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Abstract: A new receptor model based on the alternating trilinear decomposition followed by a score matrix reconstruction 

(ATLD-SMR) was developed for the source apportionment of urban PM10 for the first time. First, simulated three-way data 

arrays of gas chromatography-mass spectrometry (GC-MS) were used to verify the feasibility of the ATLD-SMR method. Then, 

PM10 samples (receptor) at five locations and TSP samples of ten pollution sources were collected during July and August, 2018 

in Loudi City, China. The collected samples were measured by GC-MS. PAHs were used as tracers and their concentrations were 

accurately obtained by the ATLD-SMR analysis of GC-MS data of these samples after the problems of GC-MS including 

baseline drift, retention-time shift and unexpected peaks overlapping were successfully resolved. The highest concentrations of 

individual PAH in these samples were for phenanthrene and benzo [a] pyrene (40.76 ng m
-3

 and 39.63 ng m
-3

 in Liangang 

steel-making workshop, respectively). Last, a relative contribution matrix of the source to the receptor was estimated by the 

ATLD-SMR method. The proposed method was employed to apportion the source contributions to PM10 particles at five 

locations and reasonable results were obtained, thus presenting a promising tool for source apportionment of complex ambient 

particulate matter. 

Keywords: Source Apportionment, PM10, PAHs, GC-MS, ATLD-SMR 

 

1. Introduction 

Atmospheric pollution is an environmental concern 

worldwide leading to increasing morbidity due to 

cardiovascular disease and cancer as a result of exposure to 

polluted air [1-3]. Accurate source apportionment of ambient 

particulate matter has become among the hot topics in the 

atmospheric sciences. Until now, three approaches have been 

applied to estimate source contributions from source sample 

data and/or ambient sample data. The first, emission inventory 

is a list model of anthropogenic emissions based on their 

history and heritage [4-5]. The second, diffusion model (also 

termed a source model), evaluates the influences of pollution 

sources on airborne particulates at a given site based on the 

discharge rates of the point source and meteorological data [6]. 

The third, known as a receptor model, focuses on studying the 

contribution of the pollution source to the receptor [7-9]. 

Receptor models include source unknown receptor models, 

such as principal component analysis (PCA) [10, 11], 

PCA/multiple linear regression (PCA/MLR) [12, 13] and 

positive matrix factorization (PMF) [14], and source known 

receptor models, for example, the classic chemical matter 

balance model (CMB) [15]. Receptor models have been 



94 Xiang Dong Qing et al.:  A New Receptor Model Based on the Alternating Trilinear Decomposition Followed by a  

Score Matrix Reconstruction for Source Apportionment of Ambient Particulate Matter 

widely applied in the field of source apportionment of ambient 

particulate matter [7, 16-19]. In these methods, inorganic 

matter (metallic elements and inorganic ions) or organic 

compounds are commonly used as tracers to calculate the 

presence of the effluent from different sources within the 

ambient particulate matter [20, 21]. Therefore, there are two 

important problems that must be solved before source 

apportionment. The first is tracer identification in a complex 

environmental sample and the second is accurate 

quantification of tracers. However, ambient particulate 

samples contain the most chemically complicated components 

with low concentrations and severe mutual interference. This 

makes accurate tracer qualitative and quantitative 

determination in these samples even more difficult or 

impossible even with the aid of modern analytical instruments 

such as liquid or gas chromatography-mass spectrometry 

(LC/GC-MS). However, the accuracy of these methods is 

closely associated with tracer qualitative and quantitative 

results. Thus, there is a great need to develop one alternative 

strategy to carry out the nondestructive and accurate 

identification and quantification of tracers in source and 

receptor samples even in the presence of unknown interferents. 

Fortunately, the chemometrics second-order calibration 

method provides a good analytical strategy to conduct source 

apportionment of ambient particulate matter. It has the 

advantages of simplifying sample pretreatments, resolving 

overlapped chromatographic peaks and providing 

physicochemical information on components in an actual 

system because of its well-known “second-order advantage” 

[22-24]. 

According to the aforementioned discussion, there may be 

three methods which can be developed to construct source 

apportionment models for analysis of the three-way data array. 

A graphical representation of these ways was shown in Figure 

1. The first method is based on the trilinear decomposition of 

only the source dataset with second-order calibration 

algorithm to obtain the relative contributions of pollution 

sources. The second is built on the iteration and 

decomposition of only the receptor dataset to extract the 

number and category of pollution sources. The third is based 

on first decomposing the source dataset and the receptor 

dataset with second-order calibration algorithm, respectively, 

and then estimating the relative contribution coefficients by 

combining the obtained source and receptor score matrices. 

These aforementioned methods may be found in some existing 

approaches elsewhere [25-27]. However, there are some 

deficiencies. For example, only the information from one side 

of the source and receptor can be utilized in the first two ways 

and the chemical compositions of sources may not be fully 

matched with those of the receptor in the third way. 

Thus, in this work, a method based on another new way is 

proposed to construct a source apportionment model. The 

proposed method first decomposed the combined three-way 

GC-MS data array of source and receptor samples with 

alternating trilinear decomposition algorithm and then 

estimated the relative contribution of a pollution source to 

ambient particulate matter according to the reconstructed 

score matrix of tracers extracted from the source and receptor 

samples. This new method, the alternating trilinear 

decomposition followed by a score matrix reconstruction 

(ATLD-SMR), has the advantages of fast, simple, accurate 

interference-free quantification of tracers and full utilization 

of the fingerprint information of samples to estimate the 

contributions of the source to the receptor. The developed 

method is elaborated in the following sections. 

