 1983. A constant-coefficient, linear VAR model is 

generated to estimate the pre-October 1979 probability 

structure of the quarterly data , which takes six important 

united states macroeconomic factors into consideration. The 

result shows that short-term interest rates in the United States 

have been too high since October 1979. Based on their VAR 

model, the prediction results of conditional and unconditional 

forecast are both lower than the actual United States 

short-term interest rates during this period. 

The VAR model extends univariate autoregressive models to 

dynamic multivariate and provides better forecasts than 

univariate time series models (Zivot and Wang, 2006). VAR 

models are used to describe and forecast multivariate time series 

for stationary time series. For non-stationary time series a vector 

error correction term is added to form a vector error correction 

model (VECM) and it is necessary to test for the existence of a 

stationary linear combination of the non-stationary terms (co 

integration). It must be transformed into vector error correction 

model (VECM) by taking the first difference. 

Autoregressive integrated moving-average (ARIMA) 

models are simple time series models that can be used to fit 

and forecast univariate data such as fisheries landings. With 

ARIMA models, data are assumed to be the output of a 

stochastic process, generated by unknown causes, from which 

future values can be predicted as a linear combination of past 

observations and estimates of current and past random shocks 

to the system (box et al., 2008). 

Xiao Han Cai, (2008), uses both VAR model and SARIMA 

model to analyze time series data of air pollution co in 

California south coast area. Their results showed that VAR 

model is a better model to forecast multiple variables data sets 

though not easy to find the order to fit an accurate VAR model. 

On the other hand, SARIMA model presents how the current 

month air pollutant concentrations depend upon the previous 

month’s air pollutant concentrations. 

1.3. Statement of the Problem 

Modeling a seasonal univariate data, usually a SARIMA 

model is applied. This is because of the seasonal variations 

exhibited. This seasonal variation could either be re-shaped 

into vector form, making it a multivariate time series then 

forecasted using VAR 

VAR has been seen as a more advanced most successful, 

flexible and easy to use model for forecasting (Zivot and 

Wang, 2006). This calls for a research on this to examine if 

VAR can be a better tool to use in the re-shaped time series 

than the SARIMA model for forecasting a seasonal univariate 

time series. 

2. Methodology 

In this study we will first examine the appropriateness of 

VAR model in forecasting a reshaped seasonal univariate time 

series by predicting one step ahead vector observation. Then 

compare the forecast with those obtained with univariate 

SARIMA model. 

2.1. Vector Autoregressive Process 

In order to build a VAR model, (box and Jenkins; 1976) 

steps can be followed. This includes model identification, 

estimation of constants, diagnostic check and finally 

forecasting. Conditional heteroscedasticity and outliers of the 

residual series is also checked. The existence of co integration 

is used to check the presence of any common trends. Error 

Correction Model (ECM) can be developed in case of co 

integration. This improves the forecasting of long term. 

2.1.1. Model Specification and Identification 

Just like any other univariate time series, the first step in 

building a VAR (p) model involves model identification. This 

helps in identifying the order of the appropriate model. The 

most common information criterion used to identify the model 

include Akaike information criterion (AIC) (box and Jenkins; 

1976), Schwarz-Baysian (BIC) and Hannan-quinn (HQC). 

The time series yt , where yt=(y1t ,y2t,…,ynt ) denote an (n×1) 

vector variables, follows a VAR(p) model if it satisfies 

Yt = п+ Φ1yt-1+…+Φt-pyt-p + et , t=1,2,3,…t,   (1) 

In matrix form, this can be expressed as; 

�������⋮���
� = �П1П2⋮Пn� + ���

�Φ��� Φ��� … Φ���Φ��� Φ��� … Φ���⋮ ⋮ … ⋮Φ��� Φ��� … Φ��� ���
� �����������⋮�����

�
+ ���

�Φ��� Φ��� … Φ���Φ��� Φ��� … Φ���⋮ ⋮ … ⋮Φ��� Φ��� … Φ��� ���
� �����������⋮�����

� + ⋯
+ ���

��Φ��� Φ��� … Φ���Φ��� Φ��� … Φ���⋮ ⋮ … ⋮Φ��� Φ��� … Φ��� ���
�� �����������⋮�����

� + �������⋮���
� 

Where п is a k-dimensional vector, Φ1, Φ2,… ,Φp are k×k 

parameter matrices and et is a sequence of independently and 

identically distributed error vectors. 
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Assumptions of the errors 

The error term et is a multivariate normal k × 1 vector of 

error satisfying the following assumptions; 

1. E(et)=0 every error term has mean zero; 

2. E(eteˈt)=s the contemporaneous covariance matrix of 

error terms is ω (a n× n positive-semi-definite matrix); 

3. E(eteˈt-k)=0 for any non-zero k. There is no correlation 

across time; in particular, no serial correlation in 

individual error terms. 

and Φj are k×k matrices. 

