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Abstract: In the study of quantum groups, quantized matrix algebras have been widely investigated from the viewpoints
of representation theory and noncommutative geometry. This paper addresses a computational approach to the investigation of
quantized matrix algebra J0

q (n), namely, by employing the Shirshov algorithmic method, it is shown that the defining relations of
J0
q (n) constitute a Gröbner-Shirshov basis; by constructing an appropriate monomial ordering on J0

q (n), it is shown that J0
q (n) is

a solvable polynomial algebra. Consequently, it is shown that several further structural properties of J0
q (n), such as J0

q (n) being a
Noetherian domain, having Hilbert series 1

(1−t)n2 , having GK dimension n2, having global homological dimension n2, and being
a classical quadratic Koszul algebra, may be derived in a constructive-computational way. Moreover, applying the foregoing
structural properties in turn to investigate several structural properties of modules over J0

q (n), such as constructing finite free
resolutions of finitely generated modules, establishing the stability of finitely generated projective modules, establishing the
K0-groups of J0

q (n), computing minimal graded generating sets of finitely generated graded modules, and establishing the
elimination property of one-sided ideals (finitely generated modules), it is shown that all of those properties may be obtained and
realized in a computational way.
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1. Introduction

Let K = C be the field of complex numbers. by
modifying the standard quantized matrix algebra Mq(n) in
the sense of [4], a class of quadratic matrix algebras MPq (n)
associated to the quantized enveloping algebra Uq(A2n−1)
was naturally introduced in [5], where algebras belonging to
MPq (n) are called modified algebra for short. Except for the
quantized matrix algebra Mq(n), the so-called Dipper Donkin
quantized matrix algebra Dq(n) introduced in [3] is also a
modified algebra, and recently some structural properties of
both algebras Mq(n) and Dq(n), as well as their modules,
have been established in a constructive-computational way in
[15] and [16] respectively. This paper investigates another
modified algebra J0

q (n) appeared in [5], which has its own
justification. More precisely, in Section 2 it is shown explicitly
that the defining relations of J0

q (n) form a Gröbner-Shirshov

basis, and from which a PBW K-basis of J0
q (n) is obtained. As

consequences, several global structural properties of J0
q (n) are

derived. In Section 3, it is shown that J0
q (n) may be equipped

with an appropriate monomial ordering such that J0
q (n) is

turned into a solvable polynomial algebra in the sense of [6],
thereby J0

q (n) has an algorithmic Gröbner basis theory for
(two-sided, one-sided) ideals and modules. As consequences,
more structural properties of J0

a(n) are derived, and several
structural-computational properties of modules over J0

q (n) are
obtained.

Throughout this paper, K denotes a field of characteristic 0,
K∗ = K −{0}, and all K-algebras considered are associative
with multiplicative identity 1. If S is a nonempty subset of
an algebra A, then 〈S〉 is written for the two-sided ideal of A
generated by S.
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2. The Gröbner-Shirshov
Defining Relations of J0

q (n),
Some Consequences

In this section it is shown that the defining relations of the
quantized matrix algebra J0

q (n) constitute a Gröbner-Shirshov

basis. As consequences, several global structural properties of
J0
q (n) are derived. For classical Gröbner-Shirshov basis theory

of noncommutative associative free algebras, one is referred to,
for instance [2].

Let K = C be the field of complex numbers, I(n) =
{(i, j) | i, j = 1, 2, . . . , n} with n ≥ 2, and let J0

q (n)
be the associative K-algebra generated by n2 elements Jij
(i, j = 1, ...., n) subject to the relations:

JijJst = qs+t−i−jJstJij , if (s− i)(t− j) ≤ 0,
JstJij = qi+j−t−s+2JijJst − qi−s+1(q − q−1)JitJsj , if s > i , t > j,

Where i, j, s, t = 1, 2, ..., n and q ∈ K∗ is the quantum parameter. Now, bearing in mind the defining relations of J0
q (n), the

same set of symbols J = {Jij | (i, j) ∈ I(n)} to denote the generating set of the free associative K-algebra K〈J〉, and let S be
the subset of K〈J〉 consisting of elements

fijst = JijJst − qs+t−i−jJstJij , if i > s, t ≥ j,
hstij = JstJij − qi+j−t−s+2JijJst + qi−s+1(q − q−1)JitJsj , if s > i, t > j

Then, J0
q (n)

∼= K〈J〉/〈S〉 asK-algebra, where 〈S〉 denotes
the (two-sided) ideal of K〈J〉 generated by S, i.e., J0

q (n) is
presented as a quotient of K〈J〉. Our aim below is to show
that S forms a Gröbner-Shirshov basis with respect to a certain
monomial ordering onK〈J〉. To this end, the deg-lex ordering
≺d-lex (i.e., the degree-preserving lexicographic ordering) on

J∗ is employed below, where J∗ is the set of all mono words
in J , i.e., all words of finite length like u = JijJkl...Jst.
More precisely, first take the lexicographic ordering ≺lex on
J∗ which is the natural extension of the ordering on the set J
of generators of K〈J〉: for Jij , Jkl ∈ J ,

Jij < Jst ⇔
{
i < s,
or i = s and j > t.

and for two words u = Ji1j1Ji2j2 ...Jisjs , v = Js1t1Js2t2 ...Jsktk ∈ J∗,

u ≺lex v ⇔ there exists an m ≥ 1, such that
Ji1j1 = Js1t1 , Ji2j2 = Js2t2 , . . . , Jim−1jm−1

= Jsm−1tm−1
,

but Jimjm < Jsmtm .

