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Abstract: Quasi-asymptotic behavior of functions as a method has its application in observing many physical phenomena
which are expressed by differential equations. The aim of the asymptotic method is to allow one to present the solution of a
problem depending on the large (or small) parameter. One application of asymptotic methods in describing physical
phenomena is the quasi-asymptotic approximation. The aim of this paper is to look at the quasi-asymptotic properties of
multidimensional distributions by extracted variable. Distribution T(xo,x) from S'(R,'xR™) has the property of the separability
of variables, if it can be represented in form T(X¢,x)=) 0i(Xo)v; (X) where distributions, @;(X,) from S'(R") and y; from S(R™), X,
from R', and x is element R™ different values of do not depend on each other. Distribution T(xo.,x) the element S'(R.'xR") is
homogeneous and of order a at variable X, is element R1+ and x=x;,X,,...,x, from R"if for k>0 it applies that T(kxg,kx)=k*
T(X9,x). The method of separating variables is one of the most widespread methods for solving linear differential equations in
mathematical physics. In this paper, the results by V. S Vladimirov are used to present the proof of the basic theorems,
regarding the quasi-asymptotic behavior of multidimensional distributions by a singular variable, with the application of quasi-
asymptotics to the solution of differential equations.
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R function, if for a real number a > 0 there exists
1. Introduction

plak) 4
We use S(R}) to mark the standard space of the a @

Schwartz's rapidly decreasing functions, and S'(Rf) to mark
the corresponding space of the slowly increasing
distributions [1, 7].

If f(t)€S" and o(k) is a positive and a continuous
function for k > 0, distribution f(t) has quasi-asymptotics at 1
infinity (at zero) with respect to positive function p(k), if the o(k)
following is valid

Where by it converges evenly along @ on each compact
semi-axies (0, o). Distribution f(t) € S’ is asymptotically
homogeneous with respect to function g(k) of order « if:

flkt) = C - fesa (D) in S, €)

where the nucleus of fractional differentiation and integration
1y JfuO)E€ S’ is defined by

1 1

5 f k) > 9@, (51 () » 9®)

k — oo in S'(RY}) with the distribution being g(t)S’(RY),
[1,2-4,7].

If g(t) =0 distribution f(t) has a trivial quasi-
asymptotics at infinity (that is, at zero) with respect to
positive function g (k). If (1) is true, function o (k) occurs as
an auto-modal function. If g(k) is a positive and continuous
function, and k — oo, then we say that (k) is an auto-modal

o(t)t* 1
r@ '’

N
i—Nfam(t),if a<0,a+N>0

a>0

fa @®) = 4)

with T'(a) being the gamma function, and 6(t) being the
Heaviside function [1-3, 6, 7].
The fractional derivative,

[3-5, 7], of order a and
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distribution of f(t) € S'(R,) is defined by the formula

FEDM®) = fot) * £(©) )

Distribution T(x,,x) € S'(R} x R™) has the property of
the separability of variables, if it can be represented in form
T(xp,x) = X; @i (xo)P(x) where distributions ¢(x,) €
S'(RY) and ¢ € S(R", x, € Ry and x € R™ for different
values of ¢ do not depend on aﬁh other, [15].

Distribution T (x, x) € 8'(RL x R™) is homogeneous and
of order a at variablex, € Riand x = x;, x5, ..., x, € R™ if
for k > 0 it applies that T(kxy, kx) = k*T(xy,x), [1, 3, 7,
8].

In other words, distribution T(xo,x) € S'(RE x R™) is
homogeneous and of orderi at variable x, and x if for each
test function ¢ (xg, x) € S(RL x R™) the following is valid

(T (0,20, (22,5)) = k2T (x4, ), b (30, %)),

k > 0. Indeed,

(T (kxo, kx), ¢ (x, X)) =

I

. , Xo
shift kx, = xpg = x4 = T

x/

k =x' = —
X X =X k

1 x'q x' o
= o) = (2 2)
= (0.6 () ©)

For example, let it be that T(x,, x) € S'(RL x R™) in the
form of T (xy, x) = f(xy) X g(x) with distributions f(x,) €
S'(Ry), g(x)S'(RY) being homogenous and of order a.
Then, there is a number of equations that are valid:

(T (kxo, kx), p(xo, x)) = (f (kxo) X g(kx), p(x, %) )

fkxo) = k“f(xo))
glkx) = k%g(x)

= k**(f (x0),{g (x), p (x0, X)))
= k2%(T (xq, x), ¢ (xg, X)) (7

From (6) and (7) we can see that the following equation is
valid

= (F(kxo), g k), (o, 0N = (

Xg X

1
it (T o ), ¢ (32, 7)) = KT (o, ), (0, )

and from here, there is
Xy X
(TG0, ), (75 7)) = K2 YT (g, ), ¢ (0, ).
k'k
For example, distribution T (xy,x) € 8'(RL X R") in the
form of T (xg,x) = f(x) X g(x) with

f(xo) € S'(R; ), g(x)S’(RY), and f (x,) being homogenous
and of order a, and test function ¢(xy,x) in the fom of

P (xo, %) = X ;" (x0)p7 (x)

with @} (xo) € S(R 1), Z(x) € S(R™) and ¢(xy), is a
homogenous distribution of order a and then, for (L) the
following is true

(T (kxo, x), ¢ (x0, X)) = (f (kxo) X g(x), $(x0,%) )
=(f (kx),{g(x), P (x0, %)) )
=(f (kx0).( g(0), Zi @i (x0)p7 (x) ) )

= D (F k) 0 00) ) (900, 97 () )

= k) (flkxo), 011 (50)) (9, 9F(0))

= k(f(x0)g (x), p(x0, %)) = kT (x0, %), P (%0, X))

since the set of functions Y; @;1(xo)@?(x) is dense in
S (]RT}r X R™). This is followed by the claim, because it is
valid in a dense set, and with its continuity, it extends to
entire set in § (]RT}r X R™). Homogeneity by the second
variable is similarly defined [1, 6].

The homogeneity of distribution T (x,, x) € S'(RL x R™)
separable at variable x, assuming that distribution ¢} (x,) €
S(R;") is homogeneous and of order a for each i, then, form
these relations, it follows that

T(kexo, ) = ) gi(kx)p(x)

= k% X 90i(xo)p(x) = kT (x, X). ®)

Homogeneity at variable X is similarly observed.

Let there be distribution T(x,,x) € S'(RY x R") .
Distribution T (x,,x) with x, € Rl and x € R™ has quasi-
asymptotic at infinity at variable x, relative to auto-modal
function g, if there is distribution G (x,, x) # 0 such that

limk_,oo$T(kx0,x) = G(xp,x) in 8'(RL X R™). (9)

Quasi-asymptotics by the separated variable at zero is
similarly defined, [1, 7].

Let us suppose a distribution T(x,,x) € §'(RY X
R™). Distribution T(xq,%), xo € R} and x € R™has quasi-
asymptotics at zero at variable x, with respect to auto-modal
function g, if, and only if there is distribution G (xy, x) # 0
such that

limk_,oo$T(%°,x) =G (7;—0,35) =0

(10)

in §'(RL x R™).
For distributions from D’(R} X R™) (or §'(R% x R™) we
define the fractional (rational) differentiation at variable x as

a convolution f,(x,) with f(x,,x) at, x, by the following
formula

@ =f 4(x0) * f(x0,%) (11)
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which belongs to D’(]RTl+ x R")if f € D’(]RTl+ X R™) that is,
S'(RL x R™) if f € §'(RL x R™), (more in [3-6, 8, 12, 13]).

2. Some Quasi-Asymptotics Properties of
Multidimensional Distributions
We provide proof of some of the basic theorems that apply

to multidimensional distributions, and their formulaic
presentation can be seen in [1].

Theorem 1. If distribution T(x,x) € §'(RL X R") is
asymptotically homogeneous with respect to positive function
p(k) at variable x, or if the following is true

limk_,ooﬁT(kxo,x) = G(xp,x) in S'(RL x R (12)

then p(k) is an auto-modal function.

Proof: Let (12) be true and let ¢p(xg, x) € S(RL x R™) test
function such that (G (xg, x), ¢ (x4, x) ) # 0.