Using the back-shift operator b, the VAR (p) model can be 

written as 

(I – Φ1 b– ….–Φpb
p) Yt = п+ et, 

Where I is the k×k identity matrix. In a compact form as 

follows 

Φ(b) Yt= п+ et, 

Where Φ (b) =I- Φ1 b-…Φpb
p 
is a matrix polynomial. 

Stability in VAR (p) process is one important characteristic. 

It generates stationary time series, where the means, 

variances and covariance are time invariant. Reverse 

characteristic polynomial can be evaluated to check its 

stability. 

det(I – Φ1 b– ….– Φp b
p) ≠0, b≤1. 

If b =1,in the solution, then some variables are integrated 

If Yt is weakly stationary, then we have 

µ =E(Yt) = (I – Φ1 b– ….– Φp b
p)-1 п = [ Φ(1)] 

Provided that the determinant exists since determinant of 

[Φ(1)] is different from zero. Expressing VAR (p) in 

deviation form from its mean, we define µ =E(Yt). Then in 

deviation form is given by; �� − µ = Φ� ����� − µ + Φ� ����� − µ + ⋯+ Φ� !���� − µ" 

Ỹt= Yt -µ, then the VAR(p) model becomes 

Ỹt = Φ1 Ỹt-1 +…+ Φp Ỹt-p + et           (2) 

Given, �̂��$ = �� − Φ% $�$ ���� − ⋯ − Φ% $�$ ���$  as the 

residual of the model, the residual covariance matrix is 

defined as; 

&'�( = �) ∑ �̂�)�+� ��̂�  , 
The AIC of a VAR (i) model under the normality 

assumption is defined 

,-.�( = /0!|&'�( |" + 20�(2  

We will select the VAR of order p such that the calculated 

value is minimum, that is AIC�( = minimum 1 ≤  p ≥AIC�( , where p is an integer for a given vector time series. 

Other multivariate information criterion measures include; 

<-.�( = /0!|&'�( |" + /022 (0� 

=>.�( = /0!|&'�( |" + 2ln �ln�2  2 (0� 

@AB�( = C2 + (∗2 − (∗E� |&'�( | 
Where (∗ is the total number of parameters in each 

equation, and the VAR model of order p lags such that the 

criterion information is minimum, is selected. 

2.1.2. Estimation of Constants 

After obtaining the order of the model, p, of the vector 

series, we now derives the estimators of the constants. 

Consider the consecutive VAR models: 

Yt= п+ Φ1 yt-1 +et 

Yt = п + Φ1 yt-1 + Φ2 yt-2 +et 

…=… 

Yt = п + Φ1 yt-1 +…+ Φiyt-i +et      (3) 

The most common methods of estimating parameters are 

the maximum likelihood estimator (MLE) and the ordinary 

least square estimator (yang & yuan 1991). Here, we will 

apply the ordinary least squares (OLS) method to estimate 

the parameters of these models and applied equation by 

equation. 

For F�G equation (3), let H%i
(j) be the OLS estimate of Φ i 

and П% i
(j) be the OLS estimate of п. Where (i) is used to 

denote the estimate of a VAR (i) model. The estimates of the 

coefficients of the VAR model, Φ1 Ỹt-1 +…+ Φp Ỹt-p + et, when 

estimated using unrestricted VAR (p) model are considered to 

be fixed quantities. These estimates of coefficients do not 

accurately reflect the underlying relationship because some 

of the estimated coefficients of the VAR model are non-zero 

purely by chance when estimated by OLS so restrictions may 

be imposed to reduce the number of parameters being 

estimated. 

2.1.3. Diagnostic Check 

Suppose the orders and constants have been chosen for a 

VAR model underlying the data, then residuals are checked 

whether they are normally, identically and independently 

distributed. 

(i) Statistical Tests 

The portmanteau-test of box and pierce (1970) 

It checks whether the estimated residuals �� = �� −  � , t =1,2, ⋯ , n,  behave approximately like realizations from a 

white noise process. It is defined by; 

>G = 2 K LM N.'O .'P��.'O.'P��QG
O+�  

Where, .'O = �) ∑ �̂��̂���)�+$R� . The test statistic has an 
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approximate of chi-square with �S�ℎ − 0∗  degrees of 

freedom where 0∗  is the number of coefficients excluding 

deterministic terms of a VAR (p) model. 

(ii) Arch Tests 

The multivariate arch tests, is used to test for 

heteroskedasticity. The test statistic is defined as 

U,V.=WX�Y = 12 2Z�Z + 1 V[ � , 
Where V[� = 1 − �\�\R� LM�]̂]̂�̂�  and ]̂  assigns the 

covariance matrix of the model. The test statistic is a 

chi-square distribution with 
_\`�\R� `a  degrees of freedom and 

is implemented in r using vars package. 

