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Abstract: This study investigates the dynamic properties of a discrete predator-prey model influenced by the Allee effect.
Through rigorous analysis utilizing bifurcation theory and the center manifold theorem, we establish the stability of the system’s
local equilibrium and reveal the intricate dynamical behaviors exhibited by the model, including period-doubling bifurcations at
periods 2, 4, and 8, as well as the emergence of quasi-periodic orbits and chaotic sets. A notable finding is the significant role
played by the parameter r in shaping the system’s behavior, as we identify a series of bifurcations, such as flip and
Neimark-Sacker bifurcations, by systematically varying r while keeping other parameters fixed. These findings underscore the
non-linear nature of the model and provide valuable insights into its complex dynamics. Our enhanced understanding of these
bifurcations and resulting dynamical behaviors deepens our knowledge of the Allee effect’s implications for predator-prey
models, contributing to our comprehension of population oscillations, stability transitions, and the emergence of chaotic
dynamics in ecological systems under the Allee effect. Moreover, this study carries practical implications for population
management and conservation strategies, as incorporating the Allee effect into predator-prey interactions allows for better
insights into population dynamics and the development of more effective and sustainable management practices. Overall, this
comprehensive analysis of the discrete predator-prey model under the Allee effect uncovers intricate dynamical behaviors and
emphasizes the influential role of the parameter r in shaping system dynamics, with implications for both theoretical
understanding and practical conservation management strategies.
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1. Introduction
Population dynamics is a fundamental field of research

in mathematical biology that examines how populations
of species change over time. The study of population
dynamics has a wide range of applications, including wildlife
conservation, resource management, and epidemiology [1].

There are two primary mathematical models used in
population dynamics research: continuous−time models,
which are described by differential equations, and
discrete−time models, which are described by difference
equations. Continuous−time models are widely used and
have been studied extensively for many years. However,
discrete−time models have received increasing attention in

recent years due to their ability to better capture the behavior
of populations with non−overlapping generations or minimal
population numbers, which are not accurately modeled by
continuous−time models [2, 3].

In addition, discrete−time models are beneficial in
producing more precise numerical simulation results.
Discretization is often used to produce numerical simulations
of continuous−time models, but this process can introduce
errors that impact the accuracy of the results. Discrete−time
models can overcome this issue by directly representing the
population dynamics through difference equations.

Furthermore, discrete−time models can exhibit more
complex and sophisticated dynamical behaviors than



60 M. Y. Hamada et al.: Predator-Prey Interactions: Insights into Allee Effect Subject to Ricker Model

continuous−time models, such as bifurcations, chaos, and
other complicated dynamics [4]. These dynamical behaviors
have been the subject of much research and have yielded
valuable insights into the behavior of populations in response
to different ecological conditions.

Many authors have extensively investigated the stability,
permanence, and existence of periodic solutions of
predator−prey models [5–19]. However, research on the
dynamical characteristics of predator−prey models, such as
bifurcations and chaos occurrences in discrete−time models,
has been limited.

Furthermore, there is a lack of research on the stability of
discrete predator−prey systems with Allee effect. The Allee
effect is a biological phenomenon that describes a positive
relationship between population density and the rate of per
capita growth, named after Allee [20]. This means that
individual reproduction and survival are reduced at lower
population densities, while this impact typically saturates or
vanishes as populations grow larger. Various factors could
cause this impact, including the difficulty in finding a mate for
reproduction in some species when population density drops.
Recently, there have been a few studies on the Allee effect in
discrete predator−prey systems. For instance, Ye et al [21]
analyzed a discrete−time predator−prey model with Allee
effect and demonstrated the existence of a global attractor
with a stable equilibrium point. Moreover, METWALLY
et al [22] investigated the existence of chaotic dynamics in
a discrete predator−prey system with Allee effect. This
study revealed the coexistence of multiple attractors and chaos
occurrence through a bifurcation analysis. Therefore, while
many studies have examined predator−prey models, more
research is necessary to explore the dynamical characteristics
and stability of discrete predator−prey systems with Allee
effect.

The difference equations presented below are utilized to
define a discrete−time predator−prey model with Allee effect

xn+1 = xn

(
re(1−xn)

(
xn − µ

)
− δyn

)
,

yn+1 = yn (αxn − γ) .
(1)

The model components can be interpreted as follows:
1. The term rxne(1−xn) represents the growth of prey

population according to the Ricker model when
predators are absent. The term xn − µ represents the
Allee effect, which describes the positive relationship
between population density and the rate of per capita
growth.

2. δxnyn represents the decrease in prey population due to
predation by the predators.

3. αxnyn represents the increase in predator population as
a function of the prey population.

4. γyn represents the natural death rate of the predator
population.

