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Abstract: This paper presents a comprehensive study on bi-ordered soft separation axioms applied to soft bitopological
ordered spaces. The main focus of this research is to examine the properties, descriptions, and characteristics of these axioms.
By exploring the relationships between these axioms and other properties of soft bitopological ordered spaces, this study
expands our understanding of these spaces and their associated properties. Notably, significant findings are presented,
establishing connections between the introduced bi-ordered axioms and properties such as soft bitopological and soft hereditary
properties. The concepts of bi-ordered soft separation axioms, namely PSTi (resp. PST •i , PST

∗
i , PST

∗∗
i )−ordered spaces,

(where i = 0, 1, 2), are introduced and illustrated through relevant examples. These examples help clarify the relationships
among the axioms and enhance our comprehension of their significance. Furthermore, this paper investigates the distinctions
among separation axioms in topological ordered spaces and provides examples of relevant attributes from the literature. The
separation axioms discussed in this research demonstrate enhanced descriptive power in characterizing the properties of
topological ordered spaces. In addition to the above, the paper introduces the concept of bi-ordered subspace and explores the
property of hereditary in the context of soft bitopological ordered spaces. These additions further enrich the understanding and
applicability of bi-ordered soft separation axioms.
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1. Introduction

In 1965, Nachbin [17] introduced the concept of a
topological ordered space by incorporating a partial order
relation into the structure of a topological space, thereby
generalizing the notion of a topological space. McCartan [13]
later employed the concept of monotone neighborhoods to
define and study ordered separation axioms in these spaces.

Real-life problems often involve vagueness and uncertainty,
which has prompted the development of various mathematical
tools to address these issues. Among these tools are fuzzy sets,
intuitionistic fuzzy sets, rough sets, and vague sets. Another
mathematical instrument designed to handle vagueness and
uncertainty is soft sets, which was first introduced by
Molodtsov [16] in 1999. Since its inception, soft set theory

has been further developed and applied in decision-making
problems by researchers such as Maji et al. in [14, 15]. In
2007, Aktas and Cagman [1] extended the application of soft
set theory to algebraic structures.

In subsequent studies, the concept of soft separation axioms
for crisp points was investigated by Shabir and Naz [19],
while Hussain and Ahmad [7] examined properties related
to soft interior, soft closure, and soft boundary. Nazmul
and Samanta [18] studied neighborhood properties of soft
topological spaces. Four different types of separation axioms
in the context of soft topology were defined and discussed
in a series of papers [8, 10, 19, 21], and Singh and Noorie
[20] established connections between these types of spaces
(Ti, i = 1, 2, 3, 4), further expanding the understanding of soft
topological spaces and their properties.
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In 2014, Ittanagi introduced the concept of soft
bitopological spaces [9], which are defined over an initial
universal set Υ with a fixed set of parameters Π. Ittanagi
also introduced various types of soft separation axioms in this
context. Kandil et al. [11] further studied the structures of
soft bitopological spaces, defining fundamental concepts such
as pairwise open (closed) soft sets and pairwise soft closure
(interior, kernel) operators. They showed that the family of all
pairwise open soft sets forms a supra soft topology η12 that
includes η1 and η2, but it is not always a soft topology.

El-Shafei et al. [4, 5] introduced two new types of
soft relations, “partial belong” and “total non-belong,” and
employed them to develop the concept of a “soft topological
ordered space.” They also presented the notion of “ordered
soft separation axioms,” specifically P -soft Ti-ordered spaces,
where i = 0, 1, 2, 3, 4.

Additionally, El-Sheikh et al. [6] introduced the concept of
soft bitopological ordered spaces, which includes increasing
(decreasing, balancing) pairwise open (closed) soft sets, as
well as the notions of increasing (decreasing, balancing)
total (partial) pairwise soft neighborhoods and increasing
(decreasing) pairwise open soft neighborhoods. They also
studied the relationships between these concepts, including the
increasing (decreasing) pairwise soft closure (interior).

In this paper, we explore the use of soft sets and soft
topologies in the context of ordered spaces. We begin by
providing definitions and properties of soft sets and soft
topologies in Section 2 as a preliminary step. In Section 3, we
introduce the concept of “bi-ordered soft separation axioms”
called PSTi (resp. PST •i , PST

∗
i , PST

∗∗
i )−ordered spaces,

(i = 0, 1, 2).We provide examples to illustrate the connections
between these concepts and highlight their characteristics.