(iii) Normality Check 

The Jarque-Bera normality tests for multivariate series are 

implemented and applied to the residuals of a VAR (p) as 

separate tests for multivariate kurtosis and Skewness. The test 

statistics is defined as bc[d = ]e� + ]a� Where ]e�and ]a�are computed as follows; ]e� = 2.�  .� /6 ]e� = 2�.� − 3\   �.� − 3\  /24 

Where .� and .� are the third and fourth non-central 

moment vectors of the standardized residuals. The bc[d is a 

chi- square distribution with 2k degrees of freedom. The 

multivariate Skewness and kurtosis test are chi- square 

distribution with 2k degrees of freedom. 

(iv) Unit Root Tests 

(a) Dickey-Fuller Test & Augument Dickey-Fuller Test 

DF tests the null hypothesis of the unit root against the 

alternative that there is no unit root in the process. It gives a 

formal test for checking stationarity of the model. For example, 

given a differenced equation of an AR (1) as, jk� = �l − 1 k��� + �� 

Then if the k� is a random walk, thenk� = 0, but if k� is 

stationary, Then coefficient is negative. Using the standard 

t-test statistic, it will be formed as 

L̂� = 1 − lnopn��∑ k������+�  �� 

ln and pnare the least squares estimators for α and pn2 

For large n, the statistic converges to functional distribution 

of wiener process 

L̂� → r� �1 − 12 st r��µ uµ�̂ v�/� 

Where w is a standard wiener process. 

ADF statistic is an augmented version of the df test. It is 

used to test for a more complicated and larger set of time series 

models. The test used in ADF statistic is a negative number 

and the more negative, the stronger the rejection of the null 

hypothesis. It can be applied to each variable to check for 

existence of co integration. 

(b) Durbin Watson 

This is a test statistic used to detect the presence of 

autocorrelation in the residuals from a regression analysis. It 

tests for the null hypothesis that the residuals are serially 

uncorrelated against the alternative hypothesis that residuals 

follow a stationary first order auto regression. 

Given that ��  is the residual associated with the 

observation at time t, and then the Durbin Watson test statistic 

is given by; 

u = ∑ ����� ²)�+�∑ ���)�+� , 
Where t is the number of observations and u ≅ 2�1 − M . R 

is the sample autocorrelation of the residuals. 

If d=2, there is no autocorrelation. Then if d<2, there is 

evidence of positive correlation. For d>2, 

Then error terms are negatively correlated which imply an 

underestimation of level of statistical significance. But if d<1, 

causes an alarm. 

(c) The Qk (m) Statistic 

Qk(m) is used to check the adequacy of the fitted model. It 

can be applied to the residual series to check the assumption 

that there are no serial or cross-correlations in the residuals. If 

the model is fit, the Qk (m) statistic of the residuals is 

asymptotically a chi-squared distribution with S�m-g degrees 

of freedom, where g is the number of estimated parameters in 

the AR coefficient matrices. 

(d) The T -Statistic 

t-statistic is used to test the statistical significance of 

parameters. It is carried out to check if the model is over 

specified. It is also important to assess whether the stationarity 

and invertibility conditions are satisfied. If we factorize 

characteristic polynomials and one of their roots is close to 

unity, it may be an indication of lack of stationarity and or 

invertibility. 

An inspection of the covariance matrix of the estimated 

parameters allows us to detect the possible presence of high 

correlation between the estimates of some parameters which 

can be a manifestation of the presence of a common factor in 

the model (Box and Jenkins; 1976). 

A vector error correction model (VECM) can be used to 

incase of presence of a common factor (co integration) in the 

model. It describes the nature of any non stationarity among 

different component series. Applying it improves longer term 

forecasting over an unconstrained model. 

2.1.4. Prediction 

Prediction is the estimation of values whether future, 

current or past with respect to the given data. Future values of 

the original process can be predicted based on the model 

which fits the given data. It starts with certain assumptions and 

the estimates projected into the coming future either weeks, 

months and even years using techniques such as box-Jenkins 
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models, exponential smoothing, regression analysis, moving 

averages and projection. Any error in the assumptions results 

in a similar or magnified error in forecasting. Therefore, the 

sensitivity techniques for analysis are used to assign a range of 

values to uncertain factors or variables. 

