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Abstract: Background: Influenza is commonly known as the flu, which is a viral infectious disease that attacks our 

respiratory systems, such as the nose, throat, and lungs. Several studies have been performed on influenza determinants, 

concentrating on the role of biological and behavioral risk factors at the personal level to reduce the burden of the disease. 

However, few studies conducted to identify geographical patterns of infectious disease and its associated factors. Objective: 

This study aimed to provide a step-by-step process of finding the geographic patterns of influenza cases and the role that they 

can be determined by the racial factor. Method: In this study, first non-spatial and spatial models were estimated, and then a 

step-by-step procedure was used to fit a spatial joint model to the US Influenza Like Illness (ILINet) dataset using a single 

predictor: percentage of African American people in each state. Results: Findings revealed that for both non-spatial and spatial 

models, the racial variable was positively associated with standard morbidity ratio (SMR) and was highly statistically 

significant (p<0.0001). In addition, it showed that there was a large residual spatial dependency for the spatial joint model, 

which meant for our dataset, the spatial component explained much of the variability. Conclusion: Researchers that desire to 

create a joint special model from the ground up in the instance of infectious illness modelling can benefit from this research. 

Keywords: Spatial Analysis, Influenza-Like Illness, Heterogeneity, Standardized Morbidity Rates (SMRs) 

 

1. Introduction 

Influenza is commonly known as the flu, which is a viral 

infectious disease that attacks our respiratory systems, such 

as the nose, throat, and lungs. For most individuals, it 

automatically resolves on its own but sometimes it shows 

deadly complications. Initially, flu shows symptoms like a 

common cold with a runny nose, sneezing, and sore throat. 

Common colds usually develop slowly, whereas flu tends to 

come suddenly. When someone with the infection coughs, 

sneezes or talks can spread flu viruses. Hence, it is a type of 

communicable disease. People at higher risk with this 

communicable disease include children with less than 5 years 

of age-especially under 12 months, older adults (age 65+), 

and pregnant women up to two weeks of postpartum, people 

with a weak immune system, and also people with a chronic 

disease like liver disease, heart disease, asthma and kidney 

disease (www.mayoclinic.org) [1]. 

Nearly 500,000 deaths occurred due to influenza disease 

around the world per year and about 5 to 10% of deaths 

occurred per year in the US [2]. Although the numbers vary 

widely from season to season, the estimated annual human cost 

of influenza is 610,660 life-years lost and 3.1 million 

hospitalization days in the US [3]. As an ongoing project to 

reduce mortality due to influenza, recently World Health 

Organization (WHO) has taken a global influenza reduction 

strategy for the period of 2019-2030 [4]. Yearly flu season in 

North America starts on the 40
th
 week of each year (1

st
 week of 

October). CDC started recording data from October, week 40, 

1997. From then, CDC published routinely weekly unrevised 

unweighted Influenza-like-Illness (ILI) activity level data 

(gis.https://gis.cdc.gov/grasp/fluview/fluprotaldashboard.htm

l) which measures the percentage of out-patients seeking 

medical attention with ILI symptoms. According to CDC a 

person having 100°F or greater temperature in his/her, body 

with a cough and/or a sore throat without a known cause 

other than influenza is consider symptoms for ILI [5]. 

Moreover, CDC reported that flu disparities occur among 

racial and ethnic minority groups (www. cdc.gov). Many 

studies have investigated the factors and spatial patterns of 
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influenza seasonality [6-11]. Some studies identified 

humidity and temperature were associated factors for 

seasonal flu onset [12, 13]. A demographic metric such as 

population density and school-aged children have identified 

two major influential sources of influenza [14, 15]. 

