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Abstract: Generalized inverse matrices are an important branch of matrix theory, have a wide range of applications in many 
fields, such as mathematical statistics, system theory, optimization computing and cybernetics etc. This paper mainly studies the 
correlation properties and applications of the Core-ep inverse. Firstly, we present the characterizations of the Core-EP inverse by 
the matrix equations, and an example is given for analysis. Secondly, we present a representation for computing the Core-EP 
inverse, get a representation of Aij

⊕ by Cramer rule , and an example is given for analysis. Finally, we study the constrained 
matrix approximation problem in the Frobenius norm by using the Core-EP inverse: ║Ax-b║F=min subject to x∈R(Ak), where 

A∈C m,m , we obtain the unique solution to the problem. 
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1. Introduction 

Let ,m mC be the set of m m× complex matrices. The 

symbols *A , ( )R A , and rk( )A  denote the conjugate 
transpose, range (column space), and rank, respectively, of 

,m mA C∈ . Moreover, mI  is the identity matrix of order m. 

For an m m× matrix A, the index of A is the smallest 

nonnegative integer k such that ( ) ( )1rk rkk kA A+ = , denoted 

as Ind (A). 
The Moore-penrose inverse denoted by †A of A is the 

unique matrix satisfying 

† † † † † † † †(1) , (2) , (3) ( ) , (4) ( ) .AA A A A AA A AA AA A A A A∗ ∗= = = = [1] 

The Drazin inverse denoted by DA of A is the unique matrix 
satisfying 

k 1(1) ,(2) ,(3) ,D D D D D D kA AA A AA A A A A A+= = =  

where k is the index of A ,when A ’s index is one, DA is called 
the group inverse of A and is denoted by #A [2, 4] . 

The Core-EP inverse denoted by ⊕A  of A is the unique 
matrix satisfying 

(1) A ⊕
A

k+1
 = A

k, (2) A ⊕
A A

⊕= A
⊕ , (3) (A A

⊕)*= A A
⊕  

and k( ) ( ),R A R A⊆ where k is the index of A [3].  When A ’s 

index is one, A ⊕ is called the core inverse of A and is denoted 

by A ⊗
. 

For any complex m × m matrix A of index k, there exists an 
m m×  unitary matrix U such that 

* ,
0
T S

A U U
N

 
=  

 
          (1) 

and 
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A
⊕=

1
*0

0 0
T

U U
− 

 
 

            (2) 

where ,k kT C∈  is invertible, ,k m kS C −∈ , ,m k m kN C − −∈  is 

nilpotent, and 0kN = [3]. 
Consider the following equation 

.Ax b=                    (3) 

Let ,m mA C∈ with Ind( )A k= , and ( )kb R A∈ . Campell and 

Meyer[2]has shown that Dx A b=  is the unique solution of (3) 

concerning ( )kx R A∈ . It is noteworthy that Morikuni and 
Rozloznik [5] study the equation (3) by the generalized 
minimal residual method in the case of ,m mA C∈ , Ind (A) = 1 

and ( ).b R A∈  

When ( )b R A∉ , (3) is unsolvable, it has least-squares 
solutions. Motivated by the above-mentioned work, it is 
natural to consider the least-squares solutions of (3) under the 
particular condition ( )x R A∈ , i.e., 

min
F

Ax b− =  subject to ( ),x R A∈      (4) 

where ,m mA C∈ , Ind (A) = 1, rk( ) ,A r m= < and mb C∈ . In 

Wang and Zhang [6]obtained x = A
⊗

b is the unique solution 
of (4). In this paper, we study the constrained matrix 
approximation problem in the Frobenius norm by employing 
the Core-EP inverse: 

min
F

Ax b− =  subject to ( ),kx R A∈      (5) 

where ,m mA C∈ , Ind (A) = k, rk( ) ,A r m= < and mb C∈ . 

2. Characterizations of Core-EP Inverses 

The characterizations for the Moore-Penrose inverse, the 
Drazin inverse and the Core inverse have been studied[8-10]. 
And now we present characterizations for the Core-EP inverse. 
It is well-known that if A is a nonsingular matrix of order n , 

then 1CA B−  is the unique matrix X for which 

( )rk ,
A B

rk A
C X

 
= 

 
 

Groβ [14] generalized this rank relation when A is a 
rectangular matrix. This section presents a generalization of 
this fact to a singular matrix A to obtain a similar result for the 

Core-EP inverse A ⊕ . 