Once the model has been identified and passed through 

diagnostic check, we can use it for it for forecasting. For time ��, ��, ⋯ , �) , the basic problem is then to estimate future 

values �y)RG 

Of the h-steps ahead forecast made at time t. We need to 

forecast �y)R\ 

In such a way that the mean squared error (MSE) of the 

prediction is minimum. 

c&B!�y)R\" = B!�)RG − �y)R\"�
 

For a VAR (p) model, the 1-step ahead forecast at the time 

origin h 

Is 

�G�1 = П + K Φ$
�

$+� �GR��$ 
The associated forecast error is ah =eh+1 

The covariance matrix of the forecast error is Σ. If Yt is 

weakly stationary, then l-step ahead forecast Y1(l)converges to 

its mean vector, µ, as the forecast horizon increases. 

(i) Advantages of VAR Modeling 

1. VARs are more flexible than univariate AR models by 

allowing the value of a variable to depend on more than just its 

own lags or combinations of white noise terms 

2. The researcher does not need to specify which variables 

are endogenous or exogenous with VAR model. All variables 

are endogenous. 

3. Forecasting with VARs are often better compared to 

‘traditional structural’ models. 

(ii) Disadvantages of VARs 

1. VARs use little theoretical information about the 

relationships between the variables to guide the specification 

of the model. 

2. Often not clear how the VAR estimates of coefficient 

should be interpreted. 

3. There are so many parameters to be estimated. 

2.2. SARIMA Model 

Seasonal autoregressive integrated moving average 

(SARIMA) processes are designed to model time series with 

trends, seasonal patterns and short time correlation. They have 

developed from the standard model of box and Jenkins (1970) 

and incorporate both seasonal autoregressive and moving 

average factors into the modeling process. 

It is a class of ARIMA models suitable for data exhibiting 

seasonal variations. Suppose that a time series �� has a 

polynomial trend of degree d. Then we can eliminate this trend 

by considering the process �jz�� , obtained by d times 

differencing. 

If the filtered process �{� = jz�� , is an ARMA (p, q) 

process satisfying the stationarity condition, the original 

process (��) is said to be an autoregressive integrated moving 

average of order p,d,q, denoted by ARIMA(p,d,q). In this case 

constants |�, |�, … |�, }^ = 0, }�, … , }_~ℝ  exist such that {� = jz�� = ∑ |�jz���� +��+� ∑ }�����, L_�+^ ~ℤ is a white 

noise. 

Let �� , t=0, 1, 2 … be a non-stationary time series possibly 

containing seasonality. 

Then ��  depends on past values such as ����� � ,����� � , as 

well as �����  ,�����  , … , {� = jz��  ,  Where j  is a 

differencing operator, d is the order of non-seasonal 

differencing is ARMA (p, q) Process. ,��� {� = <_�� �� 

Then �� , is ARIMA (p, d, q) model but if {� = jzj��� 

Where d is the order of seasonal differencing, the model is 

referred to as seasonal autoregressive integrated moving 

average SARIMA written as ARIMA (p,d,q)(P,D,Q) 

Is given by ,��� ,���� {� = <_�� <���� �� 

Where ,��� , ,���� , <_��  and <���� , are 

polynomials of order p, P, q, Q respectively, z is a backshift 

operator, s is the seasonal period of the series. ,� is an AR 

process of order p, ,�is an AR process with order of seasonal 

component, <_  is an ma process of order q and <�  is an MA 

process with order of seasonal component. 

Fitting SARIMA models to the meagre data using a 

semi-automated approach based on a combination of the 

box-Jenkins method with small-sample, bias-corrected 

Akaike information criteria (AIC) model selection 

(Rothschild et al., 1996; Brockwell and Davis, 2002). This 

approach involved three major steps: 

2.2.1. Model Identification 

Choosing the parameters p and q, the order q of a moving 

average MA (q) -process can be estimated by means of the 

empirical autocorrelation function r (k) 

The order p of an AR (p) -process can be estimated in an 

analogous way using the partial autocorrelation function. MA 

(p, q) -process we take the pair (p, q), which minimizes some 

function i. e Akaike's information criterion, Hannan 

information criterion with bias correction and the Bayesian 

information criterion discussed earlier under VAR. 

2.2.2. Estimation of the Model Coefficients 

The coefficients |�, ⋯ , |�  and }�, ⋯ , }_  are estimated 

using maximum likelihood method or otherwise. Most of the 

estimation methods are already implemented in existing 

computer software using iterative techniques. 

2.2.3. Diagnostic Check 

The fit of the ARMA (p, q) model with the estimated 

coefficients is checked. These involve scrutinizing the 

estimated residuals and ensure that they behave approximately 

like the realizations from a white noise process. 
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2.2.4. Forecasting 

The forecast of future values of the original process is based 

on the model which is adequate and fits the given data. 

2.3. The Concept of Re-Shaped Time Series 

Given n -observations in univariate time series data and 

assuming the series is seasonal with period s. 