An analysis conducted in central Tennessee found that 

neighborhood socio-economic indicators such as race 

(African American or not), percent below poverty, and 

percent of female-headed household were also directly 

associated with influenza hospitalization rate [16]. Another 

study conducted in Ontario, Canada, revealed that the 

aboriginal population was positively associated with both 

non-spatial and spatial regression models of pneumonia and 

influenza hospitalization rate [17]. In this study, our aim was 

to develop a joint spatial model to examine the underlying 

spatial variation in reported influenza-like illness across 53 

states in the United States and determined whether the race 

especially the percent of African American people (PAfA) in 

each state act as a driving factor in observed spatial 

heterogeneity. To do this, we set up the following questions. 

The associated Research Questions are: 

1) Are there any differences between the raw and fitted 

Standard Morbidity Ratio’s (SMR) of Influenza disease 

over U.S states? 

2) Are there any counties with relatively high SMR’s? 

3) Does ethnic characteristics can influence the spatial 

variation of SMR’s? 

2. Dataset Description 

The dataset of ILI visits is publicly available on the Center 

for Disease Control (CDC) website 

(https://gis.cdc.gov/grasp/fluview/fluportaldashboard.html) 

and the covariate proportion of African American population 

size for each US states was obtained from Wikipedia website 

(https:worldpopulationreview.com). Our dataset consists of 

aggregated ILI cases ���� for the 2018/2019 year reported by 

the providers on weekly basis and a covariate represents the 

percent of African American population size ����  for each 

state. We calculated corresponding expected ILI cases ���� 
standardizing with respect to area specific population size. 

Finally, we obtained a shapefile from the “cdcfluview” 

package in R, which consists of the longitude and latitude of 

each area. Our unit of spatial analysis was state-level, not 

county-level. 

3. Methodology 

The best approach for modeling health events may not 

always be a linear model, particularly when the interested 

outcome variables are counts or rates, or when we are 

interested in estimating health risk from binary data. In such 

cases, it is customary to use generalized linear models 

(GLMs), with Poisson and logistic regression models in 

special cases. In our dataset, the outcome variable is the 

yearly total observed ILI cases (��) reported by public health 

service providers for each US state in 2018/2019 year. As an 

expected relevant predictor of influenza disease burden, we 

considered ethnic metric: the proportion of African American 

population size based on literature findings. We performed 

the following data processing steps for states level ILI cases: 

i) we assumed that our data follows Poisson distribution as 

��~�	
�������	
 = 1,⋯ ,� , m represents the number of 

states or areas under consideration; ii) we assumed that the 

expected ILI cases ����  was calculated through direct 

standardization process as �� = �� 	�∑ ������
∑ ������

� , where, ��  is 

population at risk for i th area; iii) we calculated standardized 

morbidity ratio (SMR’s) which is the ratio of observed to 

expected cases; iv) we plotted the histogram of SMRs for the 

US ILI data to have an idea of how SMRs are distributed; v) 

as an exploratory analysis, we plotted SMR values against 

the covariate and vi) as a starting point of modeling strategy, 

we then fitted a loess curve to SMR versus the rate of African 

American population (PAfA). This fitted curve will assist us 

to identify the appropriate functional form of the relationship 

between outcome and predictor. Our model-building strategy 

was as follows: 

Step 1: We conducted the simple linear regression model 

considering SMRs as dependent variable and the proportion 

of African American in each state as a single covariate (see 

equation 1 in model structure section) assuming that all the 

observations are independent, and residuals follow normal 

distribution. 

Step 2: We conducted the simple Poisson log-link linear in 

covariate model defined in equation 2 (see model structure 

section) assuming dispersion parameter equal to 1 

(mean=variance). At this stage, we checked the statistical 

significance of the covariate and looked for relative risk of 

area-based association between incidence and covariate. 

Step 3: We then conducted quasi-Poisson regression as it 

provided us the general solution of over-dispersion assuming 

that variance is a function of mean. If we find large values for 

over-dispersion parameters and residual analysis shows any 

patterns, we may conclude that Poisson model is clearly 

inadequate. That means data may have spatial dependency. 

