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Abstract: The objective of this article is to demonstrate the Collatz Conjecture through the Sets and Binary Numbers Theory, 
in this manner: 2n + 2n-1+...1. This study shows that there are subsequences of odd numbers within the Collatz sequences, and that 
by proving the proposition is true for these subsequences, it is subsequently proven that the entire proposition is correct. It is also 
proven that a sequence which begins with a natural number is generated by a set of operations: Multiplication by 3, addition of 1 
and division by 2n. This set of operations shall be called “Movement” in this study, and may be increasing when n=1, and 
decreasing for n ≥ 2. The numbers in 2n form generate decreasing sequences in which the 3n+1 operation does not occur. One of 
the important discoveries is how to generate numbers in which the 3n+1 operation only occurs once and how to generate numbers 
with a minimum quantity of increasing movements that are the numbers of greater “orbits” (Longer sequences that take longer to 
reach the number one). The conclusion is that, as the decreasing numbers dominate as compared to the increasing ones, the 
statement that the sequence is always going to reach the number 1 is true. 
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1. Introduction 

In this article, the Theory of Sets and Binary Numbers will 
be used, with the ED [Portuguese acronym] (Written by 
Definition) method, to investigate the Collatz conjecture 
through the results obtained. It is shown that the orbit of each 
number is determined by its binary form. This paper also 
demonstrates how to obtain numbers in which the 3n+1 
operation does not take place at all, takes place only once, or 
in which this operation appears at least "n" times. 

The Collatz Conjecture, or 3n+1 problem, was formulated 
in 1937 by German mathematician, Lothar Collatz. It is a 
mathematical assumption which is thought to be true, but has 
yet to be proven or rejected. 

The Collatz Conjecture asserts that, by performing the 
following operations: begin with a natural number. If this 
number is even, divide by 2. If it is odd, multiply by 3 and add 
1. After this, a new number is obtained and the process 
repeated. Lothar Collatz conjectured that, by pursuing these 
operations, one will always arrive at the number 1. 

Observe the example of number 10, in which we arrive at 
the sequence: 10, 5, 16, 8, 4, 2, 1. This sequence is called the 
Hailstone Sequence, and has its operations closed whenever it 

reaches the number 1. The elements that make up this 
sequence are called the orbit. As such, the orbit of number 10 
has 7 elements. 

If the operations continue after reaching the number 1, the 
result is an endless repetitive sequence: 1, 4, 2, 1, 4, 2, 1... 

Portuguese researcher, Tomás Oliveira e Silva, explored a 
number of assumptions, starting at number 1 and surpassing 
the number 19x258. He did not come across any case in which 
the result did not reach 1. 

Based on this Conjecture, Filho [1] proposes the Collatz 
Function C (n) f:N→N, defined as follows: 

 C�n� � � �
	  if n is even 

3n � 1 if n is odd            (1) 

According to Filho [1], the sequence of numbers generated 
through this process until reaching the number 1 is called 
Orbit Number n. This is a sequence obtained by recurrence. 
According to Lima et al. [8], "A sequence is recursively 
defined when obtained by a rule that allows for the calculation 
of any term in function of the immediate precursor (s). For 
Lima et al. [ ], “For a sequence to be perfectly determined, 
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knowledge of the first terms is also necessary.” 
Cz (n) refers to the orbit of a natural number, n > 1, the 

sequence obtained by recursively applying the Collatz 
function, starting from the natural number n, by successively 
applying the function C (n) until the sequence reaches the 
number 1. 

Cz (n) is a way of identifying the orbits without ambiguities 
among other mathematical subjects. Using the first and last 
letter of the name Collatz allows for easy identification of the 
orbits in any language. Observe three orbits: 

Cz (6) = {6, 3, 10, 5, 16, 8, 4, 2, 1} 
Cz (7) = {7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 

2, 1} 
Cz (8) = {8, 4, 2, 1} 
This problem contains a challenge which is to understand 

the orbit of each number. How can it be explained that 
numbers of such similar values produce such different 
sequences? The most likely possibility is that the orbit be 
explained in conjunction with the demonstration of the 
Conjecture. Another possibility is that, after the demonstration 
of the Conjecture, the orbit becomes the next challenge. 
However, perhaps to the surprise of mathematicians 
researching this problem, at the end of this chapter we shall 
see that what determines the orbit of each number is its own 
binary form. 