For illustration, we will use (s=4), where each observation 

has 4 variables i.e {� , {�, {e and {awhich in our case will be 

seasons (s=4 variables). Arranging the data in a serpentine 

manner for all the n –observations {� , {�, … , {�  , we will 

treat each row as a vector of �$��, where i=1,2,…,t. The vector 

time series is of order s×t. 

For a seasonal univariate time series data, {� , {�, … , {� we 

can reshape it as shown in table 1 below; 

Table 1. Concept of re-shaped time series 

 �� �� �� �� 

 ↓ ↓ ↓ ↓ 

 >� >� >e >a �� {� {� {e {a �� {� {� {� {� ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ �) {��e {��� {��� {� �y)R� {n�R� {n�R� {n�Re {n�Ra 

real value 

For {� = >�� , {� = >�� , … , {� = >�� , then the VAR form 

of the re-shaped time series is written as; 

Yt = п+ Q1yt-1+…+Qt-pyt-p + et, t=1,2,3,…t 

In matrix form it is represented as follows; 

�>��>��⋮>��
� = �П1П2⋮Пn� + ���

�Φ��� Φ��� … Φ���Φ��� Φ��� … Φ���⋮ ⋮ … ⋮Φ��� Φ��� … Φ��� ���
� �>����>����⋮>����

�
+ ���

�Φ��� Φ��� … Φ���Φ��� Φ��� … Φ���⋮ ⋮ … ⋮Φ��� Φ��� … Φ��� ���
� �>����>����⋮>����

� + ⋯
+ ���

��Φ��� Φ��� … Φ���Φ��� Φ��� … Φ���⋮ ⋮ … ⋮Φ��� Φ��� … Φ��� ���
��

���
�>����>����⋮>�������

� + �������⋮���
� 

2.4. Performance Measures 

S-step ahead forecast, {n� , will be equivalent to one-step 

ahead forecast, �y)R� , for vector.in order to get the best 

forecasting, the parameters of the models are adjusted to 

minimize the forecasting error. By defining a forecasting error 

(loss function), we search for the best parameters in both 

models that minimizes this function. 

To compare performance of the VAR and SARIMA models, 

we compute a set of indicators for the quality of time series 

forecast methods. These include; 

2.4.1. Mean Squared Error (MSE) 

For the forecast in both predictions should be minimum 

c&B!�y�" = B!�y� − ��"�
 

The results of both forecasts will be compared with the real 

values. 

2.4.2. Root Mean Squared Error (RMSE) 

Is the square root of the average of all squared errors, 

according to Wang and Lim (2005). It ignores any over and 

under- estimation 

Vc&B = �12 K!�� − �y�"��
�+�  

2.4.3. Mean Percentage Error (MPE) 

MPE is a percentage error measurement which allows 

comparison of under and over-estimation. It takes into account 

whether a forecasting method is biased. 

cAB = �) ∑ �����y� ��)�+� ×100 

2.4.4. Mean Absolute Percent Error (MAPE) 

It is a percentage error measurement, which allows 

comparison of under and over-estimation. It is particularly 

useful when the units of measurement are relatively large. 

cAB = �) ∑ |����y�|��)�+� × 100  

2.4.5. Theil’s U Statistic 

Theil's U-statistics see Theil (1958) is used as a measure of 

forecasting error that is minimized. It is a relative 

measurement based on comparison of the predicted change 

with the observed change. The value of u lies between 0 and 1. 

If u equals to 0, there is a perfect fit, whereas u equals to 1 

implies that forecasting of data is very poor. 

3. Results 

3.1. Introduction 

This chapter presents results using secondary data in which 

the concept of SARIMA model has been known. The data set 

was used to test the concept of VAR and examine its 

appropriateness. This was analyzed by use of statistical 

software for model fitting and testing. Akaike information 

criterion (AIC) is used to select the best fitting model. 

Bayesian information criterion (BIC) also was used. 

3.2. Seasonal ARIMA Model 

3.2.1. Testing the Stationarity 

Macro dataset used by stock and Watson in their 

introduction to econometrics where all unemployment rates 

for 16 years and above data is used for analysis. We denote the 

quarterly data on macro dataset as unemploymentrates. Time 
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series plot shows evidence of cyclic and random components. 

The spikes display evidence of strong seasonality. The time 

series plot is shown in figure 1 below. 

 

Figure 1. Time series plot. 

Autocorrelation function and partial correlation function 

plot of unemploymentrates shown below is evident of 

presence of a unit root. This is shown by the PACF value close 

to 1 confirming non-stationarity. The ACF on the other hand 

shows the autocorrelation between the variables and the lags 

of itself. It is evident that in all the lags, there is statistically 

significance of autocorrelation at 1%. ACF and PACF plot is 

shown in figure 2. 