 

Figure 1. A graphical representation of different ways to construct a source 

apportionment model based on GC-MS data combined with trilinear 

decomposition method. 

2. Method 

2.1. Alternating Trilinear Decomposition 

In this work, alternating trilinear decomposition (ATLD) 

was used to decompose the obtained three-way data array of 

the source and receptor samples. ATLD was proposed by Wu 

et al in 1998 [28]. The algorithm has fast convergence and is 

insensitive to excess factors, which are very useful properties 

in real environmental situations for three-way data 

decomposition. Details of ATLD can be found in the literature 

[28]. The matrices A, B and C can be provided by ATLD 

decomposition of three-way data array. The analyte (s) 

concentrations can be obtained by regression of the 

appropriate column of C corresponding to each analyte against 

its standard concentrations. 

2.2. ATLD Followed by a Score Matrix Reconstruction 

In the case of GC-MS, if the measured matrices of the k 

samples including the k1 calibration samples, k2 source 

samples and k3 receptor samples (k=k1+k2+k3), are stacked in 

a three-way data array (GC×MS×Sample), it can be 

decomposed via ATLD according to Equation (1) as follows: 
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where, xijk is the element of the three-way data array X 

(I×J×K), and ain, bjn, and ckn are the corresponding elements of 

the loading matrices A (I×N), B (J×N) and score matrix C 

(K×N) of X, respectively. The term eijk is the element of the 

three-way residue data array E (I×J×K). A and B collect the 

normalized elution-time and mass-to-charge (m/z) profiles of 

the N factors, respectively. C collects the relative 

concentration or score of N factors in all samples. 

Then, Equation (1) can be written in terms of matrix Xk, 

where Xk is the kth (I×J) slice of X. 

' ' '
1 1 1 2 2 2 n nX a b + a b + + a b + E , 1,2,..., ; 1,2,..., .

k k k kn kc c c n N k K= = =L                     (2) 

where an and bn are the nth column of the loading matrices A 

and B, respectively, and (
'

n na b ) is the loading matrix of the 

nth factor. The score value (ckn) is the relative contribution of 

the loading factor (
'

n na b ) to matrix Xk. However, N denotes 

the total number of tracers of interest, interference and 

background. Thus, we can extract the vectors of tracers from 

raw score matrix. By regression of the vector (corresponding 

to relative concentrations) of each tracer against its standard 

concentrations in calibration samples, the targeted 

concentrations of markers can be obtained, which is 

second-order calibration. 

For the reconstruction of a score matrix of only markers to 

estimate the contribution of the source to the receptor, the 

following equation should first be calculated for the k2 source 

samples: 
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where the subscript “s” represents “source”. 
2 ,k n sc  is the 

targeted concentration of the marker in the source samples. 

Here, k2 is equal to n. Then, the measured matrices of the k3 

receptor samples can also be obtained as follows:
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The subscript “r” represents “receptor”. 
3k n,rc is the targeted concentration of the marker in the receptor samples. Thus, the 

Equation (5) can be obtained by combining Equations (3) and (4): 
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P is a reconstructed score matrix, which is also called a relative contribution matrix.
3 2k kp  is the relative contribution of the 

source matrix 
2 .Xk s  to the receptor matrix 

3 ,Xk r . Finally, the measured matrix of any receptor sample can be expressed with 

respect to the k2 measured matrices of pollution sources as follows: 

33 3 3 3 2 2
,, 1 1, 2 2, . 2 3X X + X + + X + E , 1, 2,..., ; 1, 2,..., .k rk r k s k s k k k sp p p k K k K= = =L              (7) 
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3,Ek r  is the error matrix. 
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Thus, we can obtain the relative contribution of the 

pollution source to ambient particulate matter based on the 

alternating trilinear decomposition followed by a score matrix 

reconstruction (ATLD-SMR) of the three-way GC-MS data of 

source and receptor samples. 

3. Experiment 

3.1. Simulated Chromatography-mass Spectrum–sample 

Data 

A chromatography-mass spectrum data set was simulated 

for 15 samples with four components. The chromatographic 

profiles were generated as follows: 

A( , 1)=Gaussian peak(0.10, 4, 10, ),i i  

A( , 2)=Gaussian peak(0.20, 10, 25, ),i i  

A( , 3)=Gaussian peak(0.15, 7, 45, ),i i  

A( , 4)=Gaussian peak(0.55, 5, 55, ), all for =1, 2, ..., 80i i i  

The Gaussian peak (x, a, b, i) represents the value at i of a 

Gaussian distribution with standard deviation a, where x is the 

height at the center of b. 

The mass-spectrum profiles were reproduced by the 

following equation 

B=vsparse( , , , , )r c s m n  

where r and c are two index vectors which representing the 

positions of nonzero elements, s is a vector including all the 

nonzero elements corresponding to the index of (r, c), and m 

and n are the row dimensions and column dimensions of 

matrix B, respectively. Herein, m and n are equal to 200 and 4, 

respectively. 