Step 4: At this stage, we considered the spatial generalized 

linear mixed model (GLMM) to capture over-dispersion and 

the autocorrelation induced in the data by the latent spatial 

process with introducing the random effects in the model (see 

equation 3 in model structure section). To obtain estimates of 

the parameters of this model, we used Bayesian inference 

approach called empirical Bayes method and then full 

Bayesian method. 

4. Model Structure 

We present the most common version of our simple linear 

regression model with dependent variable ����  and the 

single covariate	 �, the rate of African American population 

for each area, as follows: 

Model 1: 

���� =	!" + !$ � + %�, �
 = 1,⋯ ,� = 53�       (1) 

And we found the variable PAfA ( ��  had significant 
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(p=0.00825) effect on standardized morbidity rate for 

influenza disease (See Table 1). Moreover, the lowess 

smoother on the scatter plot showed a violation of the linear 

relationship between outcome and the predictor (see figure 

1). Therefore, we conducted several possible polynomial 

orders of predictor to capture the non-linear functional 

relationship between predictor and outcomes. We found that 

polynomial order of 3, provide the better fit the functional 

relationship (see table 2). Since, our underlying dataset is a 

count data, therefore, the best approach for modelling this 

type of event may not be a usual linear regression model. 

Hence, it is customary to use generalized linear models 

(GLMs), with Poisson log-link linear in covariate model. 

Now, we assume that our observed total ILI cases ���� 
follows Poisson distribution with �(��. Then the log-linear 

model with single covariate ( �� was defined as follows: 

��~�)*�	
��	+�(��, �
 = 1,⋯ ,� = 53� 
with (� = �,��- and 

Model 2:  

log	(� = log	�� +	!" + !$	 �                      (2) 

We carry out likelihood analyses using the glm function 

and the log-linear mean function defined in equation (2). 

Here, exp	�!$� represents the relative risk describing the area-

based association between the incidence of influenza and the 

rate of African American population (PAfA)  � .  From the 

summary output of Poisson log-linear mean function without 

quasi-likelihood estimation approach (see table 3), we found 

that PAfA (  ��  has significant (p<0.0001) effect on 

standardized morbidity rate for influenza disease. Similar 

results were found for cubic model as well (see table 4). 

Since the Poisson model is restrictive in the sense that the 

variance is constrained to equal the mean, therefore, we 

conducted the estimation with quasi-likelihood approach to 

captures the over dispersion of estimates. Summary output of 

Poisson log-linear mean function (equation 2) with quasi-

likelihood estimation approach is presented in table 5. Here, 

the over dispersion parameter was too high, which suggests 

that we need to go to step 4: build the spatial generalized 

linear mixed model (GLMM) approach to capture the over-

dispersion problem by introducing the latent spatial process 

in the random effects term of the model. In this way, we 

could obtain smooth estimates for disease mapping as it 

reduced the instability inherent in SMRs based on small 

expected numbers. 

The spatial GLMM is an example of a hierarchical model 

or a model defined in stages. At the first stage of the model, 

we define the distribution of the data given values of the 

random effects. At the second stage, we define the 

distribution of the random effects. By combining the first and 

second stages, we obtained inference about the data, 

considering the distribution of random effects, which leads us 

to use the Bayesian inference approach, an attractive 

alternative of likelihood approach in the estimation of the 

parameter of the model. The inference was made through the 

complete posterior distribution and we summarized it in 

terms of posterior moments, in most cases we used posterior 

median. We applied both empirical Bayes (MLE used for 

regression parameter and prior parameter) and full Bayes 

(prior distribution on regression and prior parameter) as of 

model-fitting approach. 

The generic-model for state-wise observed total ILI cases 

2�  is: 

2�|	(�, 4	~	5�2|(, 4�                           (3) 

where 2 = �2$, ⋯ , 2)�6  denotes the vector of all 

observations. We modeled the mean �(��  of the observed 

disease cases, where 5�2|(, 4�  is the distribution of the 

likelihood of the observed total ILI cases, parameterized with 

mean ( = �($, ⋯ , ()�6  and precision parameter 4  as 

appropriate to the likelihood distribution. 