 

Figure 2. ACF and PACF of unemployment rates 

We also test for presence of unit root test using ADF test. 

The ADF test results show that p-value is greater than 0.01 

hence we fail to reject the null hypothesis of non stationarity 

of the process and conclude that the data is non-stationary. We 

take the logarithm transformation of the data in order to reduce 

problems of heteroscedasticity. Taking the first difference of 

the data to ensure stationarity assumptions of ARIMA model 

is satisfied, the data shows stationarity with its plot. Testing 

for the presence of unit roots using ADF test, the p-value is 

less than 0.01. We therefore reject the null hypothesis of 

non-stationarity and conclude that the data is stationary at 

critical value of 1%. This is shown in table 2. 

 

Figure 3. ACF and PACF of log of unemployment rates 

Table 2. ADF test for both unemploymentrates and its first difference. 

Variable 
ADF test 

statistic 
P-value 

Critical 

value 

Unemploymentrates -1.58286 0.4914 0.01 

∆lnunemploymentrates -4.31345 0.0004159 0.01 

We can also test the stationarity using KPSS test with the 

null hypothesis of stationarity. The t-statistic is less than the 

critical value at 1%. We therefore fail to reject the null 

hypothesis of stationarity at 1%. Therefore, we conclude that 

the data is stationary. This is shown in table 3 below. 

Table 3. KPSS of differenced lnunemploymentrates. 

 Test statistic P-value 

KPSS test statistic 0.0878173 0.738 

 

Figure 4. ACF and PACF of differenced lnunemployment rates. 

Both plots of differenced data show that there is a little 



 Science Journal of Applied Mathematics and Statistics 2015; 3(3): 124-135  131 

 

autocorrelation in ACF. The PACF shows that the there is no 

spike close to one. This confirms the stationarity of the data. 

The plots are shown in figure 4. 

3.2.2. Selection of the Order 

The order of the model is checked to identify the 

appropriate SARIMA model. The model which minimizes the 

information criterion is chosen. In our data, the ARIMA 

(0, 1, 1×0, 1, 0)4 model is found to be the best model since 

its information criterions are minimum. 

3.2.3. Estimation of coefficient Parameters 

From the fitted model, we can obtain its coefficients. The 

coefficients of ARIMA (0, 1, 1×0, 1, 0)4 model based on the 

information criterion is shown below with its coefficients 

being statistically significant the AIC value is minimum and 

standard error variance is also small. 

Model 30: ARIMA, using observations 1960:2–1999:4 (t = 

159) 

Dependent variable: (1 − L)(1 − L
s
) lnunemploymentrates 

standard errors based on hessian coefficient std. Error z 
p-value 

Const  0.000773 0.00927 0.0833 0.9336 

Θ  0.928806 0.0809547 1.4732 0.0000 

Mean dependent var 0.000312 

s.d. Dependent var 0.074352 

Mean of innovations 0.000050 

s.d. Of innovations 0.060778 

Log-likelihood 218.6787 

Akaike criterion −431.3574 

Schwarz criterion −422.1507 

Hannan–quinn −427.6187 

Real Imaginary Modulus Frequency 

MA 

root 1 −1.0767 0.0000 1.0767 0.5000 

The results are shown in table 4 below. 

Table 4. Estimates of parameters ARIMA (0, 1, 1×0, 1, 0)4. 

 Coefficient Std. Error Z P-value 

constant -1.000 0.0226214 -44.21 0.000 

Thetha-1 -0.576546 0.0840321 -6.861 6.84e-012 

S.d dependent 

var. 
0.038212 Aic -629.6445  

Log-likelihood 318.8223 Hannan-quinn -624.9712  

From the fitted model we can see clearly that the p-values of 

the coefficients are statistically significant. The equation for 

the fitted model is expressed as; 

(1−Z)(1−Z4)Xt = (1 + 0.928806B)εt 

3.2.4. Diagnostic Check 

To check if the fitted model is significant, one of the ways 

of checking this is by plotting the frequency distribution of the 

residuals. Figure 5 below, shows the frequency distribution of 

the residuals of the fitted model ARIMA (0, 1, 1×0, 1, 0)4. This 

shows that the residuals are normally distributed since the 

p-value is greater than 0.01. 

 

Figure 5. Frequency distribution of the residuals. 

We can also check the normality of the residuals using the 

QQ-plot. From the plot, there are no outliers and all points lie 

on the line making us to conclude that the residuals of the 

fitted model are normally distributed. 

 

Figure 6. normal QQ-plot of residual. 

3.2.5. Forecasting 

Forecasting for ARIMA (0, 1, 1×0, 1, 0)4 model is shown in 

the table below. 
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Table 5. predictions results of ARIMA (0, 1, 1×0, 1, 0)4 for 1998. 