This research began with the reading of an article in 
“Revista Cálculo”, Osone [3], in which the conjecture was 
disclosed. After reading the article, I searched the Internet for 
earlier attempts to prove the conjecture. This was when the 
work of American mathematician Lagarias [4] stood out, in 
which he organized all advances related this conjecture up to 
that point (2013). The next step was to seek tools that could be 
used to solve the problem in the literature on Numbers Theory, 
from such authors as Carvalho [5], Chaves [6], Coutinho [7], 
Neto [8], Hefez [9] and Scheinerman [10].  

The work of both Lesieutre [11] and Carnielli [12], which 
generalizes the conjecture for other numbers, particularly 
divisors other than 2, was also consulted. However, 
generalization proposals were not used in this study though 
other of the authors’ ideas have been considered. 

In his book about the last Fermat theorem, Singh [13] 
shows how conjectures are important for the development of 
Mathematics, as studies that do not reach the objective 
produce important contributions to science. What actually 
took place during this research was the discovery of a new 
Diophantine equation and a Cryptographic system that is 
useful for entertaining students and motivating the study of 
Numbers Theory. These discoveries are described in Santos’ 
book [14]. 

For Stewart [15], the conjectures can be formulated in a 
way that is both simple and easy to understand for those that 

have mastered Basic Mathematics. Others are so complex that 
only specialists are able to understand their formulation. 
However, the advantage of the simple-formula conjectures is 
that they are “democratic”; they invite students of any age to 
study Mathematics. Andrew Wiles began trying to solve the 
last Fermat Theorem while he was still a child, and fulfilled 
his dream after receiving his doctorate. That’s why it is 
interesting to present the simple formulation of the conjectures, 
such as the Collatz, to the students. 

Sing [13] and Stewart [14] were important in the choice of 
strategies and also in this author’s motivation, showing that, 
by describing the attempts of other researchers, with their 
successes, failures and advances, it was worthwhile to try 
solving the Collatz Conjecture. And, after the choice of 
strategies and research of previous results were done, an 
attempt was made at a demonstration, the results of which are 
presented below. 

2. Methodology 

2.1. Cz (n) Properties 

2.1.1. Proposition 

If a natural number, n, is presented as 2n, the CZ (n) set does 
not have the 3n+1 operation. 

Demonstration: 
As 2n:2 is even: 
Cz (2n)={2n, 2n-1, 2n-2,...2º }, logo Cz (2n) = {2n, 2n-1, 

2n-2,...1 }. 

2.1.2. Proposition 

If n is a natural number with n=3 or n≥5, and n≠8, and Cz 
(16) is contained in Cz (n). 

Demonstration: 
By definition, the last term of the sequence produced by 

Collatz operations is 1. As 3n+1>1, the previous operation 
was a division by 2, thus the penultimate number is 2. 
Similarly, as 3n+1>2, the number preceding 2 is 4. 

For 3n+1= 4 => n=1. This is ridiculous because 1 is the last 
number in the sequence, so the term preceding 4 is 8. 

As 3n+1=8 => n= 7/3, and 7/3 is not a natural number, the 
number preceding 8 is 16. 

If n=3, Cz (3)= {3, 10, 5, 16, 8, 4, 2, 1}, therefore the 
property holds true. 

If n=4, Cz (4)={4, 2, 1}, the property does not hold true as 
16 and 8 are missing. 

If n=8, Cz (8)={8, 4, 2, 1}, the property does not hold true 
once again as 16 is missing. 

Based upon the arguments above, the proposition is true. 
The Cassini [16] graph demonstrates this proposition. 
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Figure 1. Graph created by Jason Davies, programmer, shown in Cassini's work. 

2.1.3. Proposition 

The last elements of the Collatz sequence prior to the 
number 1 form a Collatz subsequence. 