(note that conventionally the empty word 1 < Jst for all Jst ∈ J). For instance

J32J21J31 ≺lex J43J13J43 ≺lex J42J23J41.

And then, by assigning each Jst the degree 1, 1 ≤ s, t ≤ n,
and writing |u| for the degree (i.e., length) of a word u ∈ J∗,
the deg-lex ordering ≺d-lex is defined on the set J∗: for
u, v ∈ J∗,

u ≺d-lex v ⇔
{
|u| < |v|,
or |u| = |v| and u ≺lex v.

For instance,

J24J11 ≺d-lex J32J24 ≺d-lex J32J21 ≺d-lex J11J12J13.

It is straightforward to check that ≺d-lex is a monomial
ordering on K〈J〉, namely, ≺d-lex is a well-ordering and

u ≺d-lex v implies wur ≺d-lex wvr for all u, v, w, r ∈ J∗

With the monomial ordering ≺d-lex constructed above, the
next goal is to prove the following result.

Theorem 2.1 With notation as fixed above, let I = 〈S〉 be
the ideal of J0

q (n) generated by S. Then, with respect to the
monomial ordering ≺d-lex on K〈J〉, the set S is a Gröbner-
Shirshov basis of the ideal I , i.e., the defining relations of
J0
q (n) constitute a Gröbner-Shirshov basis.
Proof By [2], it is sufficient to check that all compositions

determined by elements in S are trivial modulo S. In doing
so, two more notations are fixed first. For an element f ∈ 〈J〉,
f is written for the leading mono word of f with respect to
≺d-lex, i.e., if f =

∑s
i=0 λiui with λi ∈ K∗, ui ∈ J∗, such

that u1 ≺d-lex u2 ≺d-lex . . . ≺d-lex us, then f = us. Thus,
the set S of defining relations of J0

q (n) has the set of leading
mono words

S =

{
f ijst = JijJst, if i > s, t ≥ j,
gstij = JstJij , if s > i, t > j.

}
By means of S above, the compositions of intersections

determined by elements in S, are presented as follows:
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1. The case (fijst ∧ fstkl) with ω = JijJstJkl, where k < s < i, t ≥ j, t > l. Since in this case ω1 = JijJstJkl =
f ijstJkl = Jijfstkl with fijst = JijJst − qs+t−i−jJstJij , where i ≥ s and j ≤ t, and fstkl = JstJkl − qk+l−s−tJklJst,
where s ≥ k and l ≥ t, it follows that

(fijst, fstkl)w = fijstJkl − Jijfstkl
= −qs+t−i−jJstJijJkl + qk+l−s−tJijJklJst
≡ −qs+t+k+l−2i−2jJstJklJij + q2k+2l−s−t−i−jJklJijJst
≡ −q2k+2l−2i−2jJklJstJij + q2k+2l−2i−2jJklJstJij
≡ 0 mod(S,w)

2. The case (fijst ∧ gstkl) with ω1 = JijJstJkl, where k ≤ s < i, j ≤ t ≤ l.
Since in this case ω1 = JijJstJkl = f ijstJkl = Jijgstkl with fijst = JijJst − qs+t−i−jJstJij , where i ≥ s and j ≤ t,
and gstkl = JstJkl − qk+l−t−s+2JklJst + qk−s+1(q − q−1)JktJsl, where s > k and t > l, there are three cases to deal
with.
Case 1. If j ≤ l, then k < s < i, j ≤ l < t, and it follows that

(fijst, gstkl)w1
= fijstJkl − Jijgstkl
= −qs+t−i−jJstJijJkl + qk+l−t−s+2JijJklJst − qk−s+1(q − q−1)JijJktJsl
≡ −qs+t+k+l−2i−2jJstJklJij + q2k+2l−t−s−i−j+2JklJijJst
−q2k+t−s−i−j+1(q − q−1)JktJijJsl

≡ −q2k+2l−2i−2j+2JklJstJij + qt+2k+l−2i−2j+1(q − q−1)JktJslJij
+q2k+2l−2i−2j+2JklJstJij − q2k+t+l−2i−2j+1(q − q−1)JktJslJij

≡ 0 mod(S1, w1)

Case 2. If j > l, then k < s < i, l < j < t, and it follows that

(fijst, gstkl)w1
= fijstJkl − Jijgstkl
= −qs+t−i−jJstJijJkl + qk+l−t−s+2JijJklJst − qk−s+1(q − q−1)JijJktJsl
≡ −qs+t+k+l−2i−2j+2JstJklJij + qs+t+k−2i−j+1(q − q−1)JstJkjJil