Variable Actual value Prediction value Error 

1998:1 4.6667 4.3456 0.3211 

1998:2 4.4333 4.7373 0.304 

1998:3 4.5000 4.0605 0.4395 

1998:4 4.43333 4.7509 0.3176 

3.3. VAR Modeling 

The seasonal univariate time series data is reshaped to form 

vector form of four variables since the data is quarterly. Data 

between 1959 and 1998 are used in-sample estimation and 

data between 1998 and 1999 are used for the out-of-sample 

forecasting purposes. Figures  below shows the time series 

plots of the four variables during the sample period. The 

variables are denoted Q1, Q2, Q3, and Q4. The figure below 

displays all the plots. 

3.3.1. Testing Stationarity 

Autocorrelation function and partial correlation function 

plot of the variables shown below in figure 7, 8, 9 and 10 is 

evident of presence of a unit root. This is shown by the PACF 

value close to 1 confirming non-stationarity. The ACF on the 

other hand shows the autocorrelation between the variables 

and the lags of itself. 

 

Figure 7. correlogram of Q1. 

 

Figure 8. correlogram of Q2. 

 

Figure 9. correlogram of Q3. 
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Figure 10. correlogram of Q4. 

We can also check the stationarity by testing the unit roots. 

One of the tests used is the augmented dickey-fuller test 

applied to the series in order to test for unit-roots. Table 6 

below shows the ADF results of both the variables and their 

first differences of the series. 

From the table above, the ADF test results indicate that all 

variables are non-stationary by not rejecting the null 

hypothesis of unit-root for all the variables at 1% critical value, 

but they are all stationary after first differencing. We can 

therefore conclude that all the time series are integrated of at 

least order one; therefore, we use differenced series in our 

analysis. 

 

 

 

 

Table 6. ADF unit root test results. 

Variable Deterministic terms Test value P-value Conclusion 

Q1 Constant, trend -2.2501 0.4496 Non-stationary 

Differenced q1 Constant -5.57543 3.236e-005 Stationary 

Q2 Constant, trend -2.34281 0.402 Non-stationary 

Differenced q2 Constant -5.98549 1.264e-005 Stationary 

Q3 Constant, trend -2.57543 0.5616 Non-stationary 

Differenced q3 Constant -5.35931 7.847e-005 Stationary 

Q4 Constant, trend -2.75285 0.2152 Non-stationary 

Differenced q4 Constant -4.90132 3.236e-005 Stationary 

 

3.3.2. Model Identification 

For VAR model to be identified, the data should be 

stationary. We then determine the true lag order for the model. 

Selecting a higher order lag length than the true lag lengths 

increases the mean square forecast errors of the VAR, and 

selecting a lower order lag length than the true lag lengths 

usually causes auto correlated errors. This was pointed out by 

Lutkepohl. Hence, accuracy of forecasts from VAR models 

highly depends on selecting the true lag lengths. There are 

several statistical information criterions for selecting a lag 

length. This include: Akaike information criterion (AIC), 

Bayesian information criterion (BIC), and Hannan-quinn 

information criterion (HQC). The table below shows the VAR 

model lag order selection criteria. 

Table 7. VAR(p) model lag order selection criteria. 

Lag Aic Bic Hqc 

1 1.841568 2.730338* 2.148371 

2 1.493935* 3.093722 2.046181* 

3 1.650475 3.961277 2.448163 

The AIC and HQC is minimized at p=2. But BIC is 

minimized at p=1. We take BIC since it is appropriate for data 

with sample less than 120 quarters. Therefore, we have 20 

parameters to estimate. 

Table 8. The coefficients of estimated VAR model. 

 ∆q1 ∆q2 ∆q3 ∆q4 

Constant 0.0176441 0.0135887 -0.00790380 -0.0443565 

∆q1(-1) 0.0230364 0.232444 0.153521 -0.135078 

∆q2(-1) -0.259410 -0.501622 0.361898 0.853679 

∆q3(-1) -0.556027 -0.888681 -1.88762 -1.90887 

∆q4(-1) 1.53304 1.74647 1.77344 1.27800 

The VAR(1) can be expressed as follows: 

∆Q1t=0.0176441+0.0230364*∆Q1t-1-0.259410*∆Q2t-2-0.5

56027*∆Q3t-3+1.53304*∆Q4t-4 

∆Q2t=0.0135887+0.0232444*∆Q1t-1-0.501622*∆Q2t-2-0.

888681*∆Q3t-3+1.74647*∆Q4t-4 

∆Q3t=-0.00790380+0.153521*∆Q1t-1+0.361898*∆Q2t-2-1.