The objective of this study is to explore the implications
of substituting the Ricker model, rxne(1−xn), for the
conventional logistic growth term, rxn(1 − xn), in predator-

prey models. Additionally, we aim to examine the influence of
applying the Allee effect to this discrete predator-prey system.

The paper is structured as follows: In the second and
third sections, we discuss the existence and local stability of
equilibria in model (1). The fourth section examines the flip
bifurcation and Neimark-Sacker bifurcation of model (1) by
utilizing r as a bifurcation parameter. In the fifth section,
we provide numerical simulations that not only demonstrate
our theoretical results but also showcase complex dynamic
behaviors, including a cascade of period-doubling bifurcation
in periods 2, 4, and 8, as well as quasi-periodic orbits and
chaotic sets. Finally, we present our discussion in the last
section.

2. Stability Analysis
Our analysis begins with an examination of the equilibria

in model (1). As expected, the point E0 = (0, 0) is one
such equilibrium. Moreover, we can deduce that the remaining
equilibria of model (1) fulfill the subsequent requirements:

r(xµ)e1−x − δy − 1 = 0,

αx− γ − 1 = 0.
(2)

Solving System (2) allows us to find the other equilibrium
point, which is

E2 =

(
γ + 1

α
,−r(αµ− γ − 1)e

α−γ−1
α + α

δα

)
.

The equilibrium point E2 is considered positive if

γ + 1− αµ > α

r
e
γ−α+1
α .

Another equilibrium point,E1(x∗, 0), exists at the boundary
and can be described by the equation r(x∗ − µ)e1−x

∗
= 1.

To find E1, define the function g(x) = r(x − µ)e1−x − 1.
We note that g(0) = −µre − 1 < 0, limx→∞ g(x) = −1,
and g

′
(x) = r(1 − x + µ)e1−x. Hence, g(x) has a unique

equilibrium point at x = 1 + µ. Thus, we can identify the
following three cases:

1. If r < eµ, there are no positive roots for g(x).
2. If r = eµ, g(x) possesses a single positive root, which

can be found at x = 1 + µ. Therefore, we can identify
E1 as (1 + µ, 0).

3. When r > eµ, g(x) has two positive roots, specifically
x∗1 < 1 + µ and x∗2 > 1 + µ. We can refer to
the corresponding equilibrium points of model (1) as
E11 = (x∗1, 0) and E12 = (x∗2, 0).

3. Linearized Stability
This section presents the local stability conditions for the

equilibrium points of the model. By computing the variation
matrix corresponding to each equilibrium point, we can
analyze the model’s local stability. The Jacobian matrix J of
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model (1) evaluated at (x, y) is used to obtain this variation
matrix.

J =

( (
− x2 + (µ+ 2)x− µ

)
re1−x − δy −δx

αy αx− γ

)
,

We can obtain the characteristic equation of the Jacobian
matrix as follows:

σ2 − p(x, y)σ + q(x, y) = 0, (3)

where

p(x, y) =
(
−x2 + (µ+ 2)x− µ

)
re1−x − δy + αx− γ,

q(x, y) = (αx− γ)r
(
−x2 + (µ+ 2)x− µ

)
e1−x + δγy.

Proposition 3.1. The following statements are true for the
equilibrium point E0 of System (1):

(i) If 0 < rµ < e−1 and 0 < γ < 1, then E0 is locally
asymptotically stable, or a sink point.

(ii) If rµ > e−1 and γ > 1, then E0 is an unstable source.
(iii) If rµ < e−1 and γ > 1, or if rµ > e−1 and γ < 1, then

E0 is an unstable saddle.
(iv) If rµ = e−1, or if γ = 1, then E0 is a non-hyperbolic

equilibrium.
Proof: The eigenvalues of the Jacobian matrix evaluated at

E0 are σ1 = −rµe and σ2 = −γ. Thus the results of this
Proposition can be obtain by comparing the position of the
eigenvalues with respect to the unit circle. 2

One of the eigenvalues of the equilibrium E0(0, 0) is
observed to be 1, according to Proposition (3.1). Therefore,
a perturbed values of the parameters about rµ = e−1 or γ = 1
can result in a fold bifurcation of the system.

Proposition 3.2. The equilibrium point E0 of the System (1)
exhibits global asymptotic stability if and only if 0 < rµ <
e−1 and 0 < γ < 1.

Proof: Proposition 3.1 established that E0 is locally
asymptotically stable when 0 < rµ < e−1 and 0 < γ <
1. Therefore, demonstrating that limn→∞ xn = 0 and
limn→∞ yn = 0 is sufficient to establish the global stability
of E0.

xn+1 = xn

(
re(1−xn)

(
xn − µ

)
− δyn

)
,

= r(xn)2e(1−xn) − rµxne(1−xn) − δxnyn,
≤ rexn(xne(−xn)),

≤ rexn.