Empirical Bayes Approach: Two stage Model (Poisson – 

Gamma model without covariate) 

Now for our dataset, we assumed there were no covariates 

and assumed the first stage likelihood in equation (3) 

5�2|(, 4� is Poisson distribution, given by 

Model 3: 

��|7� , !	~�)* 	�	
��	+�(��7��                   (4) 

where (  is the overall relative risk, act as intercept, and 

reflects differences between the reference rates and the rates 

in the study region. 

At the second stage the random effects 7�  are assigned a 

prior distribution. We initially assumed that across the map 

the deviations of the relative risks from the mean, ( , are 

modelled by 

7�|8	~��*9:�8, 8�                            (5) 

a gamma distribution with mean 1, and variance 
$
; . The 

advantage of this Poisson-gamma formulation over naïve 

Poisson model was that it considered excess-Poisson 

variability resulting from unmeasured confounders and 

model misspecification. For this model, the relative risk was 

given by ��� = 	(	7�  and has estimated mean ��<= =
	(̂	�,7�|	(̂, 8?- = �,���- × �1 − B�� + ���� 	× B� , with 

7�|	(̂, 8?	~	Ga	�8? + 2� , 8? + ��(̂� and B� =	 E�	FG
;GHE�	FG. 

Empirical Bayes Approach: Two stage Model (Poisson – 

Gamma model with covariate) 

Now for our dataset, we assumed that we have area level 

covariate, logarithm of population size and therefore, 

assumed that we have the mode 

Model 4: 

��|7� , !	~�)* 	�	
��	+�(���7��                   (6) 

We assumed that across the map the deviations of the 

relative risks from the mean, (� , are modelled by equation 

(5), a gamma distribution with mean 1, and variance 
$
;. Here, 

we obtained the estimates !I, 8? by using maximum likelihood 

estimation over the marginal likelihood: a negative binomial 

distribution. 

In the above two models, we applied an empirical Bayes 
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approach to estimates the parameters of the negative 

binomial model first (!, 8) and then combined the gamma 

distribution with the data to obtain the empirical Bayes 

posterior distribution for the relative risks. 

Full Bayesian Approach: Non-spatial Model (Poisson – 

lognormal model with covariate) 

The Poisson-lognormal non-spatial random effect model is 

given by 

Model 5: 

��|!, J� 	~�)* 	�	
��	+�(���KL��, J� 	~��* 	��0, NOP�       (7) 

Where, J� are area-specific random effects that capture the 

unexpected log relative risk of disease in area i, 
 � 1,⋯ ,� �
53 . Here, 7� �	KL�	~ log�	T�:U �0, NOP� , whereas, for 

Poisson-gamma model 7� has prior defined in equation (6). For 

this model we applied full Bayesian approach, hence, we need 

to specify priors both for i) the regression coefficient ! and ii) 

the variance of the random effect NOP . For regression 

parameters we choose non-informative priors, flat priors and 

we choose a gamma prior VW:��:�1,0.0260�  for NOZP , 

assumed that we had enough information for NOP . This 

information was utilized in precision 4O �	NOZP  formula. In 

this non-spatial random effect model, the modeling of spatial 

dependence was much more difficult since spatial location was 

acting as a surrogate for unobserved covariates. Therefore, we 

moved to an appropriate spatial model which consists of both 

non-spatial and spatial structure random effects. 

Full Bayesian Approach: Spatial Joint Model (Poisson – 

lognormal model with covariate) 

We first consider the model 

Model 6: 

��|!, [, \� , J� 	~�)* 	�	
��	+�(���KL�H]��          (8) 

with 

log�(�� � 5��� , !� # W��� , [� 

Where 5��� , !� is a regression model; and W��� , [�  is an 

expression that may include to capture large scale spatial 

trend and ��  is the centroid of area i. The random effect J� 
represents non-spatial over-dispersion defined in equation (7) 

and \� are random effects with spatial structure. 