2. Preliminaries

To ensure clear understanding, specialized mathematical
concepts such as “soft set, soft points, soft topological space,
soft topological ordered space, and soft bitopological ordered
space” will be explained concisely. Relevant references
and resources for further reading include [4, 6, 12, 19].
Mathematical notation will be used, such as Υ to represent
the set of all elements, Π to represent a specific set of values
used to define the elements in Υ, and 2Υ to denote the set of
all subsets of Υ, for effective communication.

Definition 2.1. [12] A binary relation . on Υ is considered a
partial order relation if it satisfies the properties of reflexivity,
anti-symmetry, and transitivity. The equality relation on Υ is
represented by N and consists of pairs of the form (ρ, ρ) for
every ρ in Υ.

Definition 2.2. [17] A topological ordered space is defined
as a triple (Υ, η,.), where (Υ, η) represents a topological
space, and (Υ,.) represents a partially ordered set.

Definition 2.3. [16] A pair (ω,Π) constitutes a soft set over
Υ when ω is a function mapping from Π to the power set of Υ,
denoted as ω : Π −→ 2Υ. For brevity, we employ the notation
ωΠ instead of (ω,Π). Another representation of a soft set is

as a collection of ordered pairs, ωΠ = {(α, ω(α)) : α ∈ Π
and ω(α) ∈ 2Υ}. This implies that each element α in the
set Π is mapped by the function ω to a subset of Υ, and ωΠ

encompasses all such pairs (α, ω(α)). The set comprising all
soft sets over Υ is denoted as P (Υ)Π.

Definition 2.4. [15] Given ωΠ ∈ P (Υ)Π, the following
definitions hold:

1. A soft set ωΠ is referred to as a null soft set and denoted
by φ̂ if, for every α in Π, the function ω maps it to the
empty set, i.e., ω(α) = ∅.

2. A soft set ωΠ is termed an absolute soft set and denoted
by ΥΠ, ω(α) = Υ, if, for each α in Π, the function ω
maps it to the entire set Υ, i.e., ω(α) = Υ.

Definition 2.5. [2] Let ωΠ and ~Π be soft sets in P (Υ)Π.
The definitions are as follows:

1. ~Π is considered a soft subset of ωΠ and denoted by
~Π v ωΠ if, for every α in Π, the function ~ maps it
to a subset of the set that ω maps it to.

2. The union of ~Π and ωΠ is a soft set λΠ, denoted by
~Π tωΠ, defined as λ(α) = ~(α)∪ω(α) for all α in Π.

3. The intersection of ~Π and ωΠ is a soft set λΠ, denoted
by ~Π uωΠ, defined as λ(α) = ~(α)∩ω(α) for all α in
Π.

Definition 2.6. [19] Let ωΠ and ~Π be soft sets in P (Υ)Π.
The definitions are as follows:

1. The difference of ~Π and ωΠ is a soft set λΠ, denoted by
λΠ = ~Π − ωΠ, defined as λ(α) = ~(α)− ω(α) for all
α in Π.

2. The complement of ~Π, denoted by ~cΠ, is defined as
~c(α) = (~(α))c for all α in Π.

Definition 2.7. [19] The soft set νΠ over Υ is defined by
a function ν, that maps each element α in the set Π to a set
containing only the element ν, represented by ν(α) = ν, for
each α ∈ Π.

Definition 2.8. [3] A soft set ωΠ over Υ is referred to as
a soft singleton if there exists an element ν0 in Υ such that
ω(α) = ν0 for some α in Π. We denote a soft singleton as
ων0

Π .
Definition 2.9. [4, 16] For a soft set ~Π over Υ and an

element ρ ∈ Υ,
1. We say ρ ∈ ~Π if ρ ∈ ~(α), for each α ∈ Π and ρ 6∈ ~Π

if ρ 6∈ ~(α), for some α ∈ Π.
2. We say ρ b ~Π if ρ ∈ ~(α), for some α ∈ Π and
ρ 6b ~Π if ρ 6∈ ~(α), for each α ∈ Π.

The symbols ∈, 6∈,b, and 6b are interpreted as the relations
of belonging, non-belonging, partial belonging, and total non-
belonging, respectively.