Hence
xn ≤ (re)nx0, n = 1, 2, ... (4)

Thus
lim
n→∞

xn = 0.

Noting that

0 ≤ xn+1 ⇐⇒ 0 ≤ xn
(
re(1−xn)

(
xn − µ

)
− δyn

)
,

⇐⇒ δyn ≤ ree(−xn)
(
xn − µ

)
≤ ree(−xn)

(
xn
)
,

⇐⇒ yn ≤
re

δ
.

Therefore, we can conclude that yn is bounded from above.
Examining the second equation of System (1) and equation (4),
we obtain:

yn+1 = αxnyn − γyn ≤ αxnyn
≤ α(re)nx0yn

≤ α

δ
(re)n+1x0, n = 1, 2, ... .

Therefore

lim
n→∞

yn = 0.

Then the proof is completed. 2

Proposition 3.3. The equilibrium point of System (1),
E1(1 + µ, 0), is always non-hyperbolic.

Proof: The eigenvalues of J (E1) are σ1 = 1 and σ2 =
α(1 + µ)− γ.
Thus, we can conclude that the proof is complete. 2

Proposition 3.4. The equilibrium points E1i(x
∗
i , 0) of

System (1), where i ∈ {1, 2}, satisfies the following
statements:

(i) If |αx∗i − γ| < 1 and |x∗i (re1−x
∗
i − 1) + 1| < 1, then

E1i is a sink point;
(ii) If |αx∗i − γ| > 1 and |x∗i (re1−x

∗
i − 1) + 1| > 1, then

E1i is a source;
(iii) If |αx∗i − γ| > 1 and |x∗i (re1−x

∗
i − 1) + 1| < 1, or if

|αx∗i − γ| < 1 and |x∗i (re1−x
∗
i − 1) + 1| > 1, then E1i

is a saddle;
(iv) If |αx∗i − γ| = 1, or if |x∗i (re1−x

∗
i − 1) + 1| = 1, then

E1i is non-hyperbolic;
Proof: The outcomes of this Proposition can be obtained by

noticing that the eigenvalues of J (E1i) are σ1 = αx∗i − γ and
σ2 = x∗i (re

1−x∗i − 1) + 1. 2

Proposition 3.5. If the following conditions are satisfied,
the positive equilibrium point E2 of model (1) is locally
asymptotically stable:

(i) α2µ− (2µ+ γ + 3)α+ 2α+ 2 < α2(3−γ)
γ+1 e

1+γ−α
α ;

(ii) α2µ− (µ+ γ + 2)α+ γ + 1 < −α2

r e
1+γ−α
α ;

(iii) αµ− γ − 1 < −α
r e

1+γ−α
α .

Proof: Upon solving the characteristic equation (3) of the
Jacobian matrix J for the linearized system of the model (1) at
the equilibrium point E2, the following results are obtained:

p(x, y) =
((µ+ 1)α− 1− γ)r(1 + γ)e

α−1−γ
α + 2α2

α2
,
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q(x, y) =
−r(1 + γ)

(
α2µ+ (−µ− γ − 2)α+ 1 + γ

)
e
α−1−γ
α

α2
− γ,

the local asymptotic stability of the positive equilibrium point
E2 is achieved if the following conditions are met:

|p(x, y)| < 1 + q(x, y) < 2,

the criterion 1 + p(x, y) + q(x, y) > 0 can be observed to be
equivalent to the condition

α2µ− (2µ+ γ + 3)α+ 2α+ 2 <
α2(3− γ)

γ + 1
e

1+γ−α
α ,

we can easily observe that the criterion 1 − q(x, y) > 0 is
equivalent to

α2µ− (µ+ γ + 2)α+ γ + 1 <
−α2

r
e

1+γ−α
α ,

the condition expressed by the criterion 1−p(x, y)+q(x, y) >
0 can be rephrased as follows:

αµ− γ − 1 <
−α
r

e
1+γ−α
α .

2

The stability analysis of a nonhyperbolic fixed point can
be more complex. When one of the eigenvalues is on the
unit circle and the other is inside the unit circle, there are

various possibilities to consider. In such cases, centre manifold
theory is often used to determine the stability of the fixed point
[2, 23, 24].