+q2k+2l−t−s−j−i+4JklJijJst
≡ −q2k+2l−2i−2j+4JklJstJij + qt+2k+l−2i−2j+3(q − q−1)JktJslJij

+q2k−2i+3(q − q−1)JkjJstJil − q2k+t−2i−j+2(q − q−1)2JktJsjJil
+q2k+2l−2i−2j+4JklJstJij − q2k−2i+3(q − q−1)JkjJstJil
−q2k+t+l−2i−2j+3(q − q−1)JktJslJij + q2k+t−2i−j+2(q − q−1)2JktJsjJil

≡ 0 mod(S1, w1)

Case 3. If k < s < i, l < j = t, and it follows that

(fijst, gstkl)w1
= fijstJkl − Jijgstkl
= −qs+t−i−jJstJijJkl + qk+l−t−s+2JijJklJst − qk−s+1(q − q−1)JijJktJsl
≡ −qs+t+k+l−2i−2j+2JstJklJij + qs+t+k−2i−j+1(q − q−1)JstJkjJil

+q2k+2l−t−s−j−i+4JklJijJst − q2k+l−t−s−i+3(q − q−1)JkjJilJst
−q2k+t−s−i−j+1(q − q−1)JktJijJsl

≡ −q2k+2l−2i−2j+4JklJstJij + qt+2k+l−2i−2j+3(q − q−1)JktJslJij
+q2k−2i+1(q − q−1)JkjJstJil + q2k+2l−2i−2j+4JklJstJij − q2k−2i+3(q − q−1)JkjJstJil
−q2k+t+l−2i−2j+3(q − q−1)JktJsjJil + q2k+t−2i−j+2(q − q−1)2JktJsjJil

≡ 0 mod(S1, w1)

3. The case (gstij ∧ fijkl) with ω2 = JstJijJkl, where k ≤ i < s, t > j, l ≥ j.
Since in this case ω2 = JstJijJkl = gstijJkl = Jstf ijkl with gstij = JstJij−qi+j−t−s+2JijJst+q

i−s+1(q−q−1)JitJsj ,
where s > i and t > j, and fijkl = JijJkl − qk+l−i−jJklJij , where i ≥ k and l ≥ j, there are three cases to deal with.
Case 1. If t ≤ l, then k ≤ i < s, j < t ≤ l, and it follows that
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(gstij , fijkl)w2
= gstijJkl − Jstfijkl
= −qi+j−t−s+2JijJstJkl + qi−s+1(q − q−1)JitJsjJkl + qk+l−i−jJstJklJij
≡ −qi+j+k+l−2t−2s+4JijJklJst + qi+j+k−t−2s+3(q − q−1)JijJktJsl

+qi+k+l−2s−j+1(q − q−1)JitJklJsj + q2k+2l−i−j−t−s+2JklJstJij
−q2k+l−i−j−s+1(q − q−1)JktJslJij

≡ −q2k+2l−2t−2s+4JklJijJst + q2k−2s+3(q − q−1)JktJijJsl
+q2k+2l−2s−t−j+3(q − q−1)JklJitJsj − q2k+l−2s−j+2(q − q−1)JktJilJsj
+q2k+2l−2t−2s+4JklJijJst − q2k+2l−2s−t−j+3(q − q−1)JklJitJsj
−q2k−2s+3(q − q−1)JktJijJsl + q2k+l−2s−j+2(q − q−1)JktJilJsj

≡ 0 mod(S1, w2)

Case 2. If t > l, then k ≤ i < s, t > l > j, and it follows that

(gstij , fijkl)w2
= gstijJkl − Jstfijkl
= −qi+j−t−s+2JijJstJkl + qi−s+1(q − q−1)JitJsjJkl + qk+l−i−jJstJklJij
≡ −qi+j+k+l−2t−2s+2JijJklJst + qi+k+l−2s−j+1(q − q−1)JitJklJsj

+q2k+2l−i−j−s−tJklJstJij − q2k+l−t−s−i+3(q − q−1)JkjJilJst
−q2k+t−s−i−j+1(q − q−1)JktJijJsl

≡ −q2k+2l−2t−2s+2JklJijJst + q2k+2l−2s−t−j+1(q − q−1)JklJitJsj
+q2k+2l−2t−2s+2JklJijJst − q2k+2l−2s−t−j+1(q − q−1)JklJitJsj

≡ 0 mod(S1, w2)

Case 3. If k < i < s, t > j = l, and it follows that

(gstij , fijkl)w2
= gstijJkl − Jstfijkl
= −qi+j−t−s+2JijJstJkl + qi−s+1(q − q−1)JitJsjJkl + qk+l−i−jJstJklJij
≡ −qi+j+k+l−2t−2s+4JijJklJst + qi+j+k−t−2s+3(q − q−1)JijJktJsl

+qi+k+l−2s−j+1(q − q−1)JitJklJsj + q2k+2l−i−j−s−t+2JklJstJij
−q2k+l−i−j−s+1(q − q−1)JktJslJij