This property allows the Collatz sets to be written more 
elegantly, and also tests whether the conjecture is true for an 
untested number more quickly. This property appears in the 
work of other mathematicians, such as Lagarias (2013), in the 
form of an organizational chart. 

Demonstration: 
Cz (a) = {a, a1, a2, a3,...,16, 8, 4, 2, 1}. 
Using associativity, beginning with the term a3 results in: 
Cz (a) = {a, a1, a2, Cz (a3)} 
Example: 
Cz (76x258)= {76x 258, 38x258, Cz (19x258)} 

2.1.4. Proposition 

If the intersection of two Collatz sequences is not empty and 

is not contained in Cz (16), they have at least one Collatz 
subset beyond Cz (16). 

Demonstration: 
Cz (a) = {a, a1, a2, a3,...,16, 8, 4, 2, 1}. 
Cz (b) = {b, b1, b2, b3, b4...,16, 8, 4, 2, 1}. 
Assuming that a3=b4, therefore, the result is: 
Cz (a) = {a, a1, a2, Cz (a3)} 
Cz (b) = {a, b1, b2, b3, Cz (a3)} 
This property can reduce the work inherent in operations 

with Collatz sets. 
Example: 
Cz (5)={5, 16, 8, 4, 2, 1} 
Cz (3)={3, 10, Cz (5)} 
Cz (17)={17, 52, 26, 13, 40, 20, Cz (10)} 

2.1.5. Proposition 

If n is an odd natural number, Cz (n) is a subset of natural 
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Cz (2pn) ∀ �, i.e., Collatz sets of odd numbers are subsets of 
even numbers. 

Demonstration: 
In accordance with the fundamental theorem of arithmetic, 

a natural even number may be written as a product of primes 
including 2p. As such, if K is a natural even number, it can be 
written as follows: K=2px3qx5tx....Vz. It is understood that 
3qx5tx....Vz = M=> M is a number formed by the product of 
odd numbers, and so, it is odd. Applying the Collatz 
operations, the result is Cz (K)={2pM, 2p-1M,..., 2º M,....., 2, 1} 

=> Cz (K)={2pM, 2p-1M,...,Cz (M)}. 
This property bring about an interesting conclusion: that to 

prove or disprove the conjecture, one just needs work with odd 
numbers. 

2.1.6. Proposition 

If two odd numbers are used, A and B, where B is a multiple 
of A, it cannot be said that Cz (A) is a subset of Cz (B). 

Example: 
Cz (3)={3, 10, 5, 16, 8, 4, 2, 1} 
Cz (21)={21, 64, 32, 16, 8, 4, 2, 1} 

2.2. Property of the Numbers in Base Two, as Follows: 2
n
 

+2
n-1

+...+1 

2.2.1. Proposition 

2p +2p =2x 2p =2p+1 
Example: 
23+23 = 24 

2.2.2. Proposition 

2n>2n-1+2n-2+...+1 
Demonstration: 
2n>2n-1 
2n>2x2n-1-1 =>2n>2n-1+2n-2+2n-2-1 
Similarly: 
2n>2n-1+2n-2+2n-3-2n-3-1 
Repeating the operation n times we results in: 
2n> 2n-1+2n-2+...+2+1+1-1 
2n> (2n-1+2n-2+...+2+1) 
As such, the statement is true. 

2.2.3. Proposition 

(2n-1+2n-2+...+2+1)+1= 2n 
Demonstration: 
2 +1+1 = 2+2 = 22 
22+22 = 23 
23+23 =24 
Continuing in a similar fashion results in: 
2n-1+2n-2+2n-2 = 2n-1+2n-1 = 2n 

2.3. Collatz Operations with Binaries 

The advantage of doing Collatz operations in base 2 is that, 
in this format, it is possible to see numerous hidden properties 
in base 10. This method of writing the binary will be referred 
to as ED [Portuguese acronym - Writing by Definition], and 
each power of 2n is called a “term”. Before beginning the 
Collatz operations, the base number 2 is transformed into its 

ED equivalent. 
With this form of writing numbers in any base, Santos [14], 

a variety of properties and information are obtained, which are 
not visible in traditional Hindu-Arabica script. 

