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Abstract: Main results is: (1) let κ be an inaccessible cardinal and Hk	is a set of all sets having hereditary size less then κ, 

then Con(ZFC + (V = Hk )), (2) there is a Lindelöf T3 indestructible space of pseudocharacter ≤N1 and size N2 in �. 

Keywords: Inner Model of ZFC, Inaccessible Cardinal, Weakly Compact Cardinal, Lindelöf Space, Indestructible Space,  

N1 Borel Conjecture 

 

1. Introduction 

A note on the term large cardinal is in order. A cardinal 

number is ‘large’ if the assumption of its existence, when 

added to the axioms of ZFC, proves the consistency of ZFC. 

This works as follows, for any cardinal � one can consider 

the set ��  – the set of all sets which have size less than � and 

whose members and members of members and . . . all have 

size less than �. Loosely speaking � is large if ��  is a model 

of ZFC.  

Theorem 1. [7].	¬	
�(
�	 + (� = ��)). 

A cardinal number �  is an inaccessible cardinal (also a 

strongly inaccessible cardinal) if it is regular and 2�  <  � 

whenever �< � is a cardinal. � is a weakly compact cardinal 

if it is inaccessible and, whenever � is a tree of height � with 

levels of size less than �, then � has a branch of length �. � 

is a measurable cardinal if there is a nonprincipal �-complete 

ultrafilter (i.e., closed under intersections of size less than �). 

A cardinal �  is a strongly compact cardinal if every � -

complete filter can be extended to a �-complete ultrafilter. 

All of these cardinals have several equivalent formulations. 

The easiest to state are often in terms of ultrafilters, but the 

most useful involve elementary embeddings. 

Definition 1. Any inner model of ZFC is a class �	 =
	{�:	�(�)}, for some formula �, such that ZFC holds in �. 

An elementary embedding � ∶ �	 → �,  where �  is the 

universe of sets, is a function such that for every !", . . . , !# 	∈
	�, and for every formula %(�", . . . , �#), %(!", . . . , !#) holds 

if and only if %(�	(!"), . . . , �	(!#)) holds in �. � is closed 

under � -sequences If �� , the class of all � -sequences of 

members of �, is a subclass of �. 
From definitions one can prove that.  

Theorem 2. � is measurable if and only if there is an 

inner model � closed under �-sequences and an elementary 

embedding � ∶ �	 → � such that �	(�) > �. 
From Theorem 1 and Theorem 2 one obtain directly. 

Theorem 3. Assume that � is measurable cardinal. There is 

no any inner model � of ZFC such mentioned above. 

Large cardinals sometimes appear in purely topological 

contest. Well known from Jones’ Lemma that 2|(|	 ≤ 2*(+) 
whenever , is a closed discrete subset of a normal space X, 

where -(.)  denotes the density of X. The extent of X, 

denoted /(.),  is the supremum of the cardinalities of the 

closed discrete subsets of X and this suggests the natural 

question whether also 20(+)	 ≤ 2*(+) for normal spaces. This 

leads to inaccessible cardinals: if 20(+)	 > 2*(+) then /(.) is 

a weakly inaccessible cardinal. For example from an 

inaccessible cardinal one can prove the consistency of the 

existence of a normal space satisfying the above inequality. 

Strongly compact and weakly compact cardinals can be 

equivalently formulated topologically: � is strongly compact 

if and only if the �-box product of �-compact spaces is �-

compact, wherein one takes the Tychonoff Product Theorem 

and replaces “finite” by “< � ” everywhere; �  is weakly 

compact is the ordinary product of �-compact spaces is again 

�-compact. The most significant uses of large cardinals in 

topology occur in contexts in which one is proving the 

consistency of universal statements about objects of 

unbounded cardinality, for example, the Normal Moore 

Space Conjecture: all normal Moore spaces are metrizable, or 

the Moore–Mrówka problem: compact spaces of countable 

tightness are sequential. 
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The latter is an application of the Proper Forcing Axiom 

(PFA) [33], which is proved consistent from the consistency 

of a supercompact cardinal, and applications of which – in 

contrast to those of Martin’s Axiom– often require the 

practitioner to actually do some forcing. Frequently, finer 

analyses of PFA consequences reveal that in fact one need 

only consider objects of bounded cardinality, in particular ℵ". 
In such cases, a more delicate forcing argument enables one 

to avoid large cardinals. That is the case with the Moore–

Mrówka problem referred to above. 

2. Consistency Results in Topology 

Definition 1. [28].A Lindelöf space is indestructible if it 

remains Lindelöf after forcing with any countably 

closed partial order. 