LEMMA 2.1. [7] For
A B

P
C D

 
=  
 

, and A is nonsingular. 

Then rk( ) rk( )P A= if only if 1 .D CA B−=  

LEMMA 2.2. [11] For ,m mA C∈ , Ind( )A k= , and

rk( )kA r= . Then there exist a unique matrix X  such that 

1 20, 0, , ( ) ,k kA AX XA X X rank X n r+ = = = = −  

a unique matrix Y such that 

2 *0, , , ( ) ,kYA Y Y Y Y rank Y n r= = = = −  

and a unique Z such that 

( )rk rk .
A I Y

A
I X Z

− 
= − 

 

The matrix Z is the Core-EP inverse A
⊕of A , and X=I- A ⊕

A, Y=I- AA
⊕ . 

THEOREM 2.3. Let ,m mA C∈ be of rank r, Ind( )A k= and 

have representation (1). Then X=A
⊕  is the solution to 

( )rk rk ,
A B

A
C X

 
= 

 
 

when 

1 1 0
,

0 0
TG T

B
− − 

=   
 

and 
1

,
0 0
G GT S

C
− 

=   
 

 

where G  is r r×  real positive definite diagonal matrix. 
Proof By applying the equations (1) and (2), we get 

1 1 1 1

1 1 1

rk 0 0 0 0

0

T S TG T T S TG T
A B

rk N rk N
C X

G GT S T G T

− − − −

− − −

   
    

= =    
     

   

( )
1 1 0 0

0 0 0 0 rk .
0 0 0 0 0 0

T S TG T T

rk N rk N A

− −   
   = = =   
   

  

 

THEOREM 2.4. Let ,m mA C∈ , rk( ) ,A r= A α β    is r r×  nonsingular submatrix of A . and ,B C is mentioned above. 

Then we have 

A
⊕= [ ] [ ]( ) [ ]1

| | |C N A B Nβ α β α
−

, 

where { } { }1 2 3 1 2 3, , , , , , ,r ri i i i j j j jα β= =⋯ ⋯ . 

Proof Let 
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A B N
P

C N A

α β α

β ⊕

        =
    

 

then we have ( )rk( ) rk( ) .P A r rk Aα β ≥ = =  from theorem 2.3 we have 

( ) ( )rk rk rk ,
A B

P A
C A⊕

 
≤ =  

 
 

so we obtain ( )rk( ) rk( ).P rk A A α β = =   In addition, from lemma 2.1 we obtain 

A
⊕= [ ] [ ]( ) [ ]1

| | |C N A B Nβ α β α
−

. 

THEOREM 2.5. Let ,m mA C∈ be of rank r , Ind( )A k= and have representation (1). Then X=A
⊕  is the solution to 

( )rk rk ,
k

kA B
A

C X

 
=  

 

 

when 

0
,

0 0
M

B
 

=  
 

1 1 1 1

,
0 0

kT M T T M H
C

− − − − 
=   
 

 

where M is r r×  real positive definite diagonal matrix. 
Proof Applying (1) and (2), we get 

1 1 1 1 1 1 1 1

0

rk 0
0 0 0 0 0

k k

k
k k

T H M T M
A B

rk T M T T M H T rk T M T T
C X

G

− − − − − − − −

   
    
   = =           
   

( )
0 0

0 0 0 rk .
0 0 0

k

k

T

rk A

 
 

= = 
 
 

 

where 1 2 3 2 1.k k k kH T S T SN T SN SN− − − −= + + + +⋯  
Example 2.1. Let 

1 0 2 1 0
1 1 0 0 2

,3 0 1 0 0
0 0 0 0 1
0 0 0 0 0

A

 
 
 
 =
 
 
 
 

 

we have 

1 0 2
1 1 0
3 0 1

T

 
 =  
 
 

,
1 0
0 2
0 0

S

 
 =  
 
 

and 
0 1
0 0

N
 

=  
 

. 

Let
1 0 0
0 2 0 ,
0 0 1

G

 
 =  
 
 

by caculating we get 

1 1

1 0 0
1 1 1

,
10 2 5
0 0 1

TG T
− −

 
 
 = −
 
 
 

1

1
0

5
2

4 ,
5
3

0
5

GT S−

 − 
 
 =  
 
 
 
 

and 1

1 2
0

5 5
1 2

1 .
5 5
3 1

0
5 5

T −

 − 
 
 = − 
 
 − 
 
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We have 

1 1

1 1

1 0 2 1 0 1 0 0
1 1 1

1 1 0 0 2
10 2 5

3 0 1 0 0 0 0 1
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 00 0 4 rk( ).