Lemma 3.1. The stability ofE2 is lost in one of the following
two cases:

(i) via a flip point when
(µ + 1)α − γ − 1 < −2α2

r(γ+1)e
γ+1−α
α , and α2µ − (2µ +

γ + 3)α+ 2α+ 2 = α2(3−γ)
γ+1 e

1+γ−α
α ;

(ii) via a Neimark-Sacker point when
|((µ + 1)α − γ − 1)(γ + 1)re

α−γ−1
α + 2α2| <

−
(
α2µ+ (−µ− γ − 2)α+ γ + 1

)
(γ + 1)re

α−γ−1
α −

α2(γ − 1),
and α2µ− (µ+ γ + 2)α+ γ + 1 = −α2

r e
1+γ−α
α ; 2

4. Bifurcations Analysis

4.1. Neimark-Sacker Bifurcation About E2

First, we will discuss the Neimark-Sacker bifurcation of the
discrete-time model (1) around the equilibrium point E2. Let
us consider the parameter r in a small neighborhood of r∗, i.e.,
r = r∗ + ε, where ε � 1. Then, the discrete-time model (1)
can be written as:

xn+1 = xn

(
(r∗ + ε) e(1−xn)

(
xn − µ

)
− δyn

)
, yn+1 = yn (αxn − γ) . (5)

The characteristic equation of the Jacobian matrix J
(
E2(γ+1

α ,− (r∗+ε)(αµ−γ−1)e
α−γ−1
α +α

δα )
)

of the model (5) about

E2(γ+1
α ,− (r∗+ε)(αµ−γ−1)e

α−γ−1
α +α

δα ) is
σ2 − p(ε)σ + q(ε) = 0,

where

p(ε) =
(γ + 1)((µ+ 1)α− γ − 1)(r + ε)e

α−γ−1
α + 2α2

α2
,

and

q(ε) = −
(γ + 1)(r + ε)

(
α2µ+ (−µ− γ − 2)α+ γ + 1

)
e
α−γ−1
α + α2γ

α2
.

The solutions to the characteristic equation of J(E2) are

σ1,2 =
p(ε)±ι

√
4q(ε)−p2(ε)
2 ,

= (γ+1)((µ+1)α−γ−1)(r+ε)e
α−γ−1
α +2α2

2α2 ± ι
2

√
−

(γ+1)

(
(γ+1)((µ+1)α−γ−1)2(r+ε)2

(
e
α−γ−1
α

)2

+4α3(r+ε)(µα−γ−1)e
α−γ−1
α +4α4

)
α4 ,

|σ1,2| =
√
q(ε) =

√
− (γ+1)(r+ε)(α2µ+(−µ−γ−2)α+γ+1)e

α−γ−1
α +α2γ

α2 ,

and

d |σ1,2|
dε

∣∣∣∣
ε=0

= −
(γ + 1)e

α−γ−1
α

(
α2µ− (µ+ γ + 2)α+ γ + 1

)
2α

√
−r(γ + 1) (α2µ+ (−µ− γ − 2)α+ γ + 1) e

α−γ−1
α − α2γ

> 0.
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Furthermore, we imposed the condition that when ε = 0, the eigenvalues σm1,2 should not be equal to 1 for m = 1, 2, 3, 4. This
is equivalent to the condition p(0) 6= −2, 0, 1, 2, which can be verified through computation.

The equilibrium E2 of the discrete-time model (1) is transformed into O(0, 0) when we let un = xn − x∗ and vn = yn − y∗.
After some manipulation, we obtain:

un+1 = (un + x∗)
(

(r∗ + ε)
(
un + x∗ − µ

)
e(1−un−x

∗) − δ(vn + y∗)
)
− x∗,

vn+1 = (vn + y∗) (α(un + x∗)− γ)− y∗.
(6)

where x∗ = γ+1
α , y∗ = − r(αµ−γ−1)e

α−γ−1
α +α

δα . In the following analysis, we consider the case where ε = 0, and we study
the normal form of System (6). To obtain the normal form, we expand (6) up to third order using a Taylor series centered at
(un, vn) = (0, 0), yielding:

un+1 = ∆11un + ∆12vn + ∆13u
2
n + ∆14unvn + ∆15u

3
n +O(|un|, |vn|)4,

vn+1 = ∆21un + ∆22vn + ∆23unvn,

where
∆11 = r∗

(
− (x∗)2 + (µ+ 2)x∗ − µ

)
e1−x

∗ − δy∗,
∆12 = −δx∗,

∆13 = − r
∗y∗
(
−(x∗)2+(µ+4)x∗−2µ−2

)
e1−x

∗

2 ,

∆14 = −δ, ∆15 =
r∗
(
−(x∗)2+(µ+6)x∗−3µ−6

)
e1−x

∗

6 ,
∆21 = αy∗, ∆22 = αx∗ − γ, ∆23 = α,

Now, let

η = (γ+1)((µ+1)α−γ−1)(r+ε)e
α−γ−1
α +2α2

2α2 ,

ζ = 1
2

√
−

(γ+1)

(
(γ+1)((µ+1)α−γ−1)2(r+ε)2

(
e
α−γ−1
α

)2

+4α3(r+ε)(µα−γ−1)e
α−γ−1
α +4α4

)
α4 ,

The matrix T , which is invertible, is defined by

T =

(
∆12 0

η −∆11 −ζ

)
.