The concentrations of four species in 11 samples including 

seven calibration samples and four source samples are 

distributed in the range of 0–15. Then, the concentrations of 

four species in four receptor samples are produced according 

to Equation (3), where the relative contribution matrix P was 

set as follows: 

0.40 0.35 0.15 0.10

0.15 0.45 0.30 0.10
P

0.15 0.20 0.57 0.08

0.17 0.23 0.15 0.45

 
 
 =
 
 
 

 

Then, a three-way data array was obtained with the size of 

80 × 200 × 15. To simulate a real environmental measurement 

process, homoscedastic and heteroscedastic noises were added 

to the simulated data set as follows: 

( ).._    homo kHomo noise RANDN max Xσ= × ×  

.._   heter kHeter noise RANDN Xσ= × ∗  

where σhomo and σheter are the homoscedastic and 

heteroscedastic noise levels, taking values of 0.001, 0.002, 

0.005 and 0.01. 

3.2. Experimental Data 

3.2.1. Sampling Procedure 

PM10 (particulate matter with dp < 10 µm) samples were 

collected for 12 hours once every four days during July and 

August of 2018 at five functional zones of Loudi City, China 

using a large-volume air sampler (YH-1000, Qingdao 

Jingcheng Instrument Co., Ltd, China) at a flow rate of 1.0 

m3 min
-1

. The sampler was mounted on the roof of a building 

approximately 15 m above the ground. PM10 was captured 

onto quartz-fiber filters 200 mm × 240 mm in size. TSP (total 

suspended particulates) samples of different sources were 

collected for 24 hours during the month by using four 

medium-volume samplers (JCH-120F (one) and JCH-6120 

(three), Qingdao Juchuang Environmental Co., Ltd, China) 

at a flow rate of 100.0 L min
-1

. TSP was captured onto 

88-mm diameter quartz-fiber filters. Figure 2 shows the 

locations of the sampling sites of the PM10 and TSP samples. 

The information for these samples is provided in 

supplementary Table A1. These samples were separately 

wrapped in zip-top plastic bags and stored at – 20.0°C in a 

refrigerator. 

 

Figure 2. Locations of sampling sites in Loudi city, China. 

3.2.2. PAHs Extraction 

The Soxhlet method was used to extract PAHs from the 

filter samples. A total of 300.0 mL of 

dichloromethane/n-hexane with a volume ratio of 3:2 was 

used as an extraction agent and added into a Soxhlet extractor 

to fully immerse the filter samples. The extraction temperature 

was set at 78°C. The extraction time was 20 min for each 

cycle and the filling/emptying cycles exceeded twelve. After 

the extraction, the solvent was concentrated using rotary 

evaporation at 40°C under low pressure to 2.0 mL and the 

solution was maintained on standby in a small beaker. 
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3.2.3. Analytical Procedures 

1. Reagents and chemicals 

Standard substances of eight PAHs including 

acenaphthylene (ACN), fluorene (FLU), phenanthrene (PHE), 

pyrene (PYR), benzo [a] anthracene (BaA), chrysene (CHR), 

benzo [e] pyrene (BeP) and benzo [a] pyrene (BaP) were 

provided by Aladdin Chemical Co. Ltd. (Shanghai, China). 

The others including fluoranthene (FLO) and benzo [b] 

fluoranthene (BbF) were obtained from AccuStandard Inc. 

(Connecticut, USA). Methanol (HPLC-grade, ≥99.9%) for 

dissolving all the analytical standards is obtained from 

Aladdin. Others solvents including dichloromethane (AR) and 

n-hexane (AR) were provided by Hunan Hui-hong Reagent 

Co. Ltd. (Changsha, China). 

2. Instrumentation and software 

Retention time-mass spectral matrices were obtained on gas 

chromatography-mass spectrometry (GC/MS-QP2010, 

Shimadzu Corporation, Japan). The column for GC separation 

was an Rxi®-1MS (0.25 µm and 0.25 mm × 30 m) nonpolar 

capillary column (Restek, USA). The temperature program of 

the GC was that it was initiated at 150°C for 2.0 min, 

increased to 300°C at a rate of 30°C min
-1

, then maintained at 

300°C for 5.0 min. The mass spectrum detector was operated 

with electron impact (EI) source and under the following 

conditions: full scan mode with a range of 50-400 amu; 

injector temperature, 250°C; ion source temperature, 230°C; 

interface temperature, 250°C; and detection voltage, 0.94 kV. 

In addition, the sample injection volume was 1.0 µL with a 

split ratio of 5:1 and helium was used as carrier gas at a flow 

rate of 2.7 mL/min. The data analysis was performed on 

Matlab (MATLAB, 7.9.0, Math Works, USA) software with 

home-written programs in the environment of a Microsoft 

Windows 8 operating system. 

3. Standard solutions 

Each of analytical standards including BeP and BbF was 

weighed accurately, dissolved into a little dichloromethane, 

then transferred into a 100.0 mL volumetric flask and diluted 

to the mark with methanol to obtain the appropriate stock 

solutions. Stock solutions of the other eight PAHs were 

prepared by directly dissolving corresponding analytical 

standards into methanol. These stock solutions were stored at 

4.0°C in a refrigerator. 

4. Sample sets 

Seven calibration samples (C01-C07) were prepared by 

mixing the working solutions of 10 PAHs, and then diluting 

to volume with pure methanol in 10.0 mL volumetric flasks. 