Definition 2.10. [19] A soft topology on Υ is a collection η
of soft sets over Υ with respect to Π that satisfies the following
conditions:

1. The null soft set φ̂ and the absolute soft set ΥΠ are
elements of η.

2. The union of any soft sets in η is also in η.
3. The intersection of any two soft sets in η is also in η.

The triple (Υ, η,Π) is referred to as a soft topological space
over Υ, where each element in η is called a soft open set and
its relative complement is called a soft closed set.
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Definition 2.11. [9] A soft bitopological space is defined as
a quadruple (Υ, η1, η2,Π), where η1 and η2 are two distinct
soft topologies defined on Υ, with a fixed set of parameters Π.

Definition 2.12. [11] In a soft bitopological space
(Υ, η1, η2,Π), a soft set ~Π is called pairwise open
(abbreviated as PO−soft) if it can be expressed as the union of
a η1−open soft set ~1

Π and a η2−open soft set ~2
Π. Similarly, a

soft set ~Π is called pairwise closed (abbreviated as PC−soft)
if its complement is a PO−soft set.

Definition 2.13. [4] A partially ordered soft space is defined
as a triple (Υ,Π,.), where Υ is a set, Π is a set of parameters,
and . is a partial order relation on Υ.

Definition 2.14. [4] Let (Υ,Π,.) be a partially ordered
soft space. An increasing soft operator i : (P (Υ)Π,.) →
(P (Υ)Π,.) and a decreasing soft operator d : (P (Υ)Π,.
) → (P (Υ)Π,.). For each soft set ~Π in P (Υ)Π: Let
(Υ,Π,.) be a partially ordered soft space. An increasing
soft operator i and a decreasing soft operator d are defined
as mappings from P (Υ)Π to P (Υ)Π. For a given soft set
~Π in P (Υ)Π, i(~Π) is defined as (i~)Π, where i~ maps
elements of Π to subsets of Υ such that each element α
is mapped to ρ ∈ Υ : δ . ρ, for some δ ∈ ~(α). Similarly,
d(~Π) is defined as (d~)Π, where d~ maps elements of Π
to subsets of Υ such that each element α is mapped to
ρ ∈ Υ : ρ . δ, for some δ ∈ ~(α).

Definition 2.15. [4] In a partially ordered soft space
(Υ,Π,.), a soft subset ~Π is said to be increasing if it satisfies
~Π = i(~Π), and it is called decreasing if ~Π = d(~Π).

Definition 2.16. [4] A quadrable system (Υ, η,Π,.) is
referred to as a soft topological ordered space (STOS) if it
satisfies two conditions: (Υ, η,Π) is a soft topological space,
and (Υ,Π,.) is a partially ordered soft space.

Definition 2.17. [4] An increasing (resp. decreasing) soft
neighborhood εΠ of an element ν ∈ Υ in an STOS (Υ, η,Π,
.) is defined as a soft neighborhood of ν that is also an
increasing (resp. decreasing) soft subset.

Definition 2.18. [4] Let (Υ, η,Π,.) be an STOS. We say it
satisfies the following properties:

1. It is lower (resp. upper) P-soft T1-ordered if for any
distinct points ν, ζ ∈ Υ, there exists an increasing (resp.
decreasing) soft neighborhood εΠ of ν such that ζ 6b εΠ.

2. It is P-soft T0-ordered if it is either lower P-soft T1-
ordered or upper P-soft T1-ordered.

3. It is P-soft T1-ordered if it is both lower P-soft T1-
ordered and upper P-soft T1-ordered.

4. It is P-soft T2-ordered if for any distinct points ν, ζ ∈ Υ,
there exist disjoint soft neighborhoods εΠ and VΠ of ν
and ζ respectively, such that εΠ is increasing and VΠ is
decreasing.

Definition 2.19. [6] A soft bitopological ordered space
(SBTOS) is defined as the system (Υ, η1, η2,Π,.) satisfying
the following conditions:

1. (Υ, η1, η2,Π) is a soft bitopological space.
2. (Υ,Π,.) is a partially ordered soft space.
Definition 2.20. [6] Let (Υ, η1, η2,Π,.) be a SBTOS. A

soft set MΠ over Υ is said to be:
1. Increasing pairwise open soft (briefly, IPO−soft) if

MΠ = M1
Π tM2

Π,M
β
Π ∈ ηβ and increasing , β = 1, 2.

2. Decreasing pairwise open soft (briefly, DPO−soft) if
MΠ = M1

Π tM2
Π,M

β
Π ∈ ηβ and decreasing , β = 1, 2.