Theorem 1.[29].If it is consistent with ZFC that there is an 

inaccessible cardinal, then it is consistent with 

ZFC that every Lindelöf �2 indestructible space of weight 

≤ ℵ" has size ≤ ℵ". 
Corollary 1.[29] The existence of an inaccessible cardinal 

and the statement:	ℒ[�2, ≤ ℵ", ≤ ℵ"] ≜ "every 

Lindelöf �2  indestructible space of weight ≤ ℵ"  has size 

≤ ℵ"", are equiconsistent. 

Theorem 2. ¬	
�(
�	 + ℒ[�2, ≤ ℵ", ≤ ℵ"]). 
Proof. Theorem 1 immediately follows from Theorem 3.6 

[32] and Corollary 1. 

Definition 2. The ℵ" -Borel Conjecture is the statement: 

7	[ℵ"] ≜ "a Lindelöf space is indestructible if and only 

if all of its continuous images in [0; 1];< 	have cardinality 

≤ ℵ"". 

Theorem 3. [29]. If it is consistent with ZFC that there is 

an inaccessible cardinal, then it is consistent with ZFC 

that the ℵ"-Borel Conjecture holds. 

Corollary 2. The ℵ"-Borel Conjecture and the existence of 

an inaccessible cardinal are equiconsistent. 

Theorem 4. ¬	
�(
�	 + 7	[ℵ"]). 
Proof. Theorem 4 immediately follows from Theorem 3.6 

[32] and Corollary 2. 

Theorem 5.[29]. If =>  is not weakly compact in �, then 

there is a Lindelöf �2 indestructible space of 

pseudocharacter ≤ ℵ" and size ℵ>. 
Corollary 3.The existence of a weakly compact cardinal 

and the statement: ℒ[�2, ≤ ℵ", ≤ ℵ>] ≜ "there is no 

Lindelöf �2  indestructible space of pseudocharacter ≤ ℵ" 
and size ℵ> are equiconsistent. 

Theorem 6.There is a Lindelöf �2 indestructible space of 

pseudocharacter ≤ ℵ" and size ℵ> in �. 
Proof.Theorem 6 immediately follows from Theorem 3.6 

[32] and Theorem 5. 

Theorem 7. ¬	
�(
�	 + 	ℒ[�2, ≤ ℵ", ≤ ℵ>]). 

Theorem 8. (Solovay) If => is not inaccessible in �, then 

there is a Kurepa tree. 

Corollary 4. (Solovay) There is a Kurepa tree in �. 

Proof. Immediately follows from Theorem 3.6 [32] and 

Theorem 5. 

 

3. Consistency Results in Homotopy 

Theory 

Classical homotopy idempotent functors appear frequently 

in algebraic topology. A homotopy idempotent functor is a 

functor ?  from some model category  to itself that carries 

weak equivalences to weak equivalences and is equipped 

with a natural transformation [36]:  @: Id → ? such that both 

@? and ?@ induce weak equivalences ?.	 ≅ 	??.  for all .. 
In [37], Farjoun developed a theory of localization with 

respect to any map D ∶ E	 → 	7 . Farjoun’s construction 

associates functorially with each space .  a map . →	�F. 

which is universal, up to homotopy, among maps from . into 

fibrant spaces G such that the map off function complexes 

map(7, G	) 	→ 	map(E, G	)	

induced by D  is a weak equivalence. We assume that any 

spaces will be simplicial sets, and maps and function 

complexes will be unbased. For each map D, the functor �F. 

is homotopy idempotent and continuous, that is, it induces a 

natural map of function complexes 

map(., G	) 	→ 	map(�F., �FG)	

for all .  and G , preserving composition and identity. Dror 

Farjoun to ask in his paper [37]: if every homotopy 

idempotent functor on simplicial sets is equivalent to some 

D-localization?. In [35] was shown that it is impossible to 

answer this question “yes” using only 
�	 axioms. 

Moreover, a negative answer to this question in 
�	 is not 

to be expected, as it would imply the inconsistency of certain 

large-cardinal axioms that are believed to be consistent with 


�	 after many years of related developments in set theory. 

We remind that an cardinal � is regular if it is infinite and 

cannot be expressed as a sum of cardinals ∑ �LLMN , where 

O < �, �L < O for all i. Otherwise, �  is called singular. 

Definition 1. A partially ordered set is called directed if  

every pair of elements has an upper bound. More generally, 

for any regular cardinal �, a partially ordered set is called � -

directed if every subset of cardinality smaller than � has an 

upper bound. 