≡ −q2k+2l−2t−2s+4JklJijJst + q2k−2s+3(q − q−1)JktJijJsl
+q2k+2l−2s−j−t+3(q − q−1)JklJitJsj − q2k+l−2s−j+2(q − q−1)2JktJilJsj
+q2k+2l−2s−2t+4JklJijJst − q2k+2l−j−2s−t+3(q − q−1)JklJitJsj
−q2k−2s+1(q − q−1)JktJijJsl

≡ 0 mod(S1, w2)

4. The case (gstij ∧ gijkl) with ω = JstJijJkl, where k < i < s, t > j, l < j < t. Since in this case ω = JstJijJkl =
gstijJkl = Jstgijkl with gstij = JstJij − qi+j−t−s+2JijJst + qi−s+1(q − q−1)JitJsj , where s > i and t > j, and
gijkl = JijJkl − qk+l−i−j+2JklJij + qk−i+1(q − q−1)JkjJil, where i > k and j > l, it follows that

(gstij , gijkl)w = gstijJkl − Jstgijkl
= −qi+j−t−s+2JijJstJkl + qi−s+1(q − q−1)JitJsjJkl + qk+l−i−j+2JstJklJij
−qk−i+1(q − q−1)JstJkjJil

≡ −qi+j+k+l−2t−2s+4JijJklJst + qi+j+k−t−2s+3(q − q−1)JijJktJsl
+qi+k+l−2s−j+3(q − q−1)JitJklJsj − qi+k−2s+2(q − q−1)2JitJkjJsl
+q2k+2l−i−j−t−s+4JklJstJij − q2k+l−j−i−s+3(q − q−1)JktJslJij
−q2k+j−i−t−s+3(q − q−1)JkjJstJil + q2k−i−s+2(q − q−1)2JktJsjJil

≡ −q2k+2l−2t−2s+6JklJijJst + qj+2k+l−2t−2s+5(q − q−1)JkjJilJst
+q2t−2s+3(q − q−1)JktJijJsl + q2k+2l−2s−j−t+5(q − q−1)JklJitJsj
−q2k+l−2s−j+4(q − q−1)2JktJilJsj − q2k+j−2s−t+4(q − q−1)2JkjJitJsl
+q2k−2s+3(q − q−1)3JktJijJsl + q2k+2l−2t−2s+6JklJijJst
−q2k+2l−j−t−2s+5(q − q−1)JklJitJsj − q2k−2s+3(q − q−1)JktJijJsl
−q2k+j+l−2t−2s+5(q − q−1)JkjJilJst + q2k+j−t−2s+4(q − q−1)2JkjJitJsl
+q2k+l−2s−j+4(q − q−1)2JktJilJsj − q2k−2s+3(q − q−1)3JktJijJsl

≡ 0 mod(S1, w).

This finishes the proof of the theorem. 2

Immediately, Theorem 2.1 has the following
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Corollary 2.2 The quantized matrix algebra J0
q (n)

∼= K〈J〉/I has the linear basis, or more precisely, the PBW basis

B =
{
Jk1n1n J

k1(n−1)

1(n−1) · · · J
k11
11 Jk2n2n · · · J

k21
21 · · · Jknn

nn · · · J
kn1
n1

∣∣∣ kij ∈ N, (i, j) ∈ I(n)
}
.

Proof With respect to the monomial ordering ≺d-lex on the set J∗ of mono words of K〈J〉, note that

J1n ≺d-lex J1(n−1) ≺d-lex · · · ≺d-lex J11 ≺d-lex J2n ≺d-lex J2(n−1) ≺d-lex · · · ≺d-lex J21
≺d-lex · · · ≺d-lex Jnn ≺d-lex Jn(n−1) ≺d-lex · · · ≺d-lex Jn1,

and the Gröbner-Shirshov basis S of the ideal J = 〈S〉 has the set of leading mono words consisting of

f ijst = JijJst, with Jst ≺d-lex Jij where i > s, j ≤ t,
gstij = JstJij , with Jst ≺d-lex Jij where s > i, t > j.

It follows from classical Gröbner-Shirshov basis theory that the set of normal forms of J∗ (mod S) is given as follows:{
Jk1n1n J

k1(n−1)

1(n−1) · · · J
k11
11 Jk2n2n · · · J

k21
21 · · · Jknn

nn · · · J
kn1
n1 ,

∣∣∣ kij ∈ N, (i, j) ∈ I(n)
}
.

Therefore, J0
q (n) has the desired PBW basis. 2

To give some applications of Theorem 2.1 and Corollary 2.2,
first recall three results of [11] in one proposition below, for the
reader’s convenience.

Proposition 2.3 Adopting notations used in [11], let
K〈X〉 = K〈X1, X2, ..., Xni〉 be the free K−algebra with
the set of generators X = X1, X2, ..., Xn, and let ≺ be a
monomial ordering on K〈X〉 . Suppose that G is a Gröbner-
Shirshov basis of the ideal I = 〈G〉 with respect to ≺, such
that the set of leading monomials LM (G) = {XjXi|1 ≤ i <
j ≤ n}. Considering the algebra A = K〈X〉/I , the following
statements hold.