1 1 2
1 0 0 0 0

5 5 5
2 1 2

0 2 0 4 1
5 5 5
3 3 1

0 0 1 0 0
5 5 5

T S TG T

rk N rk A

G GT S T

− −

− −

 
 
 −
 
 
 
  
  
 = = = 
   − −  
 
 − 
 
 − 
 

 

Example 2.2. Let 

1 0 2 1 0
1 1 0 0 2

,3 0 1 0 0
0 0 0 0 1
0 0 0 0 0

A

 
 
 
 =
 
 
 
 

 

by caculating we get Ind( ) 2.A k= = From A we have 

1 0 2
1 1 0
3 0 1

T

 
 =  
 
 

,
1 0
0 2 ,
0 0

S

 
 =  
 
 

 and
0 1

.
0 0

N
 

=  
 

 

Let

1 0 0
0 2 0 ,
0 0 1

M

 
 =  
 
 

 by caculating we get 

1 1 1 1

1
1 0 2 1

5
1 1 6

0 1
2 2 5

,
30 0 3 0 1 0
5

0 0 0 0 0
0 0 0 0 0

kT M T T M H
C

− − − −

 − 
 
 − −  
 = =     
 
 
 
 
 

 A
⊕=

1 0 0 0 0
0 0 2 0 0 0

,
0 0 0 0 1 0 0

0 0 0 0 0

M
B

 
 

   = =    
 
 

 

and X=A
⊕=

1 2
0 0 0

5 5
1 2

1 0 0
5 5
3 1

0 0 0
5 5
0 0 0 0 0
0 0 0 0 0

 − 
 
 − 
 
 −
 
 
 
 
 

 

Therefore, we have 
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2
2

7 0 4 1 1 1 0 0
2 1 2 1 2 0 2 0
6 0 7 3 0 0 0 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

3 rk( ).1 1 2
1 0 2 1 0

5 5 5
1 1 5 1 2

0 1 1
2 2 6 5 5

3 3 1
3 0 1 0 0

5 5 5

A B
rk rk A

C X

 
 
 
 
 
 
 

   = = =    − −   
 
 − − −
 
 
 − 
 

 

3. Representations of Core-EP Inverses 

In this section, we present some representations for Core-EP inverse. 
THEOREM 3.1. For ,, m mA B C∈  and Ind( )A k= , we have 

A
⊕ ( ) 1

1
( ) ,k

k k

R A
A A

−
+=                                     (6) 

where 1
( )k

k

R A
A +  is restriction on ( ),kR A and it holds that 

( )A B⊗ ⊕
A= ⊕

B⊗ .⊕
 

Proof From[12], we obtain 

A
⊕ ( )1k kA A += ,⊗

 

notice that 1
( )k

k

R A
A + is one-to-one mapping of ( )kR A onto ( )kR A . Suppose that 1 0,kA x+ = where ( )kx R A∈ . It is obvious 

that 

( ) ( ), ,k kA x N A A x R A∈ ∈  

and 

( ) ( ) 0,kA x N A R A∈ ∩ =  

i.e. 0.kA x =  

On the other hand, if 0kA x =  and ( )kx R A∈ , then ( ) ( ) 0k kx R A N A∈ ∩ = . Thus 1
( )k

k

R A
A + is nonsingular on ( )kR A  

and 

A
⊕ ( )1k kA A += ⊗ ( )1k kA A += ⊗

A
A

⊕  ( ) 1
1 1 1

( ) ( )k
k k k k

R A
A A A A

−
+ + += ⊗

A
A

⊕ ( ) 1
1 1

( )k
k k

R A
A A

−
+ += A

⊕ A
A

⊕  

( ) 1
1 1

( )k
k k

R A
A A

−
+ += A

⊕ ( ) 1
1

( ) .k
k k

R A
A A

−
+=  

Form [10], we know ( )A B⊗ ⊗ A= ⊗
B⊗ ⊗

, so we have 

( )A B⊗ ⊕ ( ) ( ) 1k k
A B A B

+ = ⊗ ⊗  
⊗ ( )1k kA A += ⊗ ( )1k kB B +⊗ ⊗

A= ⊕
B⊗ ⊕

. 
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LEMMA 3.2. [11] Let ,m mA C∈  and let B and *C be of full column ranks such that 