3. Increasing pairwise closed soft (briefly, IPC−soft) if
MΠ = M1

Π uM2
Π,M

β
Π ∈ ηcβ and increasing , β = 1, 2

4. Decreasing pairwise closed soft (briefly, DPO−soft) if
MΠ = M1

Π uM2
Π,M

β
Π ∈ ηcβ and decreasing , β = 1, 2

Definition 2.21. [6] A soft set εΠ in a SBTOS (Υ, η1, η2,Π,
.) is called:

1. Total pairwise soft neighborhood of ρ ∈ Υ if there is a
PO−soft set MΠ such that ρ ∈MΠ v εΠ.

2. Partial pairwise soft neighborhood of ρ ∈ Υ if there is a
PO−soft set MΠ such that ρ bMΠ v εΠ.

Definition 2.22. [6] A soft set εΠ in a SBTOS (Υ, η1, η2,Π,
.) is called:

1. Increasing total pairwise soft neighborhood (briefly,
ITPS− nbd) of ρ ∈ Υ if εΠ is a total pairwise soft
neighborhood of ρ ∈ Υ and increasing.

2. Increasing partial pairwise soft neighborhood (briefly,
IPPS− nbd) of ρ ∈ Υ if εΠ is a partial pairwise soft
neighborhood of ρ ∈ Υ and increasing.

3. Decreasing total pairwise soft neighborhood (briefly,
DTPS− nbd) of ρ ∈ Υ if εΠ is a total pairwise soft
neighborhood of ρ ∈ Υ and decreasing.

4. Decreasing partial pairwise soft neighborhood (briefly,
DPPS− nbd) of ρ ∈ Υ if εΠ is a partial pairwise soft
neighborhood of ρ ∈ Υ and decreasing.

3. Bi−Ordered Soft Separation
Axioms

This section introduces a novel concept known
as Bi-ordered soft separation axioms or PSTi(resp.
PST •i , PST

∗
i , PST

∗∗
i )−ordered spaces (where i can be 0,

1, or 2). The primary objective of this section is to thoroughly
investigate the key properties associated with this concept.
To facilitate a better understanding, several examples will
be provided to illustrate the relationships between these
axioms and to demonstrate the outcomes derived from this
investigation. Additionally, the concept of bi-ordered subspace
will be introduced, and the property of hereditary in the context
of soft bitopological ordered spaces will be explored.

Definition 3.1. An SBTOS (Υ, η1, η2,Π,.) is said to be:
1. Lower pairwise soft T1−ordered (briefly, LPST1−

ordered): For any distinct points ν and ζ in Υ such that
ν � ζ there exists an ITPS− nbd εΠ of ν such that
ζ 6∈ εΠ.

2. Lower pairwise soft T •1−ordered (briefly, LPST •1−
ordered): For any distinct points ν and ζ in Υ such that
ν � ζ there exists an ITPS− nbd εΠ of ν such that
y 6b εΠ.

3. Lower pairwise soft T ∗1−ordered (briefly, LPST ∗1−
ordered): For any distinct points ν and ζ in Υ such that
ν � ζ there exists an IPPS− nbd εΠ of ν such that
ζ 6b εΠ.
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4. Lower pairwise soft T ∗∗1 −ordered (briefly, LPST ∗∗1 −
ordered): For any distinct points ν and ζ in Υ such that
ν � ζ there exists an IPPS− nbd εΠ of ν such that
ζ 6∈ εΠ.

5. Upper pairwise soft T1−ordered (briefly, UPST1−
ordered): For any distinct points ν and ζ in Υ such that
ν � ζ there exists a DTPS− nbd εΠ of ζ such that
ν 6∈ εΠ.

6. Upper pairwise soft T •1−ordered (briefly, UPST •1−
ordered): For any distinct points ν and ζ in Υ such that
ν � ζ there exists a DTPS− nbd εΠ of ζ such that
ν 6b εΠ.

7. Upper pairwise soft T ∗1−ordered (briefly, UPST ∗1−
ordered): For any distinct points ν and ζ in Υ such that
ν � ζ there exists a DPPS− nbd εΠ of ζ such that
ν 6b εΠ.

8. Upper pairwise soft T ∗∗1 −ordered (briefly, UPST ∗∗1 −
ordered): For any distinct points ν and ζ in Υ such that
ν � ζ there exists a DPPS− nbd εΠ of ζ such that
ν 6∈ εΠ.