(i) [11, P.167, Example 3] The Gelfand-Kirillov dimension
GK.dimA = n.

(ii) [11, P.185, Corollary 7.6] The global homological
dimension gl.dimA = n, provided G consists of homogeneous
elements with respect to a certain N-gradation ofK〈X〉. (Note
that in this caseGN(A) = A, with the notation used in loc. cit.)

(iii) [11, P.201, Corollary 3.2] A is a classical quadratic
Koszul algebra, provided G consists of quadratic homogeneous
elements with respect to the N-gradation of K〈X〉 such that
each Xi is assigned the degree 1, 1 ≤ i ≤ n. (Note that in this

case GN(A) = A, with the notation used in loc. cit.)
Remark Let j1j2 · · · jn be a permutation of 1, 2, . . . , n.

One may notice from the respectively quoted references in
Proposition 4.1 that if, in the case of Proposition 4.1, the
monomial ordering ≺ employed there is such that

Xj1 ≺ Xj2 ≺ · · · ≺ Xjn , and
LM (G) = {XjkXjt | Xjt ≺ Xjk , 1 ≤ jk, jt ≤ n},
or
LM (G) = {XjkXjt | Xjk ≺ Xjt , 1 ≤ jk, jt ≤ n},

then all results still hold true.
Applying Proposition 2.3 and the above remark to J0

q (n)
∼=

K〈J〉/I , the result below is obtained.
Theorem 2.4 The quantized matrix algebra J0

q (n) has the
following structural properties.

(i) The Hilbert series of J0
q (n) is 1

(1−t)n2 .

(ii) The Gelfand-Kirillov dimension GK.dimJ0
q (n) = n2.

(iii) The global homological dimension gl.dimJ0
q (n) = n2.

(iv) J0
q (n) is a classical quadratic Koszul algebra.

Proof Recalling that with respect to the monomial ordering
≺d-lex on the set J∗ of mono words of K〈J〉 ,

Jst ≺d-lex Jij ⇔


s < i, t < j,
s < i, j < t,
s < i, j = t,
s = i, t > j.

(i, j) ∈ I(n),

J1n ≺d-lex J1(n−1) ≺d-lex · · · ≺d-lex J11 ≺d-lex J2n ≺d-lex J2(n−1) ≺d-lex · · · ≺d-lex J21
≺d-lex · · · ≺d-lex Jnn ≺d-lex Jn(n−1) ≺d-lex · · · ≺d-lex Jn1,

it follows that the Gröbner-Shirshov basis S of the ideal I = 〈S〉 has the set of leading mono words consisting of

f ijst = JijJst, with Jst ≺d-lex Jij where i ≥ s, j ≤ t,
gstij = JstJij , with Jst ≺d-lex Jij where s > i, t > j.

This means that J0
q (n) satisfies the conditions of Proposition

2.3. Therefore, the assertions (i)-(iv)are established as follows.
(i) Since J0

q (n) has the PBW K-basis as described in
Corollary 2.2, it follows that the Hilbert series of J0

q (n) is

1
(1−t)n2 . (ii) This follows from Theorem 2.1, Proposition
2.3(i).

Note that J0
q (n) is an N-graded algebra defined by a

quadratic homogeneous Gröbner-Shirshov basis (Theorem
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2.1), where each generator Jij is assigned the degree 1, (i, j) ∈
I(n). The assertions (iii) and (iv) follow from Proposition
2.3(ii) and Proposition 2.3(iii), respectively.

3. Equipping J0
q (n) with the

Structure of a Solvable Polynomial
Algebra, Some Consequences

In this section it is shown, by constructing an appropriate
monomial ordering on the PBW basis of the quantized

matrix algebra J0
q (n), that J0

q (n) is a solvable polynomial
algebra in the sense of [6]. As consequences, some further
more structural properties of J0

q (n) are derived, and several
constructive-computational results for modules over J0

q (n) are
gained.

For convenience, it is necessary to start by recalling the
following definitions and notations. Suppose that a finitely
generated K-algebra A = K[a1, . . . , an] has the PBW K-
basis B = {aα = aα1

1 · · · aαn
n | α = (α1, . . . , αn) ∈ Nn}, and

that ≺ is a total ordering on B. Then every nonzero element
f ∈ A has a unique expression

f = λ1a
α(1) + λ2a

α(2) + · · ·+ λma
α(m),

such that aα(1) ≺ aα(2) ≺ · · · ≺ aα(m),
where λj ∈ K∗, aα(j) = a

α1j

1 a
α2j

2 · · · aαnj
n ∈ B, 1 ≤ j ≤ m.