( ) ( ) ( ) ( )
*

, .k kN A R B R A N C
  = = 
 

 

Then the bordered matrix 

A B
Z

C 0

 
=  
 

 

is nonsingular and 

( )
( ) ( ) ( )

†

1

† † †

A I A A C
Z

B I A A B I A A A I A A C

⊕ ⊕
−

⊕ ⊕ ⊕

 −
 =  
 − − − −
 

 

THEOREM 3.3. Let ,m mA C∈  and let B and *C be of full column ranks such that 

( ) ( ) ( ) ( )
*

,k kN A R B R A N C
  = = 
 

 

we have 

Aij
⊕

( )
( )det / det , , 1, 2, .

0 0 0
iA j e B A B

i j m
C j C

 ←  
= =    ←   

⋯  

Where (B I A= − ⊕ †) ,A C †(C B I A= − ⊕ ).A  
Proof From Lemma 3.2 we have 

0
0 0

A B IA B

C IC CAB

⊕    
=     −    

 

by Cramer rule, we have 

( )det / det ,
0 0i

ij

A B A BA B
j e

C CC CAB

⊕      
= ←        −      

 

so 

Aij
⊕

( )
( )det / det .

0 0 0
iA j e B A B

C j C

 ←  
=     ←     

Since ( ) ( ) ( ) ( )
*

,k kN A R B R A N C
  = = 
 

, and applying the decomposition (1) of A , then we have 

( ) *
2

2

0
0 , .B b U C U

c

 
= =  

 
 

Let * ,C B= we have 

Aij
⊕

( )
( )* *det / det .

0 0 0
iA j e B A B

B j B

 ←  
 =    ←   
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EXAMPLE 3.1 Let

0 1 0 1 0
2 0 1 0 1
0 2 0 0 0
0 0 0 0 1
0 0 0 0 0

A

 
 
 
 =
 
 
 
 

, and we know Ind( ) 3.A k= = By calculating we get 

Aij
⊕

1
0 0 0 0

4
1 2

0 0 0
5 5

1
0 0 0 0

2
0 0 0 0 0
0 0 0 0 0

 
 
 
 
 
 =
 
 
 
 
 
 

 

and k = 3, we get 

( )3

1
4 3

( )R A
A A

−
=

1
0 0 0 0

4
1 2

0 0 0
5 5

1
0 0 0 0

2
0 0 0 0 0
0 0 0 0 0

 
 
 
 
 
 
 
 
 
 
 
 

 

Hencn, 

Aij
⊕ ( ) 1

1
( ) .k

k k

R A
A A

−
+=

 

4. Applications 

THEOREM 4.1. Let ,m mA C∈ , Ind( )A k= and .mb C∈  Then 

x = Aij
⊕b                                           (7) 

is the unique solution of (5). 

Proof From ( )kx R A∈ , it follows that there exists my C∈ for which .kx A y= Let the decomposition of A is as shown in (1). 

Now we denote 

1 1* *

2 2
, ,

y b
U y U b and A

y b

   
= =   
   

⊕
1

1 ,
0

T b
b U

− 
=   

                             (8) 

where 1 1,y b  and ( )
1

1 .
rk A

T b C− ∈  It follows that 

2
22 * * *

0 0 0

k
k

F F
F

T S T H
Ax b AA y b U U U U y UU b

N

  
− = − = −    

   
 

2
1

1 1

2 2

2
1

1 2 1

2

2 21
1 2 1 2

0 0

.

k

F

k

F

k

FF

y bT TH
U U

y b

T y THy b

b

T y THy b b

+

+

+

    
= −     

    

 + −=   − 

= + − +
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where 1 2 3 2 1.k k k kH T S T SN T SN SN− − − −= + + + +⋯ Since T is invertible, we have min 
21

1 2 1 0k

F
T y THy b+ + − =  if 

( 1)
1 1 2 .k ky T b T Hy− + −= −  

Therefore, 

* 1 2

0 0 0

k k
k T H T y Hy

x A y U U y U
   += = =      
   

1
1

0
T b

U
− 

=   
 

= Aij
⊕b, 

that is, (7) is the unique solution of (5). 