9. PST0−ordered space: An SBTOS is PST0−ordered
if it satisfies either LPST1− ordered or UPST1−
ordered.

10. PST •0−ordered space: An SBTOS is PST •0−ordered
if it satisfies either LPST •1− ordered or UPST •1−
ordered.

11. PST ∗0−ordered space: An SBTOS is PST ∗0−ordered
if it satisfies either LPST ∗1− ordered or UPST ∗1−
ordered.

12. PST ∗∗0 −ordered space: An SBTOS is PST ∗∗0 −ordered
if it satisfies either LPST ∗∗1 − ordered or UPST ∗∗1 −
ordered.

13. PST1−ordered space if it is LPST1− ordered and
UPST1− ordered.

14. PST •1−ordered space if it is LPST •1− ordered and
UPST •1− ordered.

15. PST ∗1−ordered space: if it is LPST ∗1− ordered and
UPST ∗1− ordered.

16. PST ∗∗1 −ordered space if it is LPST ∗∗1 − ordered and
UPST ∗∗1 − ordered.

17. PST2−ordered space if for every distinct points ν, ζ in
Υ such that ν � ζ there exist disjoint total pairwise soft
neighborhoods εΠ and VΠ of ν and ζ, respectively, such
that εΠ is increasing and VΠ is decreasing.

18. PST •2−ordered space if for every distinct points ν, ζ in
Υ such that ν � ζ there exist disjoint total pairwise
soft neighborhood εΠ of ν and partial pairwise soft
neighborhood VΠ of ζ such that εΠ is increasing and VΠ

is decreasing.
19. PST ∗2−ordered space if for every distinct points ν, ζ in

Υ such that ν � ζ there exist disjoint partial pairwise
soft neighborhoods εΠ and VΠ of ν and ζ, respectively,
such that εΠ is increasing and VΠ is decreasing.

20. PST ∗∗2 −ordered space if for every distinct points ν, ζ
in Υ such that ν � ζ there exist disjoint partial
pairwise soft neighborhood εΠ of ν and total pairwise
soft neighborhood VΠ of ζ such that εΠ is increasing

and VΠ is decreasing.
Proposition 3.1. EveryPST1( resp. PST •1 , PST

∗
1 , PST

∗∗
1 )

−ordered space (Υ, η1, η2,Π,.) is also a PST0( resp.
PST •0 , PST

∗
0 , PST

∗∗
0 )−ordered space.

Proof The proof is straightforward and follows directly from
the definition 3.1

The following example is showing that the converse of the
proposition is false by providing a specific counterexample.

Example 3.1. Let Π = {e1, e2},.= N ∪ {(ν, ζ), (ν, z)}
be a partial order relation on Υ = {ν, ζ, z} and η1 =

{φ̂,ΥΠ, ω
1
Π, ω

2
Π, ω

3
Π}, η2 = {φ̂,ΥΠ, FΠ} where,

ω1
Π = {(e1, {ζ}), (e2, {ζ})}.
ω2

Π = {(e1, {z}), (e2, {z})}.
ω3

Π = {(e1, {ζ, z}), (e2, {ζ, z})}.
FΠ = {(e1, {ν, ζ}), (e2, {ν, ζ})}.
Then (Υ, η1, η2,Π,.) is LPST1( resp. LPST •1 , LPST

∗
1 ,

LPST ∗∗1 )− ordered. So it is PST0( resp.
PST •0 , PST

∗
0 , PST

∗∗
0 )−ordered. On the other hand, every

decreasing pairwise soft neighborhood of ν containing ζ.
In simpler terms, this example is trying to prove that not
all PST0( resp. PST •0 , PST

∗
0 , PST

∗∗
0 )−ordered spaces

are PST1-ordered spaces, by showing a specific example
of a space that is PST0−ordered but not PST1( resp.
PST •1 , PST

∗
1 , PST

∗∗
1 )−ordered.

Proposition 3.2. Every PST2( resp. PST ∗∗2 )−ordered
space (Υ, η1, η2,Π,.) is also aPST •1 (resp. PST ∗∗1 )−ordered
space.

Proof The proof directly follows from the definition 3.1.
The example that is being given is to show that the converse

of this proposition is false.
Example 3.2. By taking η1 = η2 = η. The example is

referring to an Example 4.7 in a previous work, [4]. It is stated
that this example is PST1−ordered (or PST ∗∗1 −ordered)
but not PST2−ordered (or PST ∗∗2 −ordered). This means
that there exist PST1−ordered (or PST ∗∗1 −ordered) spaces
that are not PST2−ordered (or PST ∗∗2 − ordered), which
contradicts the converse of the proposition.