Since elements of B are conventionally called monomials,
the leading monomial of f is defined as LM (f) = aα(m), the
leading coefficient of f is defined as LC (f) = λm, and the
leading term of f is defined as LT (f) = λma

α(m).
Definition 3.1 Suppose that the K-algebra A =

K[a1, . . . , an] has the PBW basis B. If ≺ is a total ordering
on B that satisfies the following three conditions:

1. ≺ is a well-ordering (i.e., every nonempty subset of B
has a minimal element);

2. For aγ , aα, aβ , aη ∈ B, if aγ 6= 1, aβ 6= aγ , and
aγ = LM (aαaβaη), then aβ ≺ aγ (thereby 1 ≺ aγ

for all aγ 6= 1);
3. For aγ , aα, aβ , aη ∈ B, if aα ≺ aβ , LM (aγaαaη) 6=

0, and LM (aγaβaη) 6∈ {0, 1}, then LM (aγaαaη) ≺
LM (aγaβaη), then ≺ is called a monomial ordering on
B (or a monomial ordering on A).

Definition 3.2 A finitely generated K-algebra A =
K[a1, . . . , an] is called a solvable polynomial algebra if A
has the PBW K-basis B = {aα = aα1

1 aα2
2 · · · aαn

n | α =
(α1, . . . , αn) ∈ Nn} and a monomial ordering ≺ on B, such
that for some λji ∈ K∗ and fji ∈ A,

ajai = λjiaiaj + fji, 1 ≤ i < j ≤ n,
LM (fji) ≺ aiaj whenever fji 6= 0.

Following the definitions above, it is ready now to give and
prove the main result of this section.

Theorem 3.3 Let J0
q (n) be the quantized matrix algebra over

the field K = C. Then J0
q (n) is a solvable polynomial algebra

in the sense of Definition 3.2.
Proof Let I(n) = {(i, j) | i, j = 1, 2, · · · , n} with n ≥ 2.

Recall that J0
q (n) is the associative K-algebra generated by

the set of n2 generators J = {Jij | (i, j) ∈ I(n)} subject to
the relations:

F1 : JijJst = qs+t−i−jJstJij , if (s− i)(t− j) ≤ 0,
F2 : JstJij = qi+j−t−s+2JijJst − qi−s+1(q − q−1)JitJsj , if s > i , t > j,

where i, j, s, t = 1, 2, ..., n and q ∈ K∗ is the quantum parameter, and by Corollary 2.2, J0
q (n) has the PBW K-basis

B =
{
Jk1n1n J

k1(n−1)

1(n−1) · · · J
k11
11 Jk2n2n · · · J

k21
21 · · · Jknn

nn · · · J
kn1
n1

∣∣∣ kij ∈ N, (i, j) ∈ I(n)
}
.

In order to show that B may be equipped with a monomial ordering≺ such that the condition of Definition 3.2 is satisfied, first
observe that if B is rewritten as

B = {1, Ji1j1Ji2j2 · · · Jikjk | (it, jt) ∈ I(n), k ≥ 1} ,

then B may obviously have an ordering ≺ inherited from the ordering ≺d-lex employed on J∗ in Section 2, namely, for u =
Ji1j1Ji2j2 · · · Jikjk , v = Ji′1j′1Ji′2j′2 · · · Ji′tj′t ∈ B,

v ≺ u⇔
{
|v| < |u|,
or |v| = |u| and v ≺lex u,

where each generators Jij of J0
q (n) is assigned the degree 1.

Clearly ≺ is a well-ordering on B. It remains to show that ≺
satisfies the conditions (2) and (3) of Definition 3.1, and that
with respect to ≺ on B, the relations F1 and F2 satisfied by

generators of J0
q (n) have the property required by Definition

3.2. To this end, note that Definition 3.2 requires that the
product ajai of two generators must be a linear combination
of monomials in B, so that LM (fji) is well defined and
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LM (fji) ≺ aiaj with respect to the ordering ≺ defined on B.
Bearing in mind this basic requirement, it is seen immediately
that the definition of ≺ entails that the relations F1 and F2

satisfied by generators of J0
q (n) have the property required by

Definition 3.2. Next, let Jij , Jst, Jkl ∈ J , and suppose that
Jst ≺ Jkl. If (i, j) and (s, t) are such that i > s and j > t,
then the relation F2 gives rise to

JijJst = q2−i−j+s+tJstJij + (q − q−1)q1−t+jJsjJit
with JstJij , JsjJit ∈ B
and JsjJit ≺ JstJij = LM (JijJst).

On the other hand, if (i, j) and (k, l) are such that i > k and j > l, then the relation F2 gives rise to

JijJkl = q2−i−j+k+lJklJij + (q − q−1)q1−l+jJkjJil
with JklJij , JkjJil ∈ B
and JkjJil ≺ JklJij = LM (JijJkl).