Now, we assumed that \ � �\$, ⋯ , \�� arise from a zero 

mean multivariate normal distribution with variance N^Pand 

common correlation in all spatial directions 4^Z$K�_`AaV�bc, 
where 4^Z$ � N^P and a d 0. This model is called spatial joint 

model. 

5. Results 

As a descriptive analysis of covariate, we plotted the 

distribution of proportion of African American in each U.S 

states in figure 1 as below: 

 

Figure 1. Proportion of African American in each U.S states in 2019. 

From the figure 1, we observed that in U.S virgin lsland has highest rate of African American people and the second largest 

rate of this group of people was found in District of Columbia. 

We then drew histogram of SMR and scatter plot of the SMR and PAfA variable (with fitted loess and linear in X model) 

given as below: 
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Figure 2. Plot of (Y/E) versus proportion of African American people (PAfA). Solid line represents fitted line for linear in x model and other line represents 

loess fit. 

From the above figure, we observed that the linear in X model was not a good fit whereas lowess fit indicates a polynomial order 

of x variable may be a good choice of functional relationship between SMRs and racial variable (PAfA) X. 

From the following tables, we observed that the cubic linear in X (PAfA) model was a good fit (provide highest adjusted R-

square value compared to other models (see table 2)) and a good choice of functional relationship between SMRs and 

proportion of ethnic group of people (PAfA), whereas other fitted values were not good fit for our dataset. The output of linear 

in X and cubic in X model are given in the following table 1 and table 2. 

Table 1. Analysis of Maximum Likelihood Estimates for Model 1. 

Parameter Estimate Standard Error t value Pr (> |t|) Adj R-Square 

Intercept 0.8498 0.2028 1.189 0.00011 
0.3978 

PAfA(X) 2.9488 1.0728 2.744 0.00825** 

Significance: 0.001***, 0.05**, 0.01*. 

Table 2. Analysis of Maximum Likelihood Estimates for Model 1 with cubic form. 

Parameter Estimate Standard Error t value Pr (> |t|) Adj R-Square 

Intercept 0.7328 0.1908 3.841 0.000352 
0.5289 

X 2.7764 1.4696 1.889 0.0647 

X1 54.3885 13.285 4.093 0.00015  

X2 -91.6092 20.121 -4.553 3.52e-058**  

Significance: 0.001***, 0.05**, 0.01*. 

In terms of adjusted R-square value, the cubic model provided better fit to our data. Therefore, we will choose the cubic 

form of functional relationship between outcome variable and the predictor. 

As our next step, we fitted a log-link linear in X model (with and without quasi-likelihood) and log-link cubic in X model. 

Table 3. Analysis of Maximum Likelihood Estimates for Model 2. 

Parameter Estimate Standard Error z value Pr (> |z|) AIC 

Intercept -0.757341 0.00150 -482.5 <2e-16*** 
887549 

PAfA(X) 5.013122 0.00744 673.5 <2e-16*** 

Significance: 0.001***, 0.05**, 0.01*. 
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Table 4. Analysis of Maximum Likelihood Estimates for Model 2 with cubic form. 

Parameter Estimate Standard Error z value Pr (> |z|) AIC 

Intercept -3.802e-01 1.32e-03 -287.8 <0.0001 
771491 

X 3.891e+00 1.267e-02 307.1 <0.0001*** 

X1 4.475e+01 1.441e-01 310.8 <0.0001***  

X2 -1.424e+02 4.754e-01 -261.3 <0.0001***  

Significance: 0.001***, 0.05**, 0.01*. 