By employing the subsequent transformation:(
un
vn

)
=

(
∆12 0

η −∆11 −ζ

)(
Xn

Yn

)
,

(6) gives (
Xn+1

Yn+1

)
=

(
η −ζ
ζ η

)(
Xn

Yn

)
+

(
Γ (Xn, Yn)
Π (Xn, Yn)

)
, (7)

where

Γ (Xn, Yn) = Λ11Xn
2 + Λ12XnYn + Λ13X

3
n,

Π (Xn, Yn) = Λ21Xn
2 + Λ22XnYn + Λ23X

3
n,

and

Λ11 = ∆14(η −∆11) + ∆12∆13,
Λ12 = −ζ∆14,
Λ13 = ∆2

12∆15,

Λ21 = 1
ζ (η −∆11)

(
η∆14 −∆14∆11 + (∆13 −∆24)∆12

)
,

Λ22 = ∆14(∆11 − η) + ∆24∆12,
Λ23 = 1

ζ (η −∆11)∆15∆2
12.

In addition,



64 M. Y. Hamada et al.: Predator-Prey Interactions: Insights into Allee Effect Subject to Ricker Model

ΓXnXn |(0,0) = 2Λ11, ΓXnYn |(0,0) = Λ12, ΓYnYn |(0,0) = 0,

ΓXnXnXn |(0,0) = 6Λ13, ΓXnXnYn |(0,0) = 0,

ΓXnYnYn |(0,0) = ΓYnYnYn |(0,0) = 0,

and

ΠXnXn |(0,0) = 2Λ21, ΠXnYn |(0,0) = Λ22, ΠYnYn |(0,0) = 0,

ΠXnXnXn |(0,0) = 6Λ23. ΠXnXnYn |(0,0) = 0

ΠXnYnYn |(0,0) = ΠYnYnYn |(0,0) = 0.

For a Neimark-Sacker bifurcation to occur in (7), it is necessary that the discriminant χ is non-zero (see [2, 23, 25])

χ = −Re

[
(1− 2σ̄)σ̄2

1− σ
θ11θ20

]
− 1

2
‖θ11‖2 − ‖θ02‖2 + Re (σ̄θ21) ,

where

θ02 =
1

8

[
ΓXnXn − ΓYnYn + 2ΠXnYn + ι

(
ΠXnXn −ΠYnYn + 2ΓXnYn

)]∣∣∣
(0,0)

,

θ11 =
1

4
[ΓXnXn + ΓYnYn + ι (ΠXnXn + ΠYnYn)]

∣∣∣∣
(0,0)

,

θ20 =
1

8

[
ΓXnXn − ΓYnYn + 2ΠXnYn + ι

(
ΠXnXn −ΠYnYn − 2ΓXnYn

)]∣∣∣
(0,0)

,

θ21 =
1

16

[
ΓXnXnXn + ΓXnYnYn + ΠXnXnYn + ΠYnYnYn

+ ι (ΠXnXnXn + ΠXnYnYn − ΓXnXnYn − ΓYnYnYn)
]∣∣∣

(0,0)
.

Upon computation, the result is obtained as follows:

θ02 = 1
4 [Λ11 + Λ22 + ι (Λ21 + Λ12)] ,

θ11 = 1
2 [Λ11 + ιΛ21] ,

θ20 = 1
4 [Λ11 + Λ22 + ι (Λ21 − Λ12)] ,

θ21 = 3
8 [Λ13 + ιΛ23] .

After analyzing the normal form and using the Neimark-
Sacker bifurcation theorem discussed in various sources
including [23, 26–29], we can conclude the following
proposition.

Proposition 4.1. Provided that the parameters satisfy
condition (2) in Lemma (3.1), a Neimark-Sacker bifurcation
occurs about E2 in the discrete-time model (1) when χ 6= 0.
Moreover, if χ < 0 (resp. χ > 0), an attracting (resp.
repelling) closed curve emerges from E2.

Remark 4.1. A supercritical Neimark-Sacker bifurcation

occurs in the discrete-time model (1) if the discriminatory
quantity χ < 0 according to bifurcation theory discussed in
[27].