Definition 2. An object .  of a category 	   is called �  -

presentable, where � is a regular cardinal, if 

the functor 	(.,−) preserves � -directed colimits, that is, 

colimits of diagrams ,:	Q	 → 	   where Q  is a �  -directed 

partially ordered set. 

Definition 3. A category 	  is locally presentable if it is 

cocomplete and there is a regular cardinal � and a set X of 	�-

presentable objects such that every object of 	  is a �  –

directed colimit of objects from .. 

Definition 4. An idempotent monad on a category 	 is a 

pair (?, @)  consisting of a functor ?  and a natural 

transformation @: Id → ?  such that @R+: ?.	 → 	??.  is an 

isomorphism for every object ., and @R+= ?@+ for all .. 

Definition 5. For simplicity, we say that a functor ?  is 

idempotent if it is part of an idempotent monad. Then we 

also call it a reflection or a localization. 

Definition 6. An object . and a morphism D ∶ E	 → 	7 in a 
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category 	 are orthogonal if the map 

	(D, .):		(7, .) 	→ 		(E, .) 

is bijective; that is, .  and D  are orthogonal iff or every 

morphism S: E	 → 	. there is a unique morphism ℎ: 7	 → 	. 

such that ℎ	°	D	 = 	S. The class ofobjects that are orthogonal 

to a given class V of morphisms is denoted by VW and called 

the orthogonal complement of V. The same notation is used 

by exchanging the role ofobjects and morphisms. 

Definition 7. A class , ofobjects in a category 	 is called 

reflective if it is the class of ?  local objects for some 

idempotent functor ?. (No distinction is made here between 

a class of objects and the full subcategory with those 

objects.)  

Definition 8. A class of objects ,  is called a small-

orthogonality class if there is a set M of morphisms (not a 

proper class) such that �W = 	,.	

Definition 9. A functor ? on the category of simplicial sets 

is homotopy idempotent if it carries weak equivalences to 

weak equivalences and is equipped with a natural 

transformation: @: Id → ?  such that @R+ ≅ ?@+  and 

@R+: ?.	 → 	??. is a weak equivalence for all .. 
It well known that, in the category of groups, for every 

(possibly proper) class S of epimorphisms, the orthogonal 

complement VW is reflective [38]. 

Definition 10. For any group X, let �X be the intersection 

of all kernels of epimorphisms from X onto groups in VW.  

Then ?X	 = 	X/�X  is the desired reflection.  

Definition11.In the special case when V  is a class of 

homomorphisms of the form EN 	→ 	0, where EN ranges over 

a set or a class E of groups, the corresponding reflection will 

be called E	 −reduction and denoted Z[. 
Thus, a group X  is E -reduced if and only if the set 

Hom(EN , X) is trivial for every EN in  E. 

For each cardinal � , we denote by 
�  the cartesian 

product group of � copies of the additive group  of integers; 

that is, 
�  is the abelian group of all functions D	�:	 → 	
. For 

a function f ∈ 
� , the support supp	(D) is the set of indices 

`	 ∈ 	� for which D(`) 	≠ 0. 

We write 
M� to designate the set of all functions f ∈ 
�  

such that the cardinality of supp(D) is smaller than �. 

Theorem1.[35] Suppose that all cardinals are 

nonmeasurable. If A is the class of groups 
� /
M�  for all 

cardinals �, then there is no single group homomorphism b 

such that  b-localization is isomorphic to A-reduction on the 

category of groups. 

We remind that an uncountable cardinal c is measurable if 

it admits a nontrivial, two valued, c -additive measure, that is, 

if a function c can be defined on any set X of cardinality c 

assigning to each subset of X a value 0 or 1, in such a way 

that µ (X) = 1, µ (x) = 0 for all �	 ∈ 	. , and c (⋃ Aff )=
∑ c	(EL 	)	L fthe subsets EL  are pairwise disjoint and the set 

ofindices i has cardinality smaller than c. 

Theorem 2. If A is the class of groups 
� /
M�  for all 

cardinals �, then there is no single group homomorphism b 

such that b-localization is isomorphic to A-reduction on the 

category of groups. 

Proof. Note that the existence of measurable cardinals 

cannot be proved in 
�	, since every measurable cardinal is 

strongly inaccessible; see [39].Therefore Theorem2  

immediately follows from Theorem 3.6 [32] and Theorem 1. 

Theorem3.[35]. Suppose that all cardinals are 

nonmeasurable. Then there is a homotopy idempotent functor 

? on simplicial sets that is not equivalent to D-localization 

for any map D. 