Then let the test function be of the following form
¢ (xo, x) = Xy @i (o) (x), s0 that
ol (x) € S(R 1), pZ(x) € S(R") Vi, are  continuous
functions with the following feature:

supp ¢} © R, supp o7 c RY,
supp ¢ = supp @} X supp ¢? < (RL x R"), (Vi),
K c R compact set.

For ¢p(xy, x) and a € K it applies that
1 1
~p(2,x) =2 %0t (2) 2 (0.

Now, the following is valid for distribution
T(xo,x) € §'(RL X R™) and test function

¢ (x5, %) € S(RL x R™);

k—o0,a€K

1 /x 1 /x
(T (lex, ), ¢ (=,%) ) = (6o, ), ¢ (%) )
For a € K, and using (x, = axg) the following is valid

p(ak) (T(kxo,x) 1 (x_o‘ ))

p(k) * plak) 'a” \a

_ p(ak) T(akx'y, x) ,

S o® "o )

_ plak) T(akxo,x)

=00 ptaky o)
k—o0,a€EK

—><G(xo,x).§¢(’;—°.x)) (13)

Further, if we replace k with ak,a € K, the following is
valid

1
p(ak)

(T (akxg, x), P (x4, %)) 3 (G (x9, %), P(x0,%)). (14)

Using relations (12) and (13), we get the following relation

plak) k= (6Cox)ig ()
p(k) (G (x0,%),(x0,%))

(15)
From here, by inserting (CD((') :XO) we get the following

plak) ke (G(ax'o, x), (X0, X))
p(k) (G(Cxo,x), P (x0, %))

From here, we get the required relation

pak) ko (G(axy, ), §(xo,))
P00 (GGro, ), $Ce0, )

. . k
From the existence of llmk_,m%z

C(a) = a* and p(a) = a®L(a), and Karamata L function
[16], it follows that function p(k) is an auto-modal function,
even in the case of multi-variable distributions.

Theorem 2. Let distribution T(x,,x) € S'(RY X R") be
asymptotically homogeneous with respect to positive function
p(k) at variable xy. In this case, if the order of auto-modal
Sunction p(k) is equal to a, then distribution G(xy, x) in the
following equation

= C(a).

C(a) following

limy, o, ﬁT(kxO, x) = G(xq, x) is equal to

G(xg,x) = Cfr(xg) X g(x), with C being the constant.

Proof: It has already been shown in the case of
distributions of one variable [1],[7], that distribution G (x) €
S," has the form of G(x) = Cf,(x) with C being the
constant, and f,(x) being the nucleus of fractional
differentiation.

For G(xg,x) € S'(RL x R™) let us suppose that

f(xo) €S'(RY), and g(x) =S'(R™), and that distri-
bution f(x,) is homogeneous and of order «, and G (xy, x) =
f(xp) X g(x) . Since for the function in the form of
p(x)Y(x) € §'(RY x R™) the following applies

1

]ll_)n; ((p(_k)T(xﬂ' x)' (P(xo)) ’ lp(x) )

=CG(xX) far1(x0), Y (X)) = Cfar1(x0){g (%), P (x))

so distribution g(x) = S'(R™), G(xg,x) is in the form of
G (x0,%) = Cfas1(x0) X g(x).

Theorem 3. If distribution T (x,, x)is separated at variable
Sforms x,, then it has the following form:

T(xg,x) = T1g1(x) + Ty (xg)g2(x9) and  distribution
T (x4, x) has the quasi-asymptotics of order a in relation to

Sfunction k*p(K) at a variable xo, if Ty and T, have the same
quasi-asimptotics in relation to function p(k). The reverse of
the theorem is not valid.

Proof. Let us show that distribution T (x,, x)is has quasi-
asymptotics of order @ with respect to p(k) if T; and T, have
the same quasi- asymptotics. Let the test function ¢ (x, x) be
in the form of ¢(xg, x) = X; ;(x)P;(x). By the definition
of quasi-asymptotics, the following applies:
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T (kxo,

—~ (T(kxo, %), $(x0, X)) = (——5— 200

" 2 Z 00D ()

Ty (kx0)g1(x)+T2(kxo) g2 (x)
( - . 1kap(li) =2 Zl(pl('xo)lp (x))