4.2. Period-doubling Bifurcation

This section focuses on investigating the period-doubling
bifurcation of model (1) at E2 in a small neighborhood
of condition (i) from Lemma (3.1) by selecting arbitrary
parameters (α, r, δ, γ, µ). Here, we treating r∗ as a new
dependent variable. As a result, we obtain:

xn+1 = xn

(
(r + r∗) e(1−xn)

(
xn − µ

)
− δyn

)
,

yn+1 = yn (αxn − γ) .
(8)

Let un = xn − x∗ and vn = yn − y∗. The equilibrium E2 of model (8) is transformed into O(0, 0) by this coordinate
transformation. We expand the model (8) as a Taylor series up to the third order around (un, un, r

∗) = (0, 0, 0), which results in
the following model.

un+1 = ∆̂11un + ∆̂12vn + ∆̂13u
2
n + ∆̂14unvn + ∆̂15unr

∗ + ∆̂16u
3
n + ∆̂17u

2
nr
∗ +O (|un| , |r∗|)4 ,

vn+1 = ∆̂21un + ∆̂22vn + ∆̂23unvn,
(9)
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where
∆̂11 = r

(
− (x∗)2 + (µ+ 2)x∗ − µ

)
e1−x

∗
− δy∗,

∆̂12 = −δx∗,

∆̂13 = −r
2

(
− (x∗)2 + (µ+ 4)x∗ − 2µ− 2

)
e1−x

∗
,

∆̂14 = −δ,

∆̂15 =
(
− (x∗)2 + (µ+ 2)x∗ − µ

)
e1−x

∗
,

∆̂16 =
r

6

(
− (x∗)2 + (µ+ 6)x∗ − 3µ− 6

)
e1−x

∗
,

∆̂17 = −1

2

(
− (x∗)2 + (µ+ 4)x∗ − 2µ− 2

)
e1−x

∗
,

∆̂21 = αy∗, ∆̂22 = αx∗ − γ, ∆̂23 = α.

Construct an invertible matrix T as follows

T =

(
∆̂12 ∆̂12

−1− ∆̂11 σ2 − ∆̂11

)
,

and use the translation (
un
vn

)
=

(
∆̂12 ∆̂12

−1− ∆̂11 σ2 − ∆̂11

)(
Xn

Yn

)
,

(9) gives (
Xn+1

Yn+1

)
=

(
−1 0
0 σ2

)(
Xn

Yn

)
+

(
Γ̂ (un, vn, r

∗)

Π̂ (un, vn, r
∗)

)
, (10)

where

Γ̂ (un, vn, r
∗) =

∆̂13

(
σ2 − ∆̂11

)
∆̂12 (1 + σ2)

u2n +
∆̂15

(
σ2 − ∆̂11

)
∆̂12 (1 + σ2)

unr
∗ +

∆̂14

(
σ2 − ∆̂11

)
− ∆̂23∆̂12

∆̂12 (1 + σ2)
unvn

+
∆̂17

(
σ2 − ∆̂11

)
∆̂12 (1 + σ2)

u2nr
∗ +

∆̂16

(
σ2 − ∆̂11

)
∆̂12 (1 + σ2)

u3n +O (|un| , |r∗|)4 ,

Π̂ (un, vn, r
∗) =

∆̂13

(
1 + ∆̂11

)
∆̂12 (1 + σ2)

u2n +
∆̂15

(
1 + ∆̂11

)
∆̂12 (1 + σ2)

unr
∗ +

∆̂14

(
1 + ∆̂11

)
+ ∆̂12∆̂23

∆̂12 (1 + σ2)
unvn

+
∆̂17

(
1 + ∆̂11

)
∆̂12 (1 + σ2)

u2nr
∗ +

∆̂16

(
1 + ∆̂11

)
∆̂12 (1 + σ2)

u3n +O (|un| , |r∗|)4 .

u2n =∆̂12

2 (
X2
n + 2XnYn + Y 2

n

)
,

unvn =− ∆̂12

(
1 + ∆̂11

)
X2
n +

(
∆̂12(σ2 − ∆̂11)− ∆̂12

(
1 + ∆̂11

) )
XnYn + ∆̂12

(
σ2 − ∆̂11

)
Y 2
n ,

unr
∗ =∆̂12Xnr

∗ + ∆̂12Ynr
∗,

u2nr
∗ =∆̂12

2 (
X2
nr
∗ + 2XnYnr

∗ + Y 2
n r
∗) .

According to the center manifold theorem [23, 27, 30, 31], we can construct a center manifold W c(0, 0) of (10) about (0, 0)
in a small neighborhood of r∗. The center manifold can be represented as follows:

W c(0, 0) =
{

(Xn, Yn) : Yn = c0r
∗ + c1X

2
n + c2Xnr

∗ + c3(r∗)2 +O
(

(|Xn| , |r∗|)3
)}

,

The function O
(

(|Xn|+ |r|)3
)

is order three or higher in the variables (Xn, r), representing the higher-order terms that are
neglected in the expansion, and
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c0 = 0, c1 =

(
1 + ∆̂11

)(
∆̂11∆̂14 + (∆̂23 − ∆̂13)∆̂12 + ∆̂14

)
σ2
2 − 1

,

c2 = −
∆̂15

(
1 + ∆̂11

)
(1 + σ2)2

, c3 = 0.