Proposition 3.3. Every PST •0 ( resp. PST •1 , PST
∗
0 , PST

∗
1 )

−ordered space (Υ, η1, η2,Π,.) is also a PST0(resp.
PST1, PST

∗∗
0 , PST ∗∗1 )−ordered space.

Proof The proof relies on the observation that if a total non-
belong relation 6b exists, then it implies a non-belong relation
6∈.

The provided example serves to illustrate that the converse
of this proposition is not true.

Example 3.3. Let Π,. and Υ as in Example 3.1 and η1 =

{φ̂,ΥΠ, ω
1
Π, ω

2
Π, ω

3
Π, ω

4
Π}, η2 = {φ̂,ΥΠ, F

1
Π, F

2
Π} where,

ω1
Π = {(e1, {ζ}), (e2, {ν, ζ})},
ω2

Π = {(e1, {z}), (e2, {ν, z})},
ω3

Π = {(e1, {ζ, z}), (e2,Υ)},
ω4

Π = {(e1, ∅), (e2, {ν})},
F 1

Π = {(e1, {ν}), (e2, {ν, ζ})},
F 2

Π = {(e1, ∅), (e2, {ν, ζ})}.
Now, η12 = η1 ∪ η2 ∪ {λ1

Π, λ
2
Π, λ

3
Π} where,

λ1
Π = {(e1, {ν, ζ}), (e2, {ν, ζ})},
λ2

Π = {(e1, {ν, z}), (e2,Υ)},
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λ3
Π = {(e1, {z}), (e2,Υ)}.

In simple terms, this example is trying to prove that
not all PST •0 (resp. PST •1 , PST

∗
0 , PST

∗
1 )−ordered

spaces are PST0 (resp. PST1, PST
∗∗
0 , PST ∗∗1 )−ordered

spaces, by showing a specific example of a space that
is PST •0 (resp. PST •1 , PST

∗
0 , PST

∗
1 )−ordered but not

PST0 (resp. PST1, PST
∗∗
0 , PST ∗∗1 )−ordered.

Proposition 3.4. Every PST2−ordered space (Υ, η1, η2,Π,
.) is PST ∗2−ordered.

Proof The proof for the proposition states that the belong
relation ∈ implies a total belong relation b .

Example 3.4. Let Π = {eα, eβ} be a set of parameters,
.= N∪{(1, 2)} be a partial order relation on the set of natural
numbers ℵ. Define η1 = {ωΠ v ℵΠ such that 1 6∈ ωΠ} and
η2 = {FΠ v ℵΠ such that 2 ∈ ωΠ}. The example states that
this specific space is PST ∗2−ordered but not PST2−ordered.

Proposition 3.5. Every PST2 (resp. PST ∗∗2 )−ordered
space (Υ, η1, η2,Π,.) is PST •2 (resp. PST ∗2 )−ordered.
Proof The proof for the proposition states that the belong
relation ∈ implies a total belong relation b .

Example 3.5. The example provided states that it follows
from an earlier example (Example 3.3) that a specific space
is PST •2 (resp. PST ∗2 )−ordered but not PST2 (resp.
PST ∗∗2 )−ordered. However without the context of example
3.3 it is hard to understand the example provided.

Proposition 3.6. Every PST •0 (resp. PST •1 , PST
•
2 , PST2,

PST ∗2 , PST
∗∗
2 )−ordered space (Υ, η1, η2,Π,.) is also a

PST ∗∗0 (resp. PST ∗∗1 , PST ∗∗1 , PST ∗1 , PST
∗
0 , PST

∗∗
0 )−

ordered space.
Proof It is based on the principle that belong relation ∈

implies a total belong relation b and a total non belong relation
6b implies a non belong relation 6∈ .