Thus, it has been shown that if
(i, j), (s, t) ∈ I(n) such that i > s, j > t,
(i, j), (k, l) ∈ I(n) such that i > k, j > l,

then
Jst ≺ dkl implies LM (JijJst) = JstJij ≺ JklJij = LM (JijJkl)
and the generating relations of J0

q (n) determined by F2

have the property required by Definition 3.2.
(1)

Similarly, in the case that
(s, t), (i, j) ∈ I(n) such that s > i, t > j,
(k, l), (i, j) ∈ I(n) such that k > i, l > j,

with the aid of F2 it is seen that

Jst ≺ Jkl implies LM (JstJij) = JijJst ≺ JijJkl = LM (Jkldij)
and the generating relations of J0

q (n) determined by F2

have the property required by Definition 3.2.
(2)

At this stage, bearing in mind the relations F1, F2, and the assertions (1) and (2) derived above, it is ready to conclude that

for any jij , jst, jkl ∈ J, if Jst ≺ Jkl, then
LM (JijJst) ≺ LM (JijJkl), LM (JstJij) ≺ LM (JklKij), and
the generating relations of J0

q (n) determined by F1,F2,
have the property required by Definition 3.2.

(3)

Finally, by means of (1), (2), and (3) presented above,
it is straightforward to check that the conditions (2) and
(3) of Definition 3.1 are satisfied by ≺, thereby ≺ is a
monomial ordering on B, and consequently J0

q (n) is a solvable
polynomial algebra in the sense of Definition 3.2, as desired.
2

Now that J0
q (n)

∼= K〈J〉/〈S〉 is a solvable polynomial
algebra by Theorem 3.3, it follows from [6] that every
(two-sided, respectively one-sided) ideal of J0

q (n) and every
submodule of a free (left) J0

q (n)-module has a finite Gröbner
basis with respect to a given monomial ordering, in particular,
for one-sided ideals and submodules of free (left) modules
there is a noncommutative Buchberger Algorithm which,
nowadays, has been successfully implemented in the computer
algebra system Plural [8]. At this point, it is possible to
give several applications of Theorem 3.3 to J0

q (n) and their
modules. In what follows, modules over J0

q (n) are meant left
J0
q (n)-modules.

Theorem 3.4 Let J0
q (n) be the quantized matrix algebra in

the sense of [5]. Then the following statements hold.
(i) J0

q (n) is a Noetherian domain.
(ii) Let L be a nonzero left ideal of J0

q (n), and J0
q (n)/L the

left J0
q (n)-module. Considering Gelfand-Kirillov dimension,

GK.dimJ0
q (n)/L < GK.dimJ0

q (n) = n2 holds true, and there
is an algorithm for computing GK.dimJ0

q (n)/L.
(iii) Let M be a finitely generated J0

q (n)-module. Then a
finite free resolution of M can be algorithmically constructed,
and the projective dimension of M can be algorithmically
computed. Moreover, every finitely generated projective
J0
q (n)-module P is stably free, thereby theK0-group of J0

q (n)
is isomorphic to the additive group of integers Z.

(iv) Let M be a finitely generated graded J0
q (n)-module

(note that J0
q (n) is an N-graded algebra in which each

generator has degree 1). Then a minimal homogeneous
generating set of M can be algorithmically computed,
and a minimal finite graded free resolution of M can be
algorithmically constructed.
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Proof (i) Though the property that J0
q (n) is a Noetherian

domain may be (or may have been) established in some other
ways, it is necessary to emphasize here that this property may
also follow immediately from Theorem 3.3. More precisely,
the property that J0

q (n) has no divisors of zero follows from the
fact that LM (fg) = LM (LM (f)LM (g)) 6= 0 for all nonzero
f, g ∈ J0

q (n), and that the Noetherianess of J0
q (n) follows

from the fact that every nonzero one-sided ideal of a solvable
polynomial algebra has a finite Gröbner basis (see [6]).

(ii) By Theorem 2.4(ii), GK.dimJ0
q (n) = n2. Since J0

q (n)
is a (quadratic) solvable polynomial algebra by Theorem 3.3, it
follows from [10, CH.V] that GK.dimJ0

q (n)/L < n2 (this may
also follow from classical Gelfand-Kirillov dimension theory
[7], for J0

q (n) is now a Noetherian domain), and that there is
an algorithm for computing GK.dimJ0

q (n)/L.
(iii) This follows from [11, Ch.3].
(iv) This follows from [11, Ch.4]. 2

This section is ended by concluding that the algebra J0
q (n)

also has the elimination property for (one-sided) ideals in the
sense of ([12], [13, A3]). To see this, let us first recall the
Elimination Lemma given in [12]. Let A = K[a1, . . . , an] be
a finitely generatedK-algebra with the PBW basis B = {aα =
aα1
1 · · · aαn

n | α = (α1, . . . , αn) ∈ Nn} and, for a subset
U = {ai1 , ..., air} ⊂ {a1, ..., an} with i1 < i2 < · · · < ir, let

S =
{
aα1
i1
· · · aαr

ir

∣∣∣ (α1, ..., αr) ∈ Nr
}
, V (S) = K-spanS.

Lemma 3.5 [11, Lemma 3.1] With notation as fixed above,
let L be a nonzero left ideal of A and A/L the left A-module
defined by L. If there is a subset U = {ai1 , . . . , air} ⊂
{a1, . . . , an} with i1 < i2 < · · · < ir, such that V (S) ∩ L =
{0}, then

GK.dim(A/L) ≥ r.