Thus, we can restrict the map (10) to the center manifold W c(0, 0) and obtain the following map:

f (Xn) = −Xn + h1X
2
n + h2Xnr

∗ + h3X
2
nr
∗ + h4Xn(r∗)2 + h5X

3
n +O

(
(|Xn| , |r∗|)4

)
, (11)

where

h1 =
1

1 + σ2

[
∆̂11

2
∆̂14 +

((
∆̂23 − ∆̂13

)
∆̂12 − ∆̂14 (σ2 − 1)

)
∆̂11 +

(
σ2∆̂13 + ∆̂23

)
∆̂12 − σ2∆̂14

]
,

h2 =
1

1 + σ2

[
∆̂15

(
σ2 − ∆̂11

)]
,

h3 =
1

(σ2 − 1)(σ2 + 1)3

[
σ4
2∆̂12∆̂17 −

(
∆̂14(∆̂11 + 1)∆̂15 + ∆̂12∆̂17(∆̂11 − 1)

)
σ3
2

+ 4
((

(−3

4
∆̂13 +

1

2
∆̂23)∆̂12 + ∆̂14(∆̂11 +

3

4
)
)
∆̂15 −

1

4
∆̂17∆̂12

)
(∆̂11 + 1)σ2

2

+
(
− 3
(
− (∆̂13 − ∆̂23)(∆̂11 +

1

3
)∆̂12 + ∆̂11∆̂14(∆̂11 +

3

4
)
)
(∆̂11 + 1)∆̂15

+ ∆̂12∆̂17(∆̂11 − 1)
)
σ2 +

((
(∆̂23 − ∆̂13)∆̂11 + ∆̂23

)
∆̂12 + ∆̂11

2
∆̂14

)
(∆̂11 + 1)∆̂15 + ∆̂11∆̂12∆̂17

]
,

h4 =
∆̂11

2
(
σ2 − ∆̂11

)(
1 + ∆̂11

)
(σ2 + 1)

3 ,

h5 =
1

(σ2 − 1)(σ2 + 1)2

[(
2(∆̂13 − ∆̂23)2∆̂11

2
+
(
− σ2

2∆̂16 + (3∆̂23∆̂13 − 2∆̂13

2
− ∆̂23

2
)σ2

+ 2∆̂13

2
− 5∆̂23∆̂13 + 3∆̂23

2
+ ∆̂16

)
∆̂11 + σ3

2∆̂16 + (3∆̂23∆̂13 − 2∆̂13

2

− ∆̂23

2
− ∆̂16)σ2 − ∆̂23(∆̂13 − ∆̂23)

)
∆̂12

2
− ∆̂14(∆̂11 + 1)

(
4(∆̂13

− ∆̂23)∆̂11

2
+
(
(4∆̂23 − 5∆̂13)σ2 + 3∆̂13 − 4∆̂23

)
∆̂11 + (∆̂13 − ∆̂23)σ2

2 + (2∆̂23 − 3∆̂13)σ2 − ∆̂23

)
∆̂12

+ ∆̂14

2
(∆̂11 + 1)2(σ2 − ∆̂11)(σ2 − 2∆̂11 − 1)

]
.

For a period-doubling bifurcation to occur in the map (11), it is necessary that the following discriminatory quantities are
nonzero:

∆1 =

(
∂2f

∂Xn∂r∗
+

1

2

∂f

∂r∗
∂2f

∂X2
n

)∣∣∣∣
(0,0)

, ∆2 =

(
1

6

∂3f

∂X3
n

+

(
1

2

∂2f

∂X2
n

)2
)∣∣∣∣∣

(0,0)

.

After calculating we obtain

∆1 = h2 +
1

2
h3,

and

∆2 = h5 + h21.

Based on the analysis in [22] and the bifurcation theory in
[23, 26–29], we can propose the following proposition.

Proposition 4.2. Assuming that ∆2 6= 0, the discrete-

time model (8) exhibits a period-doubling bifurcation at the
unique positive equilibrium E2, when r∗ varies within a small
neighborhood of O(0, 0). Furthermore, the stability of the
period-2 points emerging from E2 depends on the sign of ∆2;
the bifurcated points are stable if ∆2 > 0, and unstable if
∆2 < 0.
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5. Numerical Simulations
This section presents numerical simulations to demonstrate

the complex dynamical behavior of model (1). Bifurcation
diagrams and phase portraits are utilized as visual aids to
provide further evidence of the theoretical analysis discussed
earlier.