Example 3.6. It follows from Example 3.3, illustrates that a
specific space isPST ∗∗0 (resp. PST ∗∗1 , PST ∗1 , PST

∗
0 , PST

∗∗
0 )

− ordered but not PST •0 (resp. PST •1 , PST
•
2 , PST2, PST

∗
2 ,

PST ∗∗2 )−ordered.
The diagram illustrates the relationship between different

types of separation axioms, as well as the implications between
them as described in this paper.
PST •1 −→ PST1 −→ PST0 −→ PST •0
6←− 6←− 6←−
6↑↓ ↑6↓ 6↑6↓ 6↑↓
PST ∗∗1 6−→ PST ∗1 −→ PST ∗0 −→ PST ∗∗0

←− 6←− 6←−
↑6↓ ↑6↓ ↑6↓ ↑6↓
PST •2 6−→ PST2 −→ PST ∗2 6−→ PST ∗∗2

←− 6←− ←−
Theorem 3.1. Let (Υ, η1, η2,Π,.) be an SBTOS. Then the

following three statements are equivalent:
1. The space is UPST •1 ( resp. LPST •1 )−ordered,
2. For any two elements ν and ζ in Υ such that ν � ζ,

there is a pairwise soft open set ωΠ containing ζ ( resp.
ν) in which ν � z(resp. z � y) for every z ∈ ωΠ,

3. For any ν in Υ, the set (i(ν))Π (resp. d(ν))Π) is
pairwise soft closed.

Proof (1 → 2) If (Υ, η1, η2,Π,.) is an UPST •1−ordered
space, and ν and ζ are elements of Υ such that ν � ζ. Then

there exists a DTPS−nbd εΠ of ζ such that ν 6b εΠ. Putting
ωΠ = sint(εΠ). Suppose that ωΠ 6v (i(ν))cΠ. Then there
exists z b ωΠ and z 6b (i(ν))cΠ. It follows that z ∈ (i(ν))Π,
which implies that ν . z. Now, z b ωΠ v εΠ implies that
ν b εΠ. However, this contradicts the fact that ν 6b εΠ. Thus
ωΠ v (i(ν))cΠ. Hence ν � z, for every z b ωΠ.

(2→ 3) Consider ν ∈ Υ and let ρ b (i(ν))cΠ. Then ν � ρ.
Therefore there exists a PO− soft set ωΠ containing ρ such
that ωΠ v (i(ν))cΠ. Given that ν and ρ are picked without any
specific criteria, then a pairwise soft set (i(ν))cΠ is PO− soft,
for ν ∈ Υ. Hence (i(ν))Π is PC− soft, for any ν ∈ Υ.

(3 → 1) Let ν � ζ ∈ X Obviously, (i(ν))Π is increasing
and by hypothesis, (i(ν))Π is PC− soft. Then (i(ν))cΠ is a
decreasing PO−soft soft set satisfies that ζ ∈ (i(ν))cΠ and
ν 6b (i(ν))cΠ.

Thus, the proof is finished.
An analogous proof can be applied for the case inside the

parentheses.
Proposition 3.7. If ν is the smallest (resp. the largest)

element of a LPST •1 (resp. UPST •1 )−ordered space
(Υ, η1, η2,Π,.), then ΥΠ is decreasing (resp. increasing)
PC−soft.

Proposition 3.8. If ν is the smallest (resp. the largest)
element of a finite PST •1 ordered space (Υ, η1, η2,Π,.), then
ΥΠ is DPO−soft (resp. IPO−soft ).

Proof The proposition is verified when ν is the smallest
element, and the other case can be proved analogously. Since
ν is the smallest element of X. Then ν . ζ,∀ζ ∈ Υ. By the
anti-symmetric of ., we have ζ 6. ν, ∀ζ ∈ Υ. By hypothesis,
there is a DTPS−nbd FΠ of ν such that ζ 6b FΠ. It follows
that ΥΠ = uFΠ. Since Υ is finite, then ΥΠ is DPO−soft.

A parallel argument can be made for the situation inside the
parentheses.

Proposition 3.9. If ν is the smallest (resp. the largest)
element of a finite a PST ∗1−ordered space (Υ, η1, η2,Π,.),
then F νΠ is DPO−soft (resp. IPO−soft ).

Proof The proof is analogous to Proposition 3.8, with the
substitution of νΠ by F νΠ.

The aforementioned Proposition can be established in the
scenario where (Υ, η1, η2,Π,.) is a finite PST ∗∗1 -ordered
space.

Proposition 3.10. A finite SBTOS (Υ, η1, η2,Π,.) is
PST •1−ordered if and only if it is PST2−ordered.