Concentrations of 10 PAHs in these samples were 

summarized in supplementary Table A2. Samples of PM10 

(n=5) and TSP (n=12) were directly extracted for analysis 

by GC-MS. All of the samples were filtered with 0.22-μm 

nonsterile PTFE syringe filter (i-Quip®N2536) before 

auto-injection into the separation column. Note that human 

exposure to PAHs may cause fatal risk, so effective 

precautions have to be taken in the whole experiment. The 

sample preparation should be carried out in a fume hood 

with wearing suitable gloves, eye/face protection and other 

protective clothes. 

4. Results and Discussions 

4.1. Simulated Data Analysis 

4.1.1. A Noise-free Three-way Data Array 

First, a three-way chromatography-mass spectrum data 

array without any noise was simulated to investigate the 

accuracy of the novel method. In the simulated data, four 

source samples were designed to reproduce four receptor 

samples according to Equation (7) and four species were used 

as markers in the source and receptor samples. A display of the 

normalized chromatogram, mass spectrogram and 

concentration profiles of simulated data is shown in Figure A1. 

From Figure A1 (A) and (B), we can see that it was complex 

system because there was serious overlap between the four 

components in the dimensions of both chromatography and 

mass spectrometry. However, ATLD-SMR can be firstly 

applied to decompose the simulated three-way data array to 

obtain the accurate chromatograms, mass spectrograms, and 

concentrations of the four components (The information is not 

shown here because the discussion on the resolution and 

quantification of analytes with second-order calibration 

methods can be found elsewhere). Then, the contributions of 

different sources to receptors can be estimated by the obtained 

concentrations of the four components with the ATLD-SMR 

method. The fourth column of Tables A3-A4 and the third 

column of Table 1 list the predicted contributions and 

statistical results of the four sources to four receptors in the 

simulated data. The accuracy of the developed method was 

100% for the noise-free three-way data, which indicates that 

the proposed method is feasible. 

4.1.2. A Three-way Data Array with Different 

Homoscedastic Noise Levels 

In real environmental analysis, noise often occurs in 

measured data arrays. Thus, different homoscedastic noise 

levels (0.001, 0.002, 0.005 and 0.01, respectively) were first 

added in the simulated data array to further check the 

performance of the proposed method. From Tables A3-A4 and 

Table 1, it can be seen that when the homoscedastic noise level 

was less than 0.005, the results of the developed method were 

satisfactory with an AD (×10
-2

) ranging from 0.2 to 3.8 and an 

RMSEP (×10
-3

) ranging from 0.3 to 9.5. When the noise level 

increased to 0.01, the results of the new method were still 

satisfactory with an ARC ranging from 0.9609 to 1.0417 and 

T-test values less than 1.5. These results of the developed 

method were acceptable for a homoscedastic noise level as 

high as 0.01. 

4.1.3. A Three-way Data Array with Different 

Heteroscedastic Noise Levels 

Then, different heteroscedastic noise levels (0.001 to 0.01) 

were integrated into the simulated three-way data array to 

verify the feasibility of the novel method. The results are 

summarized in Table 2 and Supporting Information A5-A6. It 

was found that the results were similar to those of the 

homoscedastic noise. The AD and RMSEP values increased 

with an increase in the heteroscedastic noise level. When the 
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noise level was 0.01, the results of the proposed method 

remained acceptable, although there was one outlier value of 

related coefficient (see Supporting Information A6). During 

the real measurement process, the noise level was rarely 

greater than 0.01. Thus, the new method is a promising tool 

for source apportionment of complex ambient particulate 

matter as demonstrated by real atmospheric data in the 

forthcoming sections. 

Table 1. Statistical parameters obtained with the developed method in analysis of a simulated data set with different homoscedastic noise. 

Source Parameter 0.000 0.001 0.002 0.005 0.01 

S1 ARC a 1.0000 1.0001 0.9847 0.9945 1.0003 

 ADb 6.4×10-12 0.2 0.9 1.7 4.1 

 T-testc 0.4 0.1 2.1 0.4 1.0×10-2 

 RMSEPd 1.5×10-11 0.3 3.8 4.3 8.8 

S2 ARC 1.0000 0.9966 1.0048 1.0264 0.9960 

 AD 8.3×10-12 0.6 1.7 1.2 1.7 

 T-test 0.6 0.7 0.4 2.8 0.3 

 RMSEP 4.2×10-11 2.8 5.5 9.5 6.7 

S3 ARC 1.0000 1.0008 1.0038 0.9702 0.9609 

 AD 2.4×10-11 1.2 1.9 2.2 4.4 

 T-test 1.2 0.1 0.3 1.9 1.3 

 RMSEP 9.7×10-11 2.8 6.7 9.3 14.0 

S4 ARC 1.0000 1.0144 1.0053 0.9988 1.0417 

 AD 1.8×10-11 1.0 1.7 3.8 3.4 

 T-testc 1.6 2.0 0.4 3.9×10-2 1.5 

 RMSEP 3.9×10-11 1.9 3.8 6.0 12.0 

aARC=Average related coefficients; the related coefficient is the ratio between the predicted and the true contribution. 
bAD (×10-2)= Average deviation. 
c 0T (X μ ) / (S / n )= − ; here, X  is the average related coefficient, µ0 is 1.0000, n is the degree of freedom (where n+1 is the number of evaluated levels), and the 

confidence level is 95%, 4
0.025T =3.18 . 

d The root mean square error of prediction (RMSEP, ×10-3) can be calculated as follows: 

( )
1/2

2

true predicted
1

RMSEP c c
I 1

 = ∑ − − 
 

where ctrue and cpredicted are the actual and predicted contribution, respectively, and I is the number of prediction samples. 