We start by selecting the parameter values as δ = 0.1,
α = 2, and γ = 5.1, with an initial condition of (3.05, 4.75).
Initially, we construct the bifurcation diagram of the model
(1) without considering the Allee effect (Figure (1)-a). As
the system evolves, it reaches a stable equilibrium, and
subsequently, chaotic dynamics emerge.

To investigate the influence of the Allee effect, we focus
on the bifurcation diagram of System (1) with respect to the
parameter µ. By gradually increasing the Allee parameter,

we observe that the system undergoes a transition. Beyond a
critical threshold value of 0.262, the dynamics become stable
(Figure (1)-b). This finding is consistent with our theoretical
analysis and is further supported by numerical simulations that
showcase the novel and intricate dynamical behavior of the
model.

Next, we investigate the behavior of model (1) by varying
the parameter r within the range 3.8 ≤ r ≤ 4.1. In the
interval 3.8 ≤ r < 4.032, the model exhibits a unique positive
stable equilibrium point. By computation, we find that this
equilibrium point is located at (3.05, 4.793185240) for the
parameter values r = 4.032, δ = 0.1, µ = 0.2, α = 2, γ =
5.1. The corresponding phase portraits for different values of
r within this range are depicted in Figure 3. Notably, at r =
4.0321, a Neimark-Sacker bifurcation occurs, as illustrated in
Figure 2 (f), with

−
(γ + 1)e

α−γ−1
α

(
α2µ− (µ+ γ + 2)α+ γ + 1

)
2α

√
−r(γ + 1) (α2µ+ (−µ− γ − 2)α+ γ + 1) e

α−γ−1
α − α2γ

= 0.7576542145 > 0

hold. Furthermore, for r = 4.0321, the eigenvalues of JE2

around E2 are

σ1,2 = −0.464431894± 0.882896387ι, (12)

After performing calculations, we obtain

θ02 = 0.02191700441− 0.08872080900ι,
θ11 = −0.07938575138− 0.2215864374ι,
θ20 = 0.01095850221− 0.06643281419ι,
θ21 = 0.009076385606 + 0.02533457095ι,

(13)

Based on the calculations from (12) and (13), the value of
the discriminatory quantity is χ = −0.08653744470 < 0.
Therefore, when r = 4.321 > 4.32, the model (1) undergoes
a supercritical Neimark-Sacker bifurcation, resulting in the
emergence of a stable invariant closed curve, as shown in
Figure 3. As the parameter r exceeds the value of 4.04, chaotic
behavior emerges, as observed in Figure 3(b-e).

The numerical solutions depicted in Figure 2 and Figure 3
demonstrate that the stable fixed point E2 becomes unstable,
leading to the coexistence of prey and predator populations
through persistent positive periodic oscillations over time.

(a) Without Allee effect where the values of parameters are δ = 0.1, (b) With Allee effect where the values of parameters are r = 4,

α = 2, γ = 0.1. Corresponding to the bifurcating parameter r. δ = 0.1, α = 2, γ = 5.1. Corresponding to the bifurcating parameter µ.

Figure 1. Bifurcation diagrams.
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(a) stable equilibrium (b) stable equilibrium

(c) stable equilibrium (d) stable equilibrium

(e) invariant circle (f) invariant circle

Figure 2. Phase portraits for various values of r from 3.8 to 4.034.
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(a) invariant circle (b) chaotic behavior

(c) chaotic behavior (d) chaotic behavior

(e) chaotic behavior (f) Continuation ofE2 in (δ, x)-space.

The branch point (BP), Neimark-Sacker point (NS).

Figure 3. Phase portraits for various values of r from 4.038 to 4.1.
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6. Conclusions
In conclusion, the stability analysis of predator-prey models

with Allee effect is crucial for understanding their biological
significance and can inform conservation management. The
Allee effect is a natural phenomenon that can have either a
stabilizing or destabilizing effect on population dynamics, and
its impact on the model can be explored through bifurcation
diagram analysis.

In this study, we analyzed a prey-predator model with
Allee effect in the prey growth function. By increasing the
strength of the Allee parameter, we observed a transition from
chaotic behavior to stability in the model dynamics. We also
investigated the effect of Allee parameter on the model for
different values of µ and produced bifurcation diagrams and
phase portraits for various parameter values (Figures (1), (2),
and (3)). Our analysis showed that the Allee effect has a
stabilizing effect on the model dynamics.

Moreover, by replacing the logistic growth function with the
Ricker map, we demonstrated that the behavior of the model
dynamics can be altered and enriched. Our results may have
significant applications in species conservation management
policies. Overall, our study highlights the importance of
considering the Allee effect in ecological models and its
potential impact on conservation management.
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