Proof Necessity: For each ζ ∈ (i(ν))cΠ, we have (d(ζ))Π

is PC− soft. Since Υ is finite, then tζ∈(i(ν))cΠ
d(ζ) is PC−

soft. Therefore (tζ∈(i(ν))cΠ
d(ζ))c = (i(ν))Π is a PO− soft

set. Thus (Υ, η1, η2,Π,.) is a PST2−ordered space.
Sufficiency: It directly follows from Proposition 3.2.
Proposition 3.11. Let (Υ, η1, η2,Π,.) be an SBTOS with

η1 = η2 = η. If (Υ, η1, η2,Π,.) is PST •i −ordered, then
(X, η,E,.) is always P−soft Ti−ordered, for i = 0, 1.
Proof We have shown the proposition when i = 1, and the
other instance can be shown similarly. Let ν, ζ be two distinct
points in (Υ, η,Π,.) such that ν . ζ. As (Υ, η1, η2,Π,.)
is PST •1 , then there exist an ITPS−nbd εΠ of ν such that
ζ 6b εΠ and a ITPS−nbd FΠ of ζ such that ν 6b FΠ. Since
η1 = η2 = η, then εΠ is an increasing total soft neighborhood
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of x such that ζ 6b εΠ and FΠ is a decreasing total soft
neighborhood of ζ such that ν 6b FΠ in (Υ, η,Π,.). Thus
(Υ, η,Π,.) is P−soft T1−ordered.

Proposition 3.12. Let (Υ, η1, η2,Π,.) be an SBTOS with
η1 = η2 = η. If (Υ, η1, η2,Π,.) is PST2−ordered, then
(Υ, η,Π,.) is always P−soft T2−ordered.

Proof The proof is analogous to Proposition 3.11.
Definition 3.2. Let Ω ⊆ Υ and (Υ, η1, η2,Π,.) be an

SBTOS. Then (Ω, η1Ω, η2Ω,Π,.Ω) is called soft bi−ordered
subspace of (Υ, η1, η2,Π,.) provided that (Ω, η1Ω, η2Ω,Π)
is soft bitopological subspace of (Υ, η1, η2,Π) and .Ω=.
∩Ω× Ω.

Lemma 3.1. If UΠ is an increasing (resp. a decreasing)
pairwise soft subset of an SBTOS(Υ, η1, η2,Π,.), then
UΠ u ΩΠ is an increasing (resp. a decreasing ) pairwise soft
subset of a soft bi−ordered subspace (Ω, η1Ω, η2Ω,Π,.Ω).

Proof Let UΠ be an increasing pairwise soft subset of
an SBTOS (Υ, η1, η2,Π,.). In a soft bi−ordered subspace
(Ω, η1Ω, η2Ω,Π,.Ω), let ρ ∈ i.Ω

(UΠuΩΠ). Since i.Ω
(UΠu

ΩΠ) v i.Ω
(UΠ) u i.Ω

(ΩΠ) v UΠ u ΩΠ, then ρ ∈ (UΠ u
ΩΠ).Thereforei.Ω

(UΠuΩΠ) = UΠuΩΠ. Thus UΠuΩΠ is an
increasing pairwise soft subset of a soft bi−ordered subspace
(Ω, η1Ω, η2Ω,Π,.Ω).

The demonstration is parallel in the case where UΠ is
decreasing.

Theorem 3.2. The property of being a PSTi (resp.
PST •i , PST

∗
i , PST

∗∗
i )−ordered space is hereditary, for i =

0, 1, 2.
Proof We establish the theorem for the case i = 2,

and the other two scenarios can be demonstrated in a
similar way. Let (Ω, η1Ω, η2Ω,Π,.Ω) be a soft bi−ordered
subspace of a PST2 (resp. PST •2 , PST

∗
2 , PST

∗∗
2 )−ordered

space (Υ, η1, η2,Π,.). If ρ, δ ∈ Ω such that ρ .Ω δ, then ρ .
δ. So by hypothesis, there exist disjoint soft neighborhoods εΠ

and VΠ of ρ and δ, respectively, such that εΠ is increasing
and VΠ is decreasing. Setting UΠ = ΩΠ u εΠ and ωΠ =
ΩΠ u VΠ, by Lemma 3.1, we infer that UΠ is an increasing
pairwise soft neighborhood of ρ and ωΠ is a decreasing
pairwise soft neighborhood of δ. Since the soft neighborhoods
UΠ and ωΠ are disjoint, it follows that (Ω, η1Ω, η2Ω,Π,.Ω) is
PST2 (resp. PST •2 , PST

∗
2 , PST

∗∗
2 )−ordered.

The theorem can be proved analogously when i = 0, 1.
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