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Abstract: In this paper we analyze the boundary layer equation � ′′′ � 	�� ′′ � 
�′

�
=0 using a group theoretical method 

known as symmetry method. We obtain the symmetry group admitted by the boundary layer equation. We then construct 

exact invariant solutions and outline a symmetry reduction. The invariant solution is examined under common boundary 

conditions. 
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1. Introduction 

The third order autonomous nonlinear differential 

equation 

����
�� � 	�
�����
�� � 
���
��=0,     (1.1) 

subject to suitable boundary conditions arises in 

industrial processes and physical applications such as 

boundary layer flow near a stretching surface [1-5], Nano 

boundary layer fluid flows [6], free convection boundary 

layer flow near vertical flat plate embedded in a porous 

medium [7-9] and high frequency excitation of liquid metal 

in an antisymmetric magnetic field within a boundary layer 

approximation [10, 11]. 

Eq. (1.1) has received considerable attention in the 

literature and has been investigated under certain boundary 

conditions by many researchers. For	 � 
 � 1, Weidman 

and Magyari [2] outlined an analytical solution known as 

Crane’s solution and obtained solutions for generalized 

Crane flows. Wang [3] found an analytic solution in a 

general form that may recover Crane’s solution. For 

	 � 1, 
 � 2�/
� � 1�,Magyari and Keller [1] illustrated 

an exact analytic solution, Bognar [4] proved the existence 

of exponential series solution and Liao and Pop [8] applied 

homotopy analysis method to derive explicit analytic 

solutions. Kudenatti et al. [5] and Awati et al. [9] solved Eq. 

(1.1) when 	 � 	, 
 � �
  using Dirichlet series, method 

of stretching of variables, and asymptotic function method. 

Aly and Ebaid [6] investigated theoretically Eq. (1.1) using 

� ′/� �expansion method when 	 � �, 
 � 1. Belhachmi 

et al. [7], Brighi and Hoernel [10] and Tsai [11] examined 

the existence, uniqueness and nonexistence of concave 

convex solutions when 	 � 

 � 1�/2  with different 

values of 
. 

So far, to the best of our knowledge, there has been no 

study in the literature concerning the symmetry analysis of 

Eq. (1.1). Therefore the aim of the present work is to 

analyze Eq. (1.1) using Lie symmetry group method [12,13] 

in order to search for possible exact solutions for all 
 and 

	. The significant of Lie group method lies in its ability to 

obtain exact invariant solutions just by determining the 

symmetry group admitted by the equation. 

The paper is organized as follows: In Section 2, we 

obtain the symmetry group of the boundary layer equation 

(1.1). In Section 3, we construct exact invariant solutions to 

Eq. (1.1) using symmetry group. In Section 4, we derive a 

symmetry reduction for Eq. (1.1). In Section 5, we impose 

boundary conditions to an invariant solution. Finally, we 

give a brief conclusion in Section 6. 

2. Symmetry Group 

In this section, we use Lie symmetry group method [12, 

13] to obtain the symmetry group of the boundary layer 

equation (1.1). Consider a one-parameter Lie group of 

infinitesimal transformation of the form 

� � � � ��
�, ��,   (2.1) 

� � � � ��
�, ��,  (2.2) 

with infinitesimal generator 
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� � �
�, �� �
�� � �
�, �� �

��. 

Requiring that Eq. (1.1) is invariant under (2.1)-(2.2), 

then eliminating �′′′
�� using Eq. (1.1), and setting to zero 

all coefficients of the derivatives of �
�� we obtain the 

following determining equations for the infinitesimals 

�
�, ��, �
�, ��: 
���� � 	���� � 0, 

3���" � ���� � 	#2��" � ���$� � 2
�� � 0, 

3#��"" � ���"$ � 
#�" � 3��$ � 	#�"" � 2��"$�
� 2
#�" � ��$ � 0, 

�""" � 3��"" � 4
�" � 	�""� � 2
�" � 0, (2.3) 

3#��" � ���$ � 	��� � 	� � 0, 

3#�"" � 3��"$ � 	��� � 0, 

�""" � �"" � �" � 0. 
Solving Eqs. (2.3) for the infinitesimals, we find 

�
�, �� � &� � &'�, 
�
�, �� � &'�. 

Where &'  and &�  are arbitrary constants. Thus, the 

infinitesimal generators of Eq. (1.1) are: 

�' � �� �
�� � � �

�� ,    �� � �
��. 

Hence the corresponding one parameter symmetry 

groups of Eq. (1.1) are: 

�': 
�, �� � 
)*+�, )+��, 

��: 
�, �� � 
� � �, ��. 
We can see that �' is a scaling transformation and �� is a 

translation transformation in �. 

3. Exact Group-Invariant Solutions 

Here we utilize the infinitesimal generators of Eq. (1.1) 

obtained in Section 2 to construct exact group-invariant 

solutions for Eq. (1.1). 

(i) �� 

The group-invariant solution corresponding to ��  is 

�
�� � & (constant). 