Table 2. Statistical parameters obtained with the developed method in 

analysis of a simulated data set with different heteroscedastic noise. 

Source Parameter 0.001 0.002 0.005 0.01 

S1 ARC 0.9952 1.0056 1.0171 1.0148 

 AD 0.7 0.6 2.0 3.2 

 T-test 0.8 1.2 1.1 0.7 

 RMSEP 2.0 1.7 5.3 6.8 

S2 ARC 0.9990 0.9882 0.9988 1.0161 

 AD 0.2 1.4 2.7 5.0 

 T-test 0.7 1.3 0.1 0.4 

 RMSEP 1.2 6.2 8.8 25.0 

S3 ARC 1.0007 1.0311 0.9632 0.9760 

 AD 0.2 3.2 4.1 9.9 

 T-test 0.4 1.3 1.1 0.3 

 RMSEP 1.1 8.2 11.0 34.0 

S4 ARC 1.0112 0.9874 1.0876 1.0737 

 AD 1.6 1.2 6.4 8.5 

 T-test 0.9 1.3 1.9 1.1 

 RMSEP 2.1 1.9 11.0 12.0 

4.2. Real Data Analysis 

4.2.1. The Problems of Baseline Drift and Retention-time 

Shift 

Figure 3 (A) shows the total ion current (TIC) 

chromatograms of all of the samples studied in this work. As 

seen from Figure 3 (A), there were serious baseline drifts in the 

studied retention domains for most of the samples. Another 

troublesome problem was that the chromatographic baseline 

drift of each sample differed from that of one another. Thus, it 

was clear that it was impossible to carry out an accurate 

identification and quantification of tracers of interest for such 

an actual complex situation with univariate regression. Usually, 

the baseline drift can be fitted as one or more extra component 

(s) in LC×LC-DAD or LC-MS data with second-order 

calibration method [29-30]. Herein, the ATLD method was 

firstly introduced to address the difficult problem of baseline 

drift in GC-MS data for the first time. As illustrated in Figure 3 

(B), raw GC-MS data array of BbF in calibration samples 

(7.57-7.72 min, only one analyte of BbF) was decomposed by 

the ATLD method for 100 times with factor number N=1, the 

result was very poor and there was only 33% probability to get 

BbF with regression coefficient (R) of only 0.9834. However, 

when N=2, the raw array was fitted very well by ATLD 

(R=0.9999). The results demonstrated that baseline drift was 

fully extracted out as an extra component and “pure signal” of 

BbF can be exactly identified. Therefore, the problem of serious 

baseline drifts in GC-MS analysis can be easily resolved with 

the aid of the proposed strategy. 
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Figure 3. (A) Total ion current (TIC) chromatograms of all samples. (B) Raw GC-MS data of BbF in calibration samples was decomposed by the ATLD method 

with N=1, 2 and 3, respectively. (C) Raw TIC profiles of seven calibration samples, and their profiles aligned by ASSD method. 

For the sake of providing accurate solutions and reducing 

data analysis and handling time, the elution region of 10 PAHs 

could be divided into four sub-segments, including 2.75-4.73, 

5.50-5.79, 6.73-6.80 and 7.62-7.99 minutes, respectively. The 

analytes in these sub-segments overlapped with each other 

partially or fully on the retention time. In the fourth 

sub-segment, there were obvious retention-time shifts, which 

could be found in raw TIC profiles of Figure 3 (C). Additionally, 

when N=3 in the example of BbF mentioned above, the shift 

component was also extracted out by the ATLD method (see 

the retention-time and sample-number plots of Figure 3 (B) 

(N=3)). Thus, the retention-time shift must be aligned before 

applying ATLD-SMR to analyze the three-way data array. 

Many chemometric strategies had been developed for aligning 

chromatographic peaks shifts among samples [31-33]. In the 

work, a named abstract subspace difference (ASSD) method 

was used to align the time shift occurring in the fourth 

sub-domain [34]. The aligned chromatographs of seven 

calibration and three test samples by ASSD method were shown 

in Figure 3 (C), which showed that the problem of 

retention-time shifts had been resolved successfully. 

4.2.2. Identification of Tracers in Source and Receptor 

Samples 

During the progress of model construction, a three-way 

dataset of twenty-two samples including seven calibration 

samples, ten source samples and five receptor samples was 

firstly divided into four sub-three-way data arrays according 

to four elution chromatographic segments mentioned above. A 

pictorial display of the identified results with the ATLD-SMR 

method was given in Figure 4. In the dimension of elution 

time, it was found that chromatograms of ten tracers are 

heavily overlapped with each other or unknown interference 

co-eluted. Even so, ATLD-SMR can still extract clear 

chromatographic profiles of ten tracers in all of samples. The 

resolved chromatographic profiles of ten tracers were in good 

agreement with their corresponding real ones, which were 

shown in Figure 4 (A1-A4). In the dimension of mass 

spectrum, besides overlapped with uncalibrated components, 

there were three pairs of tracers completely overlapped with 

each other, such as (1) FLO and PYR, (2) BaA and CHR, (3) 

BbF, BaP and BeP. However, the resolved mass spectra of ten 

tracers matched quite very well with the actual ones (shown in 

Figure 4 (B1-B4)). These results indicated the ATLD-SMR 

method had the accurate and reliable qualitative performance, 

which can be applied to identify tracers from complex 

environmental samples even in the presence of unknown and 

uncalibrated interference. 
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Figure 4. A pictorial display of the resolved results of 10 trackers in 22 samples by ATLD-SMR. A1-A4, normalized elution time fingerprints; B1-B4, normalized 

mass spectra fingerprints; C1-C4, relative concentration fingerprints. 