Consider the example of the number 17 = 24+1: 
17x3 +1= (24 +1) x (2+1) +1 = 24x2 +24x1+2x1+1x1+1 
25+24+2 +1+1 = 25+24 +2+2 =25+24 +22 

It is possible to continue the Collatz operations until 
reaching the number 1 and determining all of the orbit 
numbers or, if seeking just the next odd number, to divide 
everything by the lowest power. In the following example, we 
shall determine all of the terms: 

(25+24 +22): 2 = 24+23 +2 
(24+23 +2):2 = 23+22 +1 
(23+22 +1) x (2+1)+1 = 24+23 +23+22+2+1+1 = 

24+24+22+2+2= 
25+22+22 = 25 + 23 
(25 + 23):2 = (2� + 2	) 
(24+22):2 = 23+2 

(23+2):2 = 22+1 
(22+1) x (2+1)+1 = 23+22+2+1+1= 23+22+2+2 = 23+22+22= 
23+23= 24 
24:2 =23 
23:2 = 22 
22:2 = 2 
2:2 = 1 
Cz (24 +1) = {24 +1, 25+24 +22, 24+23 +21, 23+22 +1, 25+23, 

24+22, 23+2, 22+1, 24, 23, 22, 2, 1}. 
Example 2  
Let's employ the algorithm to determine only the odd terms, 

beginning from 13 = 23+22+1. 
(23+22 +1) x (2+1)+1 =24+23 +2+23+22 +1+1=25+23 
(25+23): 23 = 22+1 
(22+1) x (2+1)+1= 23+2+22+1+1= 24 
24: 24 = 1 
We shall use the name ICz (n) in reference to the subset of 

odd numbers from a Collatz set, which gives us: 
ICz (13) = {13, 5, 1} 

or 
ICz (23+22+1) = {23+22+1, 22+1, 1}. 
The ICz (n) set makes the number of times that the 3n+1 

operation occurs explicit. In the case of ICz (13), this operator 
is used 2 times. We shall call each operation 3n+1, followed 
by division by 2n, by movement, and that the ICz 2n exponent 
of the degree of movement. As such, ICz (13) has a 
third-degree movement and a fourth-degree movement. 

Therefore, ICz (n) is a subsequence of odd Cz (n) numbers. 
Examples; 
ICz (3) = {3, 5, 1} 
ICz (26) = {13, 5, 1} 
ICz (8) = {1} 
The advantages of ICz (n) with respect to Cz (n) may be 

observed through the graphing of each sequence. As an 
example, we consider the Cz (7) with ICz (7) graphs: 

Cz (7) Graph 
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Figure 2. Cz (7) Graph. 

 

Figure 3. ICz (7) Graph. 

Note how the ICz (7) graph is much more regular, 
improving observation of each number’s orbit.  

2.4. Collatz Movements 

As has already been defined, Collatz Movement is the 3n+1 
operation which is then divided by 2n in order to obtain the ICz 
(n) set. This movement will also be classified in accordance 
with its divider, 2n. The exponent "n" will be the degree of 
movement. As such, if the division is by 2, the movement will 
be of the first degree. If divided by 23, it will be a third-degree 
movement. Therefore, ICz (13) has a third-degree movement 
as well as a fourth-degree movement. 

Second-degree movement is what results most frequently 
and, hence, is known as "Monotonous Motion". 

2.4.1. Analysis of Collatz Movement 

Collatz movement can be divided into three phases: 
multiplication, addition and division. 

In the multiplication stage, each 2n term produces a new 2n+1 
term that will be known as the “New Term”, and which causes 
the quantity of the terms to double. 

(2n +1) x (2+1) +1 = 2n+1+2n+2+1+1 
In addition, the similar terms are summed up and the 

quantity of the terms decreases. Therefore, we have: 
2n+1+2n+2+1+1= 2n+1+2n+2+2=2n+1+2n+22 
In the division, there is a reduction in the exponent of each 

term: 
(2n+1+2n+22):22 = 2n-1+2n-2+1 



 Pure and Applied Mathematics Journal 2018; 7(5): 68-77 73 
 

2.4.2. Proposition 

The first-degree movement is increasing. All other 
movements are decreasing. 