(ii) �' 

The generator �'  gives the group-invariant solution 

�
�� � 6/
2	 � 
��, for all
 and 	provided that 2	 - 
. 

(iii) �' � &�� 

The linear combination between generators �'  and �� , 

where & is constant, gives the group-invariant solution 

�
�� � �6/.
2	 � 
�
& � ��/, (3.1) 

for all 
 and 	 provided that 2	 - 
. 

4. Symmetry Reduction 

The boundary layer equation (1.1) admits a two 

parameter Lie group of transformations. Therefore the 

order of the differential equation may be reduced by two. 

To determine which infinitesimal generator to use first, we 

compute the commutator: .�', ��/ � �'�� � ���' � ��. 

We begin with the infinitesimal generator ��, with first 

extension ��

'� � 0

0�  [12]. The invariants of ��  satisfying 

��1 � 0, and ��

'�2 � 0 are: 

1
�, �� � �, 2
�, �, ��� � ��,          (4.1) 

Where 2 � 2
1�. Substitution of Eq. (4.1) into Eq. (1.1) 

gives the reduced second order ordinary differential 

equation 

22�� � 
2��� � 	12� � 
2 � 0.        (4.2) 

Infinitesimal generator �' is admitted by Eq. (4.2) since 

it is admitted by Eq. (1.1). The invariants of �' satisfying 

�'

'�3 � 0, and �'


��4 � 0 are: 

3
1, 2� � 1*�2, 4
1, 2, 2�� � 1*'2�,   (4.3) 

Where 4 � 4
3�. Substitution of Eq. (4.3) into Eq. (4.2) 

gives the reduced first order ordinary differential equation 


4 � 23�34� � 
3 � 	�4 � 4� � 
3 � 0.  (4.4) 

Let 4 �  5
3, &� be a general solution to Eq. (4.4), where 

&  is constant, then the first order ODE: 4 � 1*'2′ �
5
1*�2, &�  may be solved by the use of canonical 

coordinates 6
1, 2�  and 7
1, 2� [12]. By satisfying 

that ��

'�6
1, 2� �  0  and ��


'�7
1, 2� � 1 we obtain 

6
1, 2� � 1*�2 and 7
1, 2� � �0.5 ln 2. Thus 

7� 
6� � �5
6, &�/2
65
6, &� � 26� �.      (4.5) 

Integration of Eq. (4.5) and substitution for 
6, 7� in terms 

of 
1, 2� gives 

2 � &�exp >? 5
@, &'�/
@5
@, &'� � 2@��A@BCDE F,   (4.6) 

Where &' and &� are constants. By using Eq. (4.1) in Eq. 

(4.6) we obtain a general solution of Eq. (1.1) in solved 

form 

? G"
H
",IJ,ID� � � � &K, where &K is constant. 

Special Case 

When 	 � 2
  Eq. (4.4) has a special solution 4
3� �
3/2 . Hence, using Eq. (4.1) and Eq. (4.3) we obtain a 

solution for Eq. (1.1) in the form 

�
�� � 
&'� � &���,   (4.7) 

Where &' and &� are constants. 
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5. Boundary Conditions 

Usually Eq. (1.1) is associated with the boundary 

conditions: 

�
0� � L, ��
0� � M, ��
∞� � 0, (5.1) 

Where L and M  are parameters describing the mass 

transfer at the surface and the surface movement 

respectively. For L O 0  mass suction occurs, L P 0  mass 

injection and L � 0  the surface is impermeable. When 

M O 0 the surface moves in the same direction to the main 

stream, M P 0 opposite direction and M � 0 the surface is 

fixed. 

Imposing the boundary conditions (5.1) on the invariant 

solution (3.1), we obtain the solution 

�
�� � 6L/
6 � L
2	 � 
���, (5.2) 

Provided that L and M are related by the equation L�
2	 �

� � 6M � 0. When 
 � 1 and M � 1 the solution (5.2) is 

similar to the one in [6]. 

The skin friction at the surface is given by � ′′
0� �
LK
2	 � 
��/18. Solution (5.2) is defined for two cases: 

when 2	 O 
, L O 0, M P 0 and 2	 P 
, L P 0, M O 0. 

6. Conclusions 

In this paper, we applied Lie group method to derive the 

symmetry group admitted by the boundary layer equation 

(1.1). Under the symmetry group we obtained exact 

invariant solutions to Eq. (1.1) for all 
 and 	provided that 

2	 - 
. Furthermore, we reduced the order of Eq. (1.1) to 

a first order and found an analytic solution for a special 

case 	 � 2
. Finally, we forced the invariant solution to 

satisfy boundary conditions (5.1) and constructed an exact 

solution to Eq. (1.1) with conditions (5.1). Solution (5.2) is 

not applicable for fixed impermeable surfaces. However, it 

is appropriate for two cases: when 2	 O 
, L O 0, M P 0 

and 2	 P 
, L P 0, M O 0. 
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