So from table 3, !"= = −0.7573�0.0015�	 and !$= �
5.013�0.0074�- the relative risk describing the area-based 

association between incidence of influenza and state wise 

proportion of African American people (PAfA) was 

exp�5.013� � 150.35, which is large enough. Moreover, in 

terms of AIC value, the cubic model provided better fit to our 

data in Poisson log-link regression. Here, in both models, the 

covariates are highly statistically significant. But since the 

Poisson model is restrictive in the sense that the variance is 

constrained to equal the mean, therefore, we tried to fit quasi-

Poisson regression (both for linear in X and linear in cubic of 

X) to captures the over dispersion of estimates. 

Table 5. Quasi-likelihood Estimates for Model 2. 

Parameter Estimate Standard Error t value Pr (> |t|) Over-dispersion parameter Residual Deviance 

Intercept -0.7573 0.2238 -3.384 0.00138 
20330.13 886950 

PAfA(X) 5.0131 1.0613 4.723 1.86e-05** 

Significance: 0.001***, 0.05**, 0.01*. 

From table 5, we found that proportion of African American people in each state (PAfA), ( ��  had significant 

(p<0.0001) effect on standardized morbidity rate for influenza disease and estimates are identical to table 3 however, 

standard errors were multiplied by √20330.13 = 142.58; still a large over-dispersion here (in table 5 and table 6), which 

indicates that Poisson model in clearly inadequate. 

Table 6. Quasi-likelihood Estimates for Model 2 with cubic form. 

Parameter Estimate Standard Error t value Pr (> |t|) Dispersion parameter Residual Deviance 

Intercept -0.3802 1.3585 -0.280 0.781 

18605.62 770546 
X 4.6282 2.7452 1.686 0.09781 

X1 44.7461 148.15 0.902 0.0764 

X2 -124.22 488.69 -0.254 0.800 

Significance: 0.001***, 0.05**, 0.01*. 

Moreover, according to residual plot of model 2 (see figure 

3) we observed that there was some variations or specific 

pattern in residuals, which indicated that data may have some 

spatial dependencies. 

 

Figure 3. Residual plot versus predicted values of model 2 (quasi-likelihood) 

linear in X. 

Empirical Bayes Approach: Two stage Model (Poisson – 

Gamma model without covariate) 

As our next step, we fitted the generalized linear mixed 

model (GLMM) to capture the over-dispersion problem by 

introducing the random effects term in the model. In this way 

we could obtained smooth estimates for disease mapping as it 

reduced the instability inherent in SMRs based on small-

expected numbers. 

Table 7. Empirical Bayes Estimates for Model 3. 

Parameter Estimate Standard Error 

Intercept 0.204565  

Alpha 1.19672 0.9141 

The weights on the SMR for model 3, ranges between 

0.892 to 0.956 with median 0.934. Here the estimated 

standard deviation of the random effects model 3 was 0.9141. 

We observed that the weight on the observed SMR increases 

as �� increases that means the estimate was dominated by the 

data. In this case, 8 was not so large. 

Empirical Bayes Approach: Two stage Model (Poisson – 

Gamma model with covariate) 

A reduction in standard deviation of random effects was 

observed when we moved from without covariate (model 

3) model to with covariate model (model 4) (see table 7 

and 8). 
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Table 8. Empirical Bayes Estimates of parameter for Model 4 (with single 

covariate). 

Parameter Estimate Standard Error 

Intercept -0.0976  

PAfA(X) 2.01861  

Alpha 1.3076 0.8745 

Table 9. Empirical Bayes Estimates of parameter for Model 4 with cubic 

form. 

Parameter Estimate Standard Error 

Intercept -0.17314  

X 2.1488  

X1 33.1077  

X2 -46.0456  

Alpha 1.3281 0.8643 

In comparison of two models: log-linear model in PAfA 

and log-linear model in cubic of PAfA, we might expect the 

standard deviation of random effects to be reduced in size 

when we add an important covariate but this did not happen 

(see table 8 and table 9). However, based on the mean square 

error (MSE) of the three model, we find cubic model provide 

lowest MSE (3.90E-08), indicates a better fit compared to 

others. 