Demonstration: 
We take a natural number, “n”, which is greater than two. 

As such, we have: 
3n+1>2n 
Dividing the two terms by 2, we have: 
(3n+1):2 > n. 
Note that (3n+1):2 is the first-degree movement. 
Supposing that “p” is a natural number which is greater than, 

or equal to, one, then we have: 
3n+1< 2px2n 
And so, dividing the two terms by 2px2 we have: 
(3n+1):2px2 < n � (3n+1):2p+1 < n 
Once again, note that (3n+1):2p+1 is movement of a degree 

which is greater than, or equal to, two. 
Example: 
11 = 23+2+1 
(23+2+1) x (2+1) + 1= 24+23+22+2+2+2 = 25 + 2 
(25 + 2):2 = 24+1 (First-degree movement) 
(24+1) x (2+1)+1 =25+24+2+2= 25+24+22 

(25+24+22):22 = 23+22+1 (Second-degree movement) 
(23+22+1) x (2+1)+1 = 24+23+23+22+2+2 = 25+23 

(25+23)�23) = (22+1) (Third-degree movement) 
(22+1) x (2+1)+1= 23+22+2+2 = 24 
24:24 = 1 (Fourth-degree movement) 
Icz (11) = {11, 17, 13, 5, 1} 
Movements with a degree higher than second cause a 

tremendous reduction in the terms and the module of the Icz (n) 
sequence numbers. Therefore, they will be known as “Strong 
Reductions”. 

2.4.3. Proposition 

Monotonous movement occurs whenever the penultimate 
term has a degree which is greater than second. If the degree of 
the penultimate term is second, we have a strong reduction. If 
the degree is first, we shall have an increasing movement.  

Demonstration: 
(2p+2+1) x (2+1)+1 = 2p+1+2p+22+2+2+1+1= 2p+1+2p+22+2 
(2p+1+2p+22+2):2 = 2p+2p-1+2+1 (Increasing Movement). 
We take 2p+22+1, so we have: 
(2p+22+1) x (2+1)+1 = 2p+1+2p+23+22+2+1+1 = 2p+1+2p+24 

(2p+1+2p+24):24 = 2p-3+2p-4+1 (Strong Reduction) 
Lastly, we take 2p+1, with p>2: 
(2p+1) x (2+1)+1= 2p+1+2p+2+1+1 = 2p+1+2p+22 
(2p+1+2p+22):22 = 2p-1+2p-2+1 (Monotonous Movement) 

2.4.4. Proposition 

The smallest strong reduction occurs when the last three 
terms are 23+22+1, and the preceding term has an exponent 
which is greater than 4. 

Demonstration: 
(2p+23+22+1) x (2+1)+1 = 2p+1 +2p+24+23+23+22+2+1+1== 

2p+1+2p+25+23 
(2p+1+2p+25+23):23 = 2p-2+2p-3+22+1 (Strong 3rd-degree 

reduction). 

2.4.5. Theorem 

The numbers of a base 2 movement have decreasing 

exponent pairs. 

Demonstration: 
We take the number N=22p+22p-2+22p-4+...+26+24+22+1. In 

the multiplication stage, we have: 
(22p+22p-2+22p-4+...+24+22+20) x (2+1) + 1= (note: observe 

that 1 = 2nd). 
22p+1+ 22p+22p-1 +22p-2+22p-3+ 22p-4+...+25 +24+23+22+2+1+1 

= 
Using the property of the binaries, in the addition phase we 

have: 
22p+1+ 22p+22p-1 +22p-2+22p-3+ 22p-4+...+25 +24+23+22+2+1+1 

= 22p+2 
(22p+2):22p+2 = 1 
Therefore, the number has a movement of the 2p+2 degree 
Example: 
5 = 22 + 20, Cz (5) = {5, 16, 8, 4, 2, 1} 
21 = 24 + 22 + 20, Cz (21) = {21, 64, 32, 16, 8, 4, 2, 1} 
The odd numbers of a movement are obtained by series: 

Sn =
	�� ��

�
                  (2) 

Note that these numbers are formed by the sum of the terms 
of a an = 22n Geometric Progression 

21 = 24 + 22 + 20 => 24: 22 = 22: 20 => 22=22 

Using the sum of the finite PG, with an = 1, we have: 

�� =
2	  − 1

2	 − 1
 

�� =
2	  − 1

3
 

2.5. Augmentative Movement 

2.5.1. Proposition 

If the last two terms of a number are 2+1, the next 
movement of said number is augmentative. 