88762*∆Q3t-3+1.77344*∆Q4t-4 

∆Q4t=-0.0443565-0.135078*∆Q1t-1+0.853679*∆Q2t-2-1.9

0887*∆Q3t-3+1.27800*∆Q4t-4 
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3.3.3. Model Diagnostic Checking 

We test for the autocorrelation of the model, to check 

whether the residuals of the fitted model are identically 

distributed. Table 9 below shows that the p-value of all the 

four equations are greater than critical value at 1% hence we 

do not reject the null hypothesis of no autocorrelation, 

meaning there is consistent estimators. 

Table 9. Autocorrelation tests for the four equations. 

 Ljung-box q P-value 

Equation 1 1.77125 0.183 

Equation 2 0.657489 0.417 

Equation 3 5.18819e-005 0.994 

Equation 4 0.140521 0.708 

We also test for the auto effect correlation using arch. The 

p-value is found to be greater than 0.01. Meaning we fail to 

reject the null hypothesis that there is no auto effect. This 

implies that there is conditional homoscedasticity which 

allows for a valid inference. This is shown in table 10 below; 

Table 10. ARCH test for the equations. 

 Test statistic P-value 

Equation 1 4.10135 0.0428491 

Equation 2 0.0950886 0.757805 

Equation 3 0.746557 0.387568 

Equation 4 0.0531222 0.817717 

The p-value is greater than 0.01. Hence we fail to reject the 

null hypothesis that the residuals of the VAR model are 

normally distributed. Hence we can make an inference. 

Residual correlation matrix, c (4 x 4) 

1.0000 0.84237 0.70092 0.53609 

0.84237 1.0000 0.93270 0.69950 

0.70092 0.93270 1.0000 0.87207 

0.53609 0.69950 0.87207 1.0000 

Doornik-hansen test, Chi-square (8) = 9.26726 [0.3203] 

Testing all the residuals, the residuals of the VAR model 

have the p-value of 0.3203 greater than 0.01, shows that all the 

residuals are normally distributed with the VAR model fitted 

being valid. 

3.3.4. Prediction and Results 

After obtaining the valid model, we now check the 

forecasting performance measures of each variable and 

compare with the actual value. The forecasting results of 

VAR-1 model for 1998 are shown in table 11 below. 

Table 11. The Forecasting results of VAR-1 model for1998. 

Variable Actual value Prediction value Error 

∆q1 4.6667 4.5916 0.0751 

∆q2 4.43333 4.5905 -0.1572 

∆q3 4.5000 4.6554 -0.1554 

∆q4 4.4333 4.7524 -0.3191 

3.3.5. Performance Comparison 

Using the performance measures mentioned above, the 

table below shows the summary comparison performance of 

the two models. 

Table 12. Forecasting results of VAR and SARIMA model for 1998. 

Variable Actual value Prediction (SARIMA) Prediction (var) Error (SARIMA) Error (Var) 

Q1 4.6667 4.3456 4.5916 0.3211 0.0751 

Q2 4.4333 4.7373 4.5905 -0.304 -0.1572 

Q3 4.5000 4.0605 4.6554 0.4395 -0.1554 

Q4 4.4333 4.7509 4.7524 -0.3176 -0.3191 

MsE    0.1224 0.0391 

RmsE    0.3498 0.1977 

MpE    2.646% -3.147% 

MapE    7.662% 3.951% 

Theil's u    0.3498 0.0216 

 

3.4. Cumulative Results 

The purpose for this project is to examine if VAR model is 

appropriate in forecasting a reshaped univariate seasonal time 

series. SARIMA model has been used for comparison 

purposes. Macro dataset used by stock and Watson in their 

introduction to econometrics where all unemployment rates 

for 16 years and above data were used. The data was quarterly 

and was reshaped into four variables and apply VAR for 

forecasting. This was analyzed in detail and the summary of 

other data set one was shown. The data contains observations 

from 1959 to 1999 where observations from 1959 to 1997 

were used for model fitting. The year 1998 was used for 

prediction and comparison purposes. 

Taking the detailed sample given above as an example, the 

performance of the VAR model is found to be better than the 

SARIMA model with the performance measures being 

minimum. The mean absolute percentage error for SARIMA 

is 7.662% and mean absolute percentage error for VAR is 

3.951%. The other performance measures also show that VAR 

is a better model for forecast. Theil's u statistic for VAR is 

almost close to 0, implying almost a perfect fit. 

However, in practice we normally face the challenge of the 

observations of seasonal univariate time series data that can be 

reshaped. This becomes a challenge in reshaping the data. 

Also fitting the reshaped data set into a VAR model is a bit 

complicated than the SARIMA model since each of the 

reshaped variables is non-stationary. However, VAR model is 

still evident to be the best model for all the observations than 

the SARIMA model. 
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