An empirical Bayes estimates (RRmedian) shown in figure 

4 provide the stable relative risk estimates for different 

models (emp0: without covariate, emp1: with covariate and 

emp: with cubic term) of area-level data by assuming that the 

relative risks arise from a common gamma distribution, 

which allows smoothing towards a common value. In figure 

5, we observed that the log-linear model did not fit well for 

large values of PAfA, which indicates the usage of a flexible 

model (cubic model of covariate PAfA to flatten off relative 

risk for larger values of PAfA). 

 

Figure 4. Model’s relative risk estimates along with raw SMRs values. 

  

Figure 5. For specific states (with large PAfA values see figure 1) cubic model flattens off relative risk (showed in original scales). 
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Disease Mapping for U.S states ILI dataset (with raw and estimates values) 

 

Figure 6. Mapping of SMRs of influenza disease for U.S states. 

 

Figure 7. Empirical Bayes posterior median estimates for cubic model. 

In both figures we observed some of the states had higher relative risk (>2.323). 

Full Bayesian Approach: Non-spatial Model (Poisson – lognormal model with covariate) 

The Poisson-lognormal non-spatial random effect model (Model 5) with cubic form is given by 

��|!, J� 	~�)* 	�	
��	+�(���KL��, J� 	~��* 	��0, NOP� 
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with log-link function as follows 

log�(�� = log����+	!" + !$�$� + !P�P� + !h�h� + J� , �
 = 1,⋯ ,53� 
and the log relative risk is defined in question as follows 

log����� = !" + !$�$� + !P�P� + !h�h� + J� , �
 = 1,⋯ ,53� 
where J� is the area specific random effects that capture the residual or unexplained (log) relative risk of influenza in area i. 

The covariates are centered here in order to reduce dependence in the parameter estimates. The model was fitted using MCMC 

via the WinBUGS software. 

We obtained the following posterior distributions for regression parameters !", !$, !P	:+V	!h	using two sets of initial 

values (tau.V=1, beta0=0, beta1=0, beta2=0 and beta3=0 and tau.V=2, beta0=0, beta1=0, beta2=0 and beta3=0) for 2 

chain and 11000 iterations with 3000 samples. 

 

Figure 8. Posterior distribution of regression parameters (first two rows) and NOP	(third row) using two sets of initial values. 

And the associated summary statistics of MCMC output is given in following table 10: 

Table 10. Summary Statistics of MCMC output with selected parameters. 

Node Mean SD MC error 2.5% Median 97.5% Start Sample 

beta0 -0.1429 0.033 0.0037 -0.193 -0.151 -0.066 8000 3000 

beta1 3.813 0.715 0.0816 2.757 4.166 4.781 8000 3000 

beta2 -3.645 1.709 0.1944 -5.943 -4.036 -0.87 8000 3000 

beta3 -2.094 2.642 0.2932 -6.291 -2.562 3.698 8000 3000 

singma.V 1.038 0.1031 0.0021 0.8612 1.03 1.25 8000 3000 

 

From the above table we observed that regression 

coefficients has significant effects (as values between lower 

limit (2.5%) and upper limits (97.5%) did not contain zero 

value) on ILI incidence, and area specific random effects has 

significant effect (as values between lower limit (2.5%) and 

upper limits (97.5%) did not contain zero value). The 

convergence occurred for parameters of this model in 

MCMC iterations (see Appendix). Now we need to 
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incorporate spatial component in our non-spatial model to 

have a fully spatial model (model 6, the joint model). 

Full Bayesian Approach: Spatial Joint Model (Poisson – 

lognormal model with covariate) 

We first considered the model 

Model 6: 

��|!, [, \� , J� 	~�)* 	�	
��	+�(���KL�H]��            (9) 

with 

log�(�� = 5��� , !� + W��� , [� 
where, 5��� , !� and W��� , [� defined in methodology section. 