= (L) 3 ey () ) + (I 5 e, (1)),

Since p(k) = k*L(k) and T (kxy) = k® T, (x,) and T, (kxy) = k* T,(x,) therefore

_ Ty (kxo) g1

(x) T,(kxo) g,
L Zwl(xo)w () + (I

&)
L Z 00D ())

g (T (k) (9, (), Z DGV (N + o= (T (), (2 (), Zwl(xo)w N

k“L(k) k“L(k)

S k ! k
= mzim( x0), 9100)) € 91,00, Y () +W<">Z<TZ( x0), 91060 € 9200, Y, ()

kK . k< .
= WG«)ZW x0), 9:00)) 9GO, Y () +mZ<T2( x0), 9:(x0) 9200, Y5 ()

Z (Ty(kxo), i (x0)) { g1(x), Py (X)) + — Z (To(kxo), 9i(x0)) { g2 (x), P (%))

L(k) L(k)

_ 1 1
=1 (T1(x0) 91 (x).Z @i (xo)Pi (X)) + o) (T (x0) 92 (x),Z 0; ()P (%))

2~ (T1(x%0) g1 (%), P (X0, X)) + == (T2 (x0) g2 (%), P (x0, X))

L(k) L(k)

L(k) ——(T1(x0) g1(x) + T2 (x0) g2 (x), P (x0, X)).
This shows that distribution T (xy,x) =T;g,(x) +  enough to show that, for example, the following is not valid
T, (%) g2 (xo) has quasi-asymptotics of order a with respect  for distributionT; (xp) = x§™! + x& and T,(x,) = —x§*! +
to function k%p(k) at variable x, if distributions T; and T,  x§ with respect to function k%p(k). Indeed
have the same quasi-asymptotics.
The reverse of the theorem is not valid. To show this, it is

—=~ (T (kxo, %), ¢ (xo, X))

7
_ T ) “x§ kxo (9, () = 9:(0) + 91() + 9200 ]
= Zwl(xo)w @ = B D PG ()
kxg [k -
- filin(o) ,fff,g)) k ‘gl(ngZ(x)]Z oG ())
0 k 0\YJ1 — Y2 1 2
_ (xo[ Xo(g1(x) — g L(J(cl)3+ g1(x) +g (x)],Zq)i(xo)wi(x))

=

§llkxo +1 o1
x&[(exo + )gl(a?(;)( Xo >92("”,Z<pi(xo>wi(x)>-

From here, it can be seen that T(xy,x) has no quasi- Rm™) to be asymptotically homogeneous at infinity, with
asymptotics when k — oo, respect to auto-modal function p(k) at variable x,, it is

Theorem 4. In order for distribution T(xy,x) € S'(RL x  necessary, and it is also sufficient, that for each € R its
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fractional  derivative TP (xy,x) s
homogeneous with respect to kP p(k).

Proof: We define fractional differentiation in § ’(]RT}r X R™)
with  distribution T(xy,x) at x, as convolution of

distribution f5(x,) € S'(R}) and distribution T(x,,x) €
S'(RE x R™ i.e. TR (i, x) = T(xg, %) * fp(xo). Using the
property of distribution fg(x,) to be homogeneous and of
order f — 1, that is, using the validity of the following
fp(kxo) = kﬁ‘1 f5(xo), we get the following:

kﬁ ) (TP (kxy, x), p(x0, %)), from here, if we

put that , kx, = x'y, we get

=i ! TEB (i )
G MR Wl

(TP (g, 1), ¢ (22,x)).

asymptotically

limy e

= hm i ()

By using the definition of convolution

T (o, x) * f5(xg) = =—=O(xo)xg ' * T(xo,X)

F(ﬁ)

F(B)f (x,x0)P 1 T(t, x) dt = TP (xy, x).
we can see that the last equation is precisely the f primitive
integral for T (x,,x). Based on this, we have that T (x,, x) €

S'(RY x R, f(xo) € '(RY),
(T (o, %) * f (o), b (x0, X))
= limy o (T (%0, ) * f(0), 11 (X0, DP (%o + 7, ),

with {1, } being unit sequence. If there is a limes on the right-
hand side for each series {ny, k = oo} then the function from
S(R?) which converges to number one in R? and this limit
does not depend on the choice of series {1, k = o} then we
have that T (xg, x) * fg(xo) € S'(R™"). Based on this, the

last equation transforms into

1
bim ey (TG0 ) foGeo (32%))