Demonstration: 
(2n+2+1) x (2+1)+1=2n+1+2n+22+2+2+1+1 
2n+1+2n+23+2 
Note that, as the lesser term is two, there will be a division 

by two, determining a 1st degree movement, known as 
augmentative movement.  

2.5.2. Theorem 

If the exponents of a number’s "N" terms are in descending 

order, this number will have at least "N" augmentative 

movements which will be the first n movements of ICz. 

Demonstration: 
We take the number 2n+2n-1+2n-2....23+22+2+1. 
(2n+2n-1+2n-2....23+22+2+1) x (2+1)+1 = 
After the multiplication phase, we shall have: 
2n+1+2n+2n+2n-1+2n-1+2n-2....24+23+23+22+22+2+2+1+1 
Adding the new terms in bold to the last two terms, and 

using the property of the binaries, we shall have: 
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2n+1+2n+2n-1....23+22+1+1= 2n+2 
Let's add this new term to others, and we shall have: 
2n+2 +2n+2n-1+2n-2....23+22+2 
As the smallest term is two, this number is divisible by two. 

By dividing, we have: 
2n+1+2n-1+2n-2+2n-3....22+2+1. 
Upon repeating the Collatz operations, we have: 
(2n+1+2n-1+2n-2+2n-3+....+22+2+1) x (2+1)+1 = 
2n+2+2n+1+2n+2n-1+2n-1+2n-2... +23+22+22+2+2+1+1 
Summing up the new terms in bold with the second term 

and the last two terms, we have: 
2n+2+2n+1+2n

+... +23.+22+2+1+1. = 2n+3 

Applying the division, we shall have: 
(2n+3+2n-1+2n-2...23+22+2):2 = 2n+2+2n-2+2n-3...22+2+1 
Note that the operations do not change the last two terms, 

which continue to be 2+1. Moreover, as long as they are not 
changed, the movements will be augmentative. Also note that 
with each new movement, the terms with exponents in 
decreasing order decrease after the second movement has 
moved past n to n-2. If we continue applying the augmentative 
movements, after n movements the penultimate term will be 
affected and there will be another 1st degree movement. As 
such, a monotonous movement will take place, and so the 
statement is correct. 

i) Corollary: The numbers of the 2n+2n-1+2n-2...2+1 form 
may be written as 2n+1-1. 

Demonstration: 
Using the property of the binary, we have: 
(2n+2n-1+2n-2....23+22+1+)+1= 2n+1 

(2n+2n-1+2n-2....+23+22+1+)= 2n+1-1 
ii) Corollary: Numbers in which the last n terms have 

exponents in descending order, also have n initial 
augmentative movements. 

Demonstration: 
Supposing that p-n>2, we have: 
(2p+2n+2n-1+2n-2....23+22+2+1) x (2+1)+1 = 
(2p+1+2p+2n+1+2 +2n-1+2n-1+2 �	+...23+22+2):2 = 2p+1+2p + 

2n+2+2n-2+2n-3...22+2+1 
Note that there was no change in the Collatz movements 

which continue to be augmentative and to reduce the quantity 
of ordered terms. Therefore, the statement is valid. 

When the exponents of two or more of a number’s terms 
with a difference of just one unit in relation to the previous or 
following term, these terms will be called “aligned terms” or 
“term alignment”. 