4.2.3. Quantification of Tracers in Source and Receptor 

Samples 

Based on the above reliable qualitative results, a 

quantification of ten tracers in source and receptor samples 

can be obtained by the developed method. Table 3 listed the 

predicted concentrations of tracers in source and receptor 

samples. From the table we can see, the highest concentrations 

of individual PAHs in these samples were for phenanthrene 

and benzo [a] pyrene (40.76 ng m
-3

 and 39.63 ng m
-3 

in 

Liangang steel-making workshop, respectively). Then, the 

obtained concentrations of ten tracers can be applied to 

estimate the relative source contributions to different PM10 

samples with the ATLD-SMR method in the following step. 

Table 3. Predicted concentrations of PAHs in source and PM10 samples. 

 Samples 
Predicted values/ng m-3 

ACN FLU PHE FLO PYR BaA CHR BbF BeP BaP 

 SYB 15. 51 1.17 39.28 0.00 4.78 7.97 2.80 0.00 26.75 17.97 

 EG 0.00a 0.00 36.06 0.00 4.10 9.16 0.62 0.00 19.37 29.87 

 BSD 0.00 0.28 6.90 0.00 1.88 1.57 0.88 0.00 2.59 5.87 

Pollution NFY 0.00 1.28 13.87 0.00 7.43 2.34 0.00 0.00 8.12 7.46 

Sources LGPW 0.00 0.00 38.07 0.00 3.45 8.58 5.18 0.00 22.28 23.98 

 LGSW 0.00 1.66 40.76 0.00 3.95 9.99 3.49 0.00 18.11 39.63 

 BJMD 0.00 0.46 36.53 0.00 11.76 8.77 3.29 0.00 27.20 15.73 

 MED 0.00 2.27 13.55 2.19 12.65 0.00 10.90 10.32 0.00 19.11 

 AED 0.00 0.33 10.21 0.00 1.48 2.13 1.31 0.00 6.04 5.07 

 TED 0.00 0.00 9.58 0.00 1.15 1.33 1.83 0.00 0.00 19.34 

 BW 14.05 2.86 31.34 0.00 3.43 6.42 0.54 0.00 19.43 17.15 

 RWS 0.00 0.19 4.06 0.00 1.85 0.92 0.12 0.00 2.64 1.99 

PM10 LG 13.40 0.93 4.26 0.00 0.52 0.99 0.00 0.00 3.14 3.29 

 MG 0.00 0.77 38.00 0.00 9.54 8.01 3.38 0.00 19.20 37.17 

 SY 0.00 0.02 1.20 0.00 0.27 0.28 0.12 0.00 0.87 0.57 

a The predicted values which are less than or equal to zero are set to be equal to zero. 

4.2.4. The Estimation of the Source Contribution to PM10 

According to the obtained concentrations of ten tracers in 

the source and receptor samples, the relative contribution 

matrix of P can be calculated with the ATLD-SMR method. 
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Wherein, the concentrations of ten tracers in the source 

samples were used as the score matrix of sources, and these in 

the receptor samples as the score matrix of receptors. Then, we 

obtained the relative contribution of each single source to the 

PM10 samples. They are listed in Table 4. At site BWPM, the 

main pollution sources were AED (73.35%), SYB (9.93%) 

and LGSW (6.19%). At site RWSPM, MGPM, and SYPM, the 

contribution of AED was also the highest, accounting for 

58.25%, 38.58% and 47.32%, respectively. Only for site 

LGPM, the main pollution sources were BSD (35.05%), SYB 

(21.29%) and AED (17.19%). These results showed that AED 

was the principal single pollution source to all measured 

PM10 samples expect for LGPM. 

Table 4. Relative contributions of single source to different PM10 samples with ATLD-SMR. 

Samples 
Relative contributions/% 

SYB EG BSD NFY LGPW LGSW BJMD MED AED TED 

BWPM 9.93 3.23 0.00 0.00 0.00 6.19 3.01 0.00 73.35 4.29 

RWSPM 0.00 7.63 15.77 0.00 0.00 0.00 11.89 0.00 58.25 6.46 

LGPM 21.29 0.00 35.05 0.00 0.00 7.49 11.05 0.00 17.19 7.93 

MGPM 0.00 5.43 0.00 0.00 0.00 4.40 18.52 0.00 38.58 33.07 

SYPM 0.00 0.00 0.00 0.00 1.14 11.62 37.41 0.00 47.32 2.51 

 

In order to apportion the sources of PM10 better, 10 

pollution sources were classified into five types, including 

paved road dust (SYB and EG), indoor emissions (NFY), coal 

and charcoal combustion (BSD, LGPW and LGSW), 

construction fugitive dust (BJMD) and vehicle exhaust (MED, 

AED and TED). A diagrammatic representation of the 

combined contributions is provided in Figure 5. As shown in 

Figure 5, vehicle exhaust was the most significant pollution 

source at the sampling point of the Biwu building, which was 

near a main urban road, contributing 77.64% of the PM10. 