+r' x))

. 1
= limyeo 5 (T (0, %) X fp(2), M (%03 1) (xok
Now, if we put that

T =kt
Xo+T x9+kTt x
s - =247

k.~ k  k

the last equation transforms into the following form:

m - (k)(T(xo,x) (fgler'), ¢( +7,2))

k—»oo kﬁ (k) (T (x0, %), (fﬁ(k‘[) ¢( + T, x)))

(since fp(kT) = kP f3(1))

kB-1

Hm - (%) (T (x0, %), {fp (1), ¢( +71, x)))

From the last equation, using the shift (x, = kx; we get
the following

1 , ,
m rk)(T(kx 0 X) (f5(0), p(xy + 7, %))

Jim W(T(kxo'x) Afp(0), p(x0 + 7, )))

limy,_, 0 ﬁ (T (kxo, x), Y (xg, x)),where function

P (x0,x) = P(x0,%) = {fp(r), p(xo + 7,%)) creates the
auto-morphism of space S(RL x R™) - S(R} x R™).

Theorem 5. Let it be that m € Ny and that T(xy,x) €
S'(RL X R™) has quasi-asymptotics g(xo,x) at variable
X with respect to auto-modal function p(k), k — oo and let it
be that x,™ € My, with My being the space of the
multiplier  of  distributions,  then distribution x,™
T(xg,x) also has quasi-asymptotics G(xg,x) = xo™ -
g(xo, x) at xq with respect to auto-modal function k™p (k).

Proof. There is

(kxg)™ - T (kxg, x)

;11_{?0< k™ - p(k) P (xg, %)) =
k™ xgt - T(kxo, x)
- ,11_)112.10 kl?‘nl p(k)o ,¢(X0,x))
. T(kxO!x) m
= Jim (G0 )
tim (), ) = {9t 0,55 o )
- kl—»oo p(k) X ¢ xo‘x - g thx ;x() ¢ xo,x

= (xg" g (xq, %), P (x, X)) = (G (x, x), P (x, X)).

From here we find that G (xq, x) = x,™ - g(xg, X).

3. Example of the Use of
Quasi-Asymptitics to the Solutions of
Differential Equations

Let L be a differential operator with constant coefficients
ag(x) = ag and let f € D', be such a distribution that
convolution € * f exists in D' where € € D' is the fundame-
ntal solution of equation L(D)E = §(x), [3, 6, 9, 11].

Then  the solution uwu=E=xf of differential
equation L(D)u = f(x),f € D' has quasi-asymptotics of
order a with respect to p(k) = k*L(k) (with L(k) being the
Karamata slow-varying function), if distribution f € D' has
such quasi-asymptotics, D'-distribution space.

Proof: Let f have the quasi-asymptotics with respect to
p(k) = k®L(k). Then the following is valid

(k) o (), 9()) = 7 (k) = (F@, 6 ()
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== (k) ——(8(0) * f(®), <p( )

= (k)(L(D)S*f(x) (p( )

1 m X
:E;GS<<§;mhthagOO>*f&Lw(E»
=5 Do €+ N0 (E)

== (k)<L(D)(s e ()

= —(L(D)u(x), (p( ))

kp(k) ‘Zm 20 uC), 0 ()

1 m X
= Wzlal (D*u(x), a9 (E))

1 m
= Wzlal(—l)lal (u(x), D¥ (aa¢ (%)) )

(uG), L' ) ¢ ()

1
kp(k)

u(kx)

p(k)’

(u(kx),L(=D) ¢(x)) =(—==,L(=D) p(x)).

k (k)

Therefore we have the following:

L (f(kx), p(0)) = (X2 1(=D) $p(x)), and,

p(k) p(k)
assumption, fhas the quasi-asymptotics, thus, distribution %
has one also.

as per

4. Conclusion

Most of the theorems proved in this paper on quasi-
asymptotics of distributions at a separable variable have their
analog in the case of one-dimensional distributions. In [1],
Vladimirov showed a theorem that does not have a one-
dimensional analog, the consequence of which is very
important, and on the basis of which the application of
separated quasi-asymptotics in to the solutions of differential
equations.
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