2.6. Augmentative Movement x Monotonous Movement 

Suppose an odd number, K>30, that, in ICz (K), initially 
undergoes two consecutive augmentative movements 
followed by three monotonous movements: 

K x 3 + 1 = 3K + 1 
(3K + 1): 2 = 1,5K + 0,5 
(1,5K + 0,5) x 3 + 1 = 4,5K + 2,5 
(4,5K + 2,5):2 = 2,25K +1,25 
(2,25K +1,25) x 3+1 = 6,75K + 4,75 
(6,75K + 4,75):4 = 1,6875 K+ 1,1875 
(1,6875 K+ 1,1875) x 3 +1 = 5,0625K + 4,5625 

(5,0625K + 4,5625):4 = 1,2656K + 1,1406 
(1,2656K + 1,1406) x 3 + 1 = 3,7968K + 4,4219 

(3,7968K + 4,4219):4 = 0,9492K + 1,1055 
Note that 1 – 0,9492 = 0,0508. Therefore, K = 0,9492K+ 

0,0508K, and as K>30, it follows that: 
0,0508K > 0,0508x30 
0,0508K > 1,524 > 1,1055 
K > 0,9492K + 1,1055 

As the orbits of numbers less than 30, and even that of 30 
itself, are well known, we shall state only that if a number is 
greater than 30 and suffers two augmentative movements 
followed by three monotonous movements, it will have a 
smaller module than in the beginning. In other words, it takes 
three monotonous movements to cancel out two augmentative 
movements. 

2.7. The Effects of Multiplication and Addition on the Terms 

As a new term with an exponent that is greater than the 
original term is created in the multiplication step, the terms 
will become "closer", i.e., the difference between its terms 
decreases and, in the addition, they can join to form a single 
term. This result of multiplication and addition operations will 
be called "Fusion", and is independent of the kind of 
movement. 

There are two types of fusion. The first is when the 
exponents of the terms have one unit of difference. 

(2n+2n-1+1) x (2+1) + 1= 
2n+1+2n+2n+2n-1+2+1+1= 
Note the new terms in bold. 
(2n+1+2n+2n)+2n-1+(2+1+1) = 
Note that three terms become one prior to the division. 
(2n+2+2n-1+22):(22) = 2n+2n-3+1 
The other fusion is when there are two units of difference 

between the exponents of the terms which precede a term with 
a single unit. 

(2n+4+2n+2+2n+2n-1+2+1) x (2+1)+1 = 
2n+5+2n+4+2n+3+2n+2+2n+1+2n+2n+2n-1+22+2+2+1+1 = 
(2n+5+2n+4+2n+3+2n+2+2n+1+2n+2n)+2n-1+(22+2+1+1)+2 = 
(2n+6+2n-1+23+2):2 = 
2n+5+2n-2+22+1 
Note that even as an augmentative movement, the effect of 

multiplication and addition on the terms was the same, a 
reduction in the number of terms, while the difference 
between the exponents of the following terms increased. This 
effect is fundamental in ensuring that the Collatz proposition 
is true, for these operations because, by distancing the terms, 
they prevent them from forming alignments that would lead to 
new augmentative movements. 

A very important consequence of these operations is that the 
first terms undergo more fusions than the last ones because, 
with every multiplication, a new term is created that has one 
more unit than the term suffering multiplication. Additionally, 
every two moves, this term undergoes a fusion which creates a 
term with an even larger. The process repeats until the new 
terms undergo fusion with the terms ahead of them. 

Another important effect of the multiplication and addition 
operations is the change in parity. This explains the sudden 
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changes in their orbits. 
Supposing that "n" is an even number, then n+1 and n-1 are 

odd. Similarly, if "n" is odd, then n+1 and n-1 are even. 
Applying Collatz operations to the number 2n+ 22+2+1, we 
have: 

(2n+ 22+2+1) x (2+1)+1= 
2n+1+2n+ 23+22+22+2+2+1+1= 
(2n+1+2n+ 24+22+2):(2) = 
2n+2n-1+ 23+2+1 
Note that the first two terms already have different parities. 
Continuing on, we have: 
(2n+2n-1+ 23+2+1) x (2+1) + 1 = 
2n+1+2n+ 2n+2n-1+ 24+ 23+22+2+2+1+1 = 
(2n+2+2n-1+ 25+2):(2) = 
2n+1+2n-2+ 24+1 
The combination of multiplication and addition operations 

ensures that, even when combining decreasing and increasing 
movements, the difference between the exponents must 
increase, especially among first and last terms. This prevents 
the number that initiated the sequence from repeating, which 
would negate the conjecture. 