Here to find and summarize the posterior distributions of 

the !, the partial sill (NP�	and the range (i�,	the following 

steps were followed: 

Step 1: Choose an informative prior (assuming we have 

enough information) for spatial random component as follows: 

j:k. l~9:��:�1, 0.0260) 

Then use this information in joint model in terms of 

�
W�:^ = 	�mTj(_ (j:k. l⁄ )). 

Step 2: Choose a prior distribution for the proportion (p) of 

the variance that is spatial from beta (1,1): 

_	~	oKj:(1,1) 

Step 3: Choose a prior distribution for distance half from 

log-normal distribution as follows: 

Vℎ:U5	~	q�(3.107,0.9106) 

We obtained the following posterior medians for different 

joint model with prior parameters setup for tau.T and 

distances and run MCMC using two sets of initial values 

(tau.T=1, p=0.5, beta0=0.01, beta1=0, beta2=0 and beta3=0 

and tau.T=2, p=0.5, beta0=0.01, beta1=0, beta2=0 and 

beta3=0) for 2 chain with 3000 samples. 

Table 11. Sensitivity of spatial model (model 6) parameters to prior choice tau.T and p. 

Spatial Model Prior Specification 
Posterior medians 

st su p distance 

Joint 4v	~	9:(1,0.0260) V$/P	~	q�(3.107,0.9106) 0.7116 1.124 0.996  

Joint 4v	~	9:(1,0.1339) V$/P	~	q�(3.107,0.9106) 0.0930 1.129 0.993  

Joint 4v	~	9:(1,0.0260) V$/P	~	q�(2.303, 0.4214) 0.0709 1.077 0.975  

 

In table 11, we examine the sensitivity of estimates of the 

non-spatial and spatial contributions of residual relative risk, 

to the prior choices of random effect parameters and 

distances. Here, the prior 4v	~	9:(1,0.1339)  provides 

relative risk that follow a log student t distribution with 2 

degrees of freedom and fall within the range (0.2, 5) with 

probability 0.95. And the choice of 

V$/P	~	q�(2.303, 0.4214) assumes that there is a 5% chance 

that the correlations lie to 0.5 in less than 5km, and 95% 

chance that they lie to 0.5 in less than 20km. From the table 

we see that, most of the residual variability was explained by 

the spatial component; under the various models, 0.975 to 

0.996 of the total variability was spatial in nature. Overall, 

there was a little sensitivity of these parameters to the choice 

of priors. 

6. Conclusion 

The preferred model was a model which includes a 

cubic term in the proportion of African Americans (PAfA) 

and a spatial component, since the association with PAfA 

was strong, there was significant residual spatial 

dependence. Here, this study considered empirical Bayes 

as an exploratory analysis of whether to include the 

residual spatial dependence in our fully Bayesian model. 

For prior specification of parameters for fully Bayesian 

spatial model with log-linear cubic term, we conducted a 

sensitivity analysis in relative estimates. We found a large 

amount of residual variability of these data, which 

suggested unobserved risk factors were present and were 

not surprising since we had no information on other 

variables that are important (such as temperature, relative 

humidity, population density, etc.). The limitation of this 

study was that due to the unavailability of ILI cases from 

CDC report for each of the weeks in the year 2019, we did 

not consider ILI cases for Florida states though it is the 

third largest populated area and not including other 

important covariates (environmental and socio-

demographic, behavioral factors) to determine the relative 

risk of having Influenza disease. Moreover, the influenza 

cases are highly related to seasons which was not 

considered in this study. Hence, conducting a spatial-

temporal model could provide an accurate and reliable 

estimate of relative risk over time. 
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Appendix 

Poisson log-linear non-spatial model parameters convergence (beta0, beta1, beta2 and sigma.V). 

BGR plot: 

 

 

Figure 9. BGR plot of selected parameters. 

Trace plot: 

 

 

Figure 10. Trace Plot of corresponding parameters. 
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