Consequently, if A/L has finite GK dimension
GK.dim(A/L) = d < n (= the number of generators of
A), then

V (S) ∩ L 6= {0}

holds true for every subsetU = {ai1 , ..., aid+1
} ⊂ {a1, ..., an}

with i1 < i2 < · · · < id+1, in particular, for every U =
{a1, . . . as} with d + 1 ≤ s ≤ n − 1, V (S) ∩ L 6= {0} holds
true. 2

For stating the next theorem, it is convenient to write the
set of generators of J0

q (n) as J = {J1, J2, . . . Jn2}, i.e.,
J0
q (n) = K[J1, J2, . . . , Jn2 ].
Theorem 3.6 With notation as fixed above, Let L be a

nonzero left ideal of J0
q (n). Then the following two statements

hold.
(i) GK.dimJ0

q (n)/L < n2 = GK.dimJ0
q (n). If

GK.dimJ0
q (n)/L = t, then

V (S) ∩ L 6= {0}

holds true for every subset U = {Ji1 , Ji2 , ..., Jt+1} ⊂ J
with i1 < i2 < · · · < it+1, in particular, for every U =
{x1, x2 . . . xs} with t + 1 ≤ s ≤ n2 − 1, V (T ) ∩ L 6= {0}

holds true.
(ii) Without exactly knowing the numerical value

GK.dimJ0
q (n)/L, the elimination property for a left ideal L =∑m

i=1 J
0
q (n)ξi of J0

q (n) can be realized in a computational
way, as follows:

Let ≺ be the monomial ordering on the PBW basis B of
J0
q (n) as constructed in the proof of Theorem 3.3, and let
V (S) be as in (i). Then, employing an elimination ordering
< with respect to V (S) (which can always be constructed
if the existing monomial ordering on B is not an elimination
ordering, see [13, Proposition 1.6.3]), a Gröbner basis G of L
can be produced by running the noncommutative Buchberger
algorithm for solvable polynomial algebras, such that

L ∩ V (S) 6= {0} ⇔ G ∩ V (S) 6= ∅.

Proof (i) By Corollary 2.2, J0
q (n) has the PBW basis B,

Also by Theorem 2.4(ii), GK.dimJ0
q (n) = n2 , thereby

GK.dimJ0
q (n)/L < n2 by Theorem 3.4(ii), the desired

elimination property follows from Lemma 3.5 mentioned
above.

(ii) This follows from [13, Corollary 1.6.5]. 2

Finally, it is necessary to point out that since J0
q (n) is

now a solvable polynomial algebra, if F = ⊕si=1J
0
q (n)ei

is a free (left) J0
q (n)-module of finite rank, then a similar

(even much stronger) result of Theorem 3.6 holds true for any
finitely generated submodule N =

∑m
i=1 J

0
q (n)ξi of F . The

detailed statements and proof is omitted here, but the interested
reader may referred to [13, Section 2.4] for a comprehensive
discussion.

4. Conclusion and Prospect of Further
Exploration

In conclusion, by means of Gröbner-Shirshov basis theory
for free associative algebras and Gröbner basis theory
for (noncommutative) solvable polynomial algebras, several
important structural properties of the quantized matrix algebra
J0
q (n) and its modules have been established and realized

in previous sections. As pointed out in the introduction
part of this paper, the algebra J0

q (n) belongs to the class of
quadratic matrix algebras MPq (n) associated to the quantized
enveloping algebra Uq(A2n−1), which was introduced by
Jakobsen and Zhang in [5]. Combining the work of [15],
[16], and the present investigation of J0

q (n), it is clear that
the research results of loc. cit. may bring some prospects
on effectively establishing and realizing structural properties
of quantized matrix algebras (such as Mq(n), Dq(n), and
J0
q (n)) and their modules in a constructive-computational

way. Thereby, in light of this viewpoint, in the forthcoming
work, the whole class of quadratic matrix algebras MPq (n)
associated to the quantized enveloping algebraUq(A2n−1) will
be investigated, especially, except those structural properties
as established before, the Auslander regularity, the Cohen-
Macaulay property, and the Artin-Schelter regularity (see [1],
[9], [14]), will be explored.
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[2] L. Bokut et al., Gröbner-Shirshov Bases: Normal Forms,
Combinatorial and Decision Problems in Algebra. World
Scientific Publishing, 2020. https://doi.org/10.1142/9287

[3] R. Dipper and S. Donkin, Quantum GLn. Proc, London
Math. Soc., 63 (1991), 156-211.

[4] L. D. Faddeev, N. Yu. Reshetikhin, and L. A. Takhtajan,
Quantization of Lie groups and Lie algebras. Algebraic
Analysis, Academic Press (1988), 129-140.

[5] H. P. Jakobsen and H. Zhang , A class of quadratic matrix
algebras arising from the quantized enveloping algebra
Uq(A2n−1). J. Math. Phys., (41) (2000), 2310-2336.

[6] A. Kandri-Rody and V. Weispfenning, Non-commutative
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graded Transfer. Lecture Notes in Mathematics, Vol.
1795, Springer, 2002. https://doi.org/10.1007/b84211
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