Example: 
Highlighting the original terms in bold, we have: 
(2n+5+ 2n+2+1) x (2+1)+1= 
2n+6+2n+5+ 2n+1+2n+22+2+2+1+1= 
(2n+6+2n+5+ 2n+1+2n+23+2):(2) = 
(2n+5+2n+4+ 2n+2n-1+22+1) x (2+1) + 1 = 
2n+6+2n+5+2n+5+2n+4+ 2n+1+2n+2n+2n-1+23 +22+2+1+1 = 
2n+7+2n+4+ 2n+2+2n-1+23+22+2+1+1 = 
(2n+7+2n+4+ 2n+2+2n-1+24):(24) = 
(2n+3+2n+ 2n-2+2n-5+1) x (2+1) +1= 
2n+4+2n+3+ 2n+1+2n+2n-1+2n-2+ 2n-4+2n-5+2+1+1= 
(2n+4+2n+3+ 2n+1+2n+2n-1+2n-2+ 2n-4+2n-5+22): (22) = 
(2n+2+2n+1+ 2n-1+2n-2+2n-3+2n-4+ 2n-6+2n-7+1):(2+1)+1 = 
Summing up the terms in bold, we have: 
2n+3+2n+2+ 2n+2+2n+1+2n+ 2n-1+2n-1 +2n-2+2n-2+2n-3+2n-3+ 

2n-4+2n-5+2n-6+2n-6+ 2n-7 +2+1+1= 
2n+4+2n+2 +2n-1+2n-2 +2n-3+2n-7 +2+1+1= 
2n+4+2n+2 +2n-1+2n-2 +2n-3+2n-7 +22 = 
Note that, at this instant, the original term is affected by new 

terms created by the previous original term, which even leads 
to a change in parity. Completing the movement, we have: 

(2n+4 + 2n+2+2n-1 + 2n-2 +2n-3 + 2n-7 +22):(22) = 
2n+2 + 2n+2n-3 + 2n-5 +2n-6 + 2n-9 + 1= 

2.8. Analysis of Monotonous Movement 

Movement I 
(2n+1) x (2+1) + 1= 
2n+1 + 2n+2+1+1= 
2n+1 + 2n+22= 
(2n+1 + 2n+22): 22 = 
2n-1 + 2n-2+1 
Movement II 
(2n-1 + 2n-2+1) x (2+1) +1 = 
2n + 2n-1+2n-1 +2n-2 + 2+1+1 = 
2n+1+2n-2+22 = 
(2n+1+2n-2+22):(22) =  

2n-1+2n-4+1 =  
Movement III 
(2n-1 + 2n-4+1) x (2+1) + 1 =  
2n + 2n-1+2n-3 +2n-4 + 2+1+1= 
2n + 2n-1+2n-3 +2n-4 + 22 =  
(2n + 2n-1+2n-3 +2n-4 + 22):(22) = 
2n-2 + 2n-3+2n-5 +2n-6 +1 
Movement IV 
(2n-2 + 2n-3+2n-5 +2n-6 +1) x (2+1) +1 = 
2n-1 + 2n-2+2n-2 +2n-3 + 2n-4 + 2n-5+2n-5 +2n-6 +2+1+1= 
2n + 2n-2+2n-6 +22= 
(2n + 2n-2+2n-6 +22): (22) =  
2n-2 + 2n-4+2n-8 +1 = 
It can be noted that the exponent of the penultimate term 

decreases two units with each new monotonous movement, 
{2n, 2n-2, 2n-4, 2n-6, 2n-8}. As such, if "n" is an even number, 
after n/2 -1 moves, the last two terms will be 22 +1, and we 
shall have a strong reduction. 

Example: 
(26+1) x (2+1) + 1 = 
27 +26 +2 +1+1 = 
(27 +26 +22):(22) = 
25 +24 +1 
Movement II 
(25 +24 +1) x (2+1) = 
26 +25 +25 +24+2+1+1 = 
(27 +24 