Paved road dust provided the second highest contribution, 

accounting for 13.16%. Industrial coal combustion and 

construction fugitive dust accounted for 6.19% and 3.01%, 

respectively. 

For the railway station point, vehicle exhaust was also the 

main contributor, accounting for 64.72%, which is easy to 

understand for a heavy traffic area, and then followed by the 

contributions that coal and charcoal combustion (15.77%), 

construction fugitive dust (11.89%) and paved road dust 

(7.63%) gave (Figure 5 (B)). For the Liangang industrial area 

(Figure 5 (C)), coal and charcoal combustion, vehicle exhaust 

and paved road dust provided the main contributions to the 

PM10, accounting for 42.54%, 25.12% and 21.29%, 

respectively. For the municipal government and Shuyi 

building (Figure 5 (D) and 5(E)), the contribution of vehicle 

exhaust was the highest as 71.65% and 49.83%, respectively. 

These results showed that vehicle exhaust was the main 

contributor for all sampling points except for Liangang 

industrial area in the studied city. This can be easily explained 

as Loudi is a city with few coal-burning industries but the use 

of family car increases sharply in the city in recent years. Also, 

all the contributions estimated by the proposed method 

conformed to the actual situation in these five areas in the 

studied city. 

 

Figure 5. Relative source contributions to various PM10 samples in an urban area. (A) Biwu building, (B) railway station, (C) Liangang industrial area, (D) 

municipal government and (E) Shuyi building. 
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5. Conclusion 

In the work, the procedure based on the alternating trilinear 

decomposition followed by a score matrix reconstruction 

(ATLD-SMR) of three-way GC-MS data of source and 

receptor samples allowed the source apportionment of PM10 

in different urban locations. The principal of the developed 

method was based on firstly decomposing the combined 

three-way dataset of source and receptor samples by ATLD 

algorithm, then calculating the relative contribution matrix 

according to the reconstructed score matrix of tracers 

extracted from source and receptor scores. The contributions 

of different sources as well as chromatographic and mass 

spectral profiles of ten tracers were obtained using the 

procedure. From the obtained contributions, it was found that 

vehicle exhaust was the principal pollution source to all 

measured PM10 mass except for Liangang. At Liangang, the 

main pollution source was industrial coal and charcoal 

combustion. The new ATLD-SMR method can also address 

other three-way data such as those produced by 

excitation-emission matrix fluorescence or phosphorescence, 

high-performance liquid chromatography-diode array 

detection, liquid chromatography-mass spectrometry, etc. It 

should be applied in other fields, such as the source 

apportionment of water and soil pollution, in the near future. 

Therefore, the newly developed method is a promising tool for 

source apportionment of environmental organic pollutants. 

Appendix 

   

Figure A1. A plot of the normalized chromatogram (A), mass spectrogram (B) and concentration profiles (C) of the simulated data. 

Table A1. Information of source and receptor samples. 

Number Sample Sampling Category Sampling Site 

1 MED TSP Motorcycle Exhaust Dust 

2 AED TSP Automobile Exhaust Dust 

3 TED TSP Truck Exhaust Dust 

4 SYB TSP Raise Dust near Shuyi Building 

5 EG TSP Raise Dust at the East Gate of school 

6 BSD TSP Raise Dust at BBQ Street 

7 NFY TSP Newly decorated room at Nanfeng Community 

8 LGPW TSP Liangang Power Workshop 

9 LGSW TSP Liangang Steel-making Workshop 

10 BJMD TSP Construction site at Binjiang Mingdu 

11 BWPM PM10 Biwu Building 

12 RWSPM PM10 Railway Station 

13 LGPM PM10 North Bridge at Liangang 

14 MGPM PM10 Municipal Government 

15 SYPM PM10 Shuyi Building 

Table A2. Concentrations of 10 PAHs in seven calibration samples (C01-C07). 

Sample No. 
Analyte concentration (μg mL-1) 

ACN FLU PHE FLO PYR BaA CHR BbF BeP BaP 

C01 6.70 0.00 0.00 5.60 0.00 0.00 3.42 0.00 0.00 6.70 

C02 0.00 2.69 0.00 0.00 6.40 0.00 0.00 3.60 0.00 0.00 

C03 0.00 0.00 4.90 0.00 0.00 0.68 0.00 0.00 4.20 0.00 

C04 1.34 2.15 0.98 4.48 4.99 0.14 2.85 0.72 0.84 1.34 

C05 5.36 1.61 1.96 3.36 1.24 0.27 2.28 2.88 1.68 5.36 

C06 2.68 1.08 2.94 2.24 3.84 0.41 1.71 1.44 2.52 2.68 

C07 4.02 0.54 3.92 1.12 2.56 0.54 1.14 2.16 3.36 4.02 
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Table A3. Contributions predicted by the developed method in analysis of a simulated data set with different homoscedastic noise. 