THEOREM 4.2. Let ,m mA C∈  and let B  and *C  be of full column ranks such that 

( ) ( ) ( ) ( )
*

, .k kN A R B R A N C
  = = 
 

 

Let ( ) ,kb R A∈ then the unique solution x = Aij
⊕b of (5) can be expressed componentwise, by 

( )
( )det / det , 1, 2, .

0 0 0
i

j

A j e B A B
x j m

C j C

 ←  
= =    ←   

⋯  

Proof Since x = Aij
⊕b ( )kR A∈  and ( ) ( ) ,kR A N C= we have 0Cx = . The solution of (5) satisfies 

.
0 0 0

A B x b

C

    
=    

    
 

Form Theorem 4.1 we have x = Aij
⊕b and its components 

follow from the Cramer rule. 

5. Conclusion 

This paper mainly studies the correlation properties and 
applications of the Core-ep inverse, firstly, we present the 
characterizations of the Core-EP inverse by the matrix 
equations. and then We present a representation for computing 
the Core-EP inverse, and an example is given for analysis, and 
finally the Core-EP inverse is used to study the solution of the 
equation, i.e ║Ax-b║F=min subject to x ∈R(Ak) where A∈C 

m,m , we obtain the unique solution to the problem. 

Data Availability 

The data used to support the findings of this study are 
included within the article. 

Conflicts of Interest 

The authors declare that they have no conflicts of interest. 

Authors’ Contributions 

All authors contributed equally to the manuscript. All 
authors read and approved the final manuscript. 

Acknowledgements 

This work was supported in part by the National Natural 
Science Foundation of China under Grants 11961021, in part 
by the Guangxi Natural Science Foundation under Grants 
2020GXNSFA A159084, in part by the Scientific Research 
Project of Hechi University (2020XJYB001), Hechi 
University Research Foundation for Advanced Talents under 
Grant 2021GCC024 and 2019GCC005, and in part the 
Guangxi University Young Teachers Research Foundation 
AbilityImprovement Project 2022K Y0603. 

 

References 

[1] Wang G, Wei Y, Qiao S. Generalized inverses: theory and 
computations [M]. Singapore, Beijing: Springer, Science Press; 
2018. (Developments in Mathematics; 53). 

[2] Campbell S L, Meyer C D. Generalized Inverses of Linear 
Transforma-tions [M] Generalized inverses of linear 
transformations. Pitman, 1979. 

[3] Prasad K M, Mohana K S. Core - EP inverse [J]. Linear 
Multilinear Alge-bra, 2014, 62 (6): 792-802. 

[4] Drazin, M. P. Pseudo-Inverses in Associative Rings and 
Semigroups [J]. The American Mathematical Monthly, 1958, 
65 (7): 506. 



 Pure and Applied Mathematics Journal 2022; 11(6): 112-120 120 
 

[5] Keiichi M, Rozloznik Miroslav. On GMRES for Singular EP 
and GPSystems [J]. SIAM Journal on Matrix Analysis and 
Applications, 2018, 39 (2): 1033-1048. 

[6] H Wang, Zhang X. The core inverse and constrained matrix 
approximation problem [J]. Open Mathematics, 2020, 18 (1): 
653-661. 

[7] Fiedler M, Markham T L. A characterization of the Moore- 
Penrose in-verse [J]. Linear Algebra and Its Applications, 1993, 
179 (1): 129-133. 

[8] Wei Y A characterization and representation of the Drazin 
inverse [J]. SIAMJ matrix Anal Appl, 1996; 17: 744-747. 

[9] Ma H, Li T. Characterizations and representations of the core 

inverse and its applications [J]. Linear and Multilinear Algebra, 
2019: 1-11. 

[10] Ma H, Stanimirovi P S. Characterizations, approximation and 
pertur-bations of the core-EP inverse [J]. Applied Mathematics 
and Computation, 2019, 359. 

[11] Wang H. Core-EP decomposition and its applications [J]. 
Linear Algebra and Its Applications, 2016, 508: 289- -300. 

[12] Yuan Y, Zuo K. Compute limx- →oX (XIp + YAX)-1Y by the 
prod-uct singular value decomposition [J]. Linear and 
Multilinear Algebra, 2016; 64: 269-278. 

[13] Jirgen Groβ. Solution to a rank equation [J]. Linear Algebra 
and its Appli-cations, 1999, 289 (289): 127-130. 

 