Theorem4. There is a homotopy idempotent functor ? on 

simplicial sets that is not equivalent to D-localization for any 

map D. 
Proof. Note that the existence of measurable cardinals 

cannot be proved in 
�	, since every measurable cardinal is 

strongly inaccessible; see [39].Therefore Theorem4  

immediately follows from Theorem 3.6 [32] and Theorem3. 

Definition 11. A class of objects is called rigid if it admits no 

other morphisms than identities. 

Vopenka’s principle [39]: no locally presentable category 

contains a rigid proper class of objects. 

Definition 12. Recall that, if ? is a homotopy idempotent 

functor on simplicial sets, a simplicial set .  is called ? -

acyclic if ?. is contractible. A universal E-acyclic space is a 

simplicial set g such that the nullification Zg kills the same 

simplicial sets as ? does. 

Theorem 5. [35] The existence of a universal E-acyclic 

space for every homotopy idempotent functor E on simplicial 

sets is ensured by Vopenka’s principle. However, if we 

assume that measurable cardinals do not exist, then there are 

homotopy idempotent functors on simplicial sets for which 

no universal acyclic space exists. 

Theorem6. There are homotopy idempotent functors on 

simplicial sets for which no universal acyclic space exists. 

Theorem 6 immediately follows from Theorem 3.6 [32] 

and Theorem5. 

4.Von Neumann's Problem and Large 

Cardinals 

In 1937 von Neumann asked whether every ccc weakly 

distributive complete Boolean algebra is a measure algebra 

[40]. 

Definition 1. A subset of a Boolean algebra is an antichain 

if it consists of nonzero elements but the meet of any two of 

its members is zero. 

Definition 2. A Boolean algebra is iii if it does not have 

uncountable antichains. 

Definition 3. A complete Boolean algebra is weakly 

distributive if for every sequence E#(� ∈ ℕ)  of maximal 

antichains there is a maximal antichain E such that for every 

! ∈ 	E and � ∈ ℕ the set {k ∈ E#|k⋀! ≠ 0} is finite. 

Definition 4. A complete Boolean algebra 7 is a measure 

algebra if it carries a m-additive measure c:	7 → 	 [0, 1] that is 

strictly positive: c(!) 	= 	0 implies !	 = 	0.  
Definition 5. b:7	 → 	 [0, 1] is a submeasure if b(0) = 0 

and it is monotonic and subadditive: b(!⋃ k) ≤ 	b 

(a)+b(k). 

Definition5. A complete Boolean algebra 7 is a Maharam 

algebra if it carries a strictly positive continuous submeasure. 

Bellow 
(�) =denotes the Mitchell order of ameasurable 
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cardinal �. 
Recall that every measure algebra is a Maharam algebra, 

and every Maharam algebra has iii  and is weakly 

distributive 

Theorem 1. [41]. Assume every iii  weakly distributive 

complete Boolean algebra is a Maharam algebra. Then there 

is an inner model with a measurable cardinal �  such that 

(�) = �nn. 

Theorem 2. There is iii  weakly distributive complete 

Boolean algebra 7 such that 7 is no Maharam algebra. 

Theorem 3. [41]. Assume every weakly distributive 

complete Boolean algebra 7  such that every completely 

countably generated subalgebra is a measure algebra and 7 

has property o is a Maharam algebra. Then there is an inner 

model with a measurable cardinal � such that (�) = �nn. 

Theorem 4. There is a weakly distributive complete 

Boolean algebra 7  such that every completely countably 

generated subalgebra is a measure algebra and 7 hasproperty 

o such that 7 is no Maharam algebra. 

Theorem 5. [42] For any infinite regular cardinal �, the 

following are equivalent: 

(1) Every � -complete filter �  on a < � -distributive 

complete Boolean algebra 7  is contained in a � -complete 

ultrafilter g	 ⊆ 	7. 

(2) � is strongly compact. 

Theorem 6. For any infinite regular cardinal � there is �-

complete filter �  on a < � -distributive complete Boolean 

algebra 7  such that �  is not contained in a � -complete 

ultrafilter g	 ⊆ 	7. 

5. Conclusions 

Whenever if one uses inexistence large cardinals to 

establish the consistency of an topological statement �, the 

canonical way one shows that a statement ¬� imply the an 

existence an large cardinals is to show that if ¬� holds, then 

there is an inner model � which has a large cardinal and so 

statement � holds.For example, note that the consistency of 

the existence of an inaccessible cardinal enables one to prove 

the consistency of there is Kurepa trees, one then shows that 

if there is no Kurepa tree, then ℵ> is an inaccessible cardinal 

in Gödel’s constructible universe �  and hence that it is 

consistent that there is an inaccessible cardinal in �  and 

therefore: there is a Kurepa tree in �. 
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