Receptor Source True Contribution (%) 
Predicted contribution (%) 

0.000 0.001 0.002 0.005 0.01 

R1 S1 0.4000 0.4000 0.3996 0.3976 0.3952 0.3981 

 
S2 0.3500 0.3500 0.3458 0.3465 0.3550 0.3432 

 
S3 0.1500 0.1500 0.1536 0.1547 0.1477 0.1501 

 
S4 0.1000 0.1000 0.1025 0.1014 0.1008 0.1073 

R2 S1 0.1500 0.1500 0.1503 0.1487 0.1452 0.1624 

 
S2 0.4500 0.4500 0.4487 0.4458 0.4597 0.4580 

 
S3 0.3000 0.3000 0.2998 0.3042 0.2870 0.2808 

 
S4 0.1000 0.1000 0.1008 0.1023 0.1066 0.0974 

R3 S1 0.1500 0.1500 0.1502 0.1480 0.1531 0.1438 

 
S2 0.2000 0.2000 0.1988 0.2078 0.2039 0.1956 

 
S3 0.5700 0.5700 0.5701 0.5605 0.5698 0.5749 

 
S4 0.0800 0.0800 0.0819 0.0777 0.0748 0.0863 

R4 S1 0.1700 0.1700 0.1697 0.1643 0.1703 0.1640 

 
S2 0.2300 0.2300 0.2317 0.2298 0.2415 0.2318 

 
S3 0.1500 0.1500 0.1469 0.1479 0.1409 0.1347 

 
S4 0.4500 0.4500 0.4502 0.4556 0.4440 0.4683 

Table A4. The related coefficients obtained by the developed method for the analysis of simulated data sets with different homoscedastic noise. 

 
contribution 0.000 0.001 0.002 0.005 0.01 

R1 0.4000 1.0000a 0.9991 0.9940 0.9880 0.9953 

 
0.3500 1.0000 0.9880 0.9899 1.0144 0.9805 

 
0.1500 1.0000 1.0242 1.0316 0.9849 1.0005 

 
0.1000 1.0000 1.0252 1.0144 1.0075 1.0728 

R2 0.1500 1.0000 1.0019 0.9916 0.9679 1.0826 

 
0.4500 1.0000 0.9972 0.9907 1.0216 1.0178 

 
0.3000 1.0000 0.9994 1.0140 0.9566 0.9361 

 
0.1000 1.0000 1.0076 1.0227 1.0660 0.9741 

R3 0.1500 1.0000 1.0013 0.9870 1.0203 0.9587 

 
0.2000 1.0000 0.9941 1.0392 1.0196 0.9781 

 
0.5700 1.0000 1.0001 0.9834 0.9997 1.0086 

 
0.0800 1.0000 1.0240 0.9716 0.9349 1.0792 

R4 0.1700 1.0000 0.9982 0.9663 1.0019 0.9647 

 
0.2300 1.0000 1.0073 0.9992 1.0501 1.0077 

 
0.1500 1.0000 0.9793 0.9863 0.9396 0.8981 

 
0.4500 1.0000 1.0005 1.0124 0.9866 1.0408 

a1.0000 is the related coefficient between the predicted and the true value. 

Table A5. Contributions predicted by the developed method in analysis of a simulated data set with different heteroscedastic noise. 

Receptor Source True Contribution (%) 
Predicted contribution (%) 

0.001 0.002 0.005 0.01 

R1 S1 0.4000 0.3984 0.4012 0.4017 0.3982 

 
S2 0.3500 0.3504 0.3409 0.3454 0.3538 

 
S3 0.1500 0.1498 0.1626 0.1501 0.1405 

 
S4 0.1000 0.1002 0.1000 0.1045 0.1053 

R2 S1 0.1500 0.1513 0.1493 0.1586 0.1567 

 
S2 0.4500 0.4480 0.4501 0.4464 0.4145 

 
S3 0.3000 0.3016 0.2991 0.2929 0.3509 

 
S4 0.1000 0.0997 0.0988 0.1119 0.1006 

R3 S1 0.1500 0.1474 0.1520 0.1490 0.1456 

 
S2 0.2000 0.2000 0.2008 0.1927 0.2075 

 
S3 0.5700 0.5692 0.5703 0.5667 0.5591 

 
S4 0.0800 0.0835 0.0770 0.0948 0.0994 

R4 S1 0.1700 0.1689 0.1718 0.1722 0.1783 

 
S2 0.2300 0.2299 0.2242 0.2421 0.2518 

 
S3 0.1500 0.1500 0.1564 0.1322 0.1226 

 
S4 0.4500 0.4512 0.4494 0.4510 0.4466 
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Table A6. The related coefficients obtained by the developed method for the analysis of simulated data sets with different heteroscedastic noise. 

 
contribution 0.001 0.002 0.005 0.01 

R1 0.4000 0.9959 1.0029 1.0042 0.9955 

 
0.3500 1.0011 0.9740 0.9869 1.0109 

 
0.1500 0.9985 1.0840 1.0010 0.9366 

 
0.1000 1.0020 1.0005 1.0446 1.0530 

R2 0.1500 1.0085 0.9954 1.0574 1.0445 

 
0.4500 0.9955 1.0003 0.9921 0.9211 

 
0.3000 1.0054 0.9969 0.9765 1.1697 

 
0.1000 0.9969 0.9877 1.1187 1.0063 

R3 0.1500 0.9830 1.0132 0.9936 0.9703 

 
0.2000 0.9998 1.0038 0.9636 1.0377 

 
0.5700 0.9986 1.0006 0.9942 0.9808 

 
0.0800 1.0433 0.9626 1.1848 1.2430 

R4 0.1700 0.9933 1.0108 1.0131 1.0489 

 
0.2300 0.9998 0.9749 1.0526 1.0949 

 
0.1500 1.0002 1.0428 0.8812 0.8171 

 
0.4500 1.0027 0.9986 1.0023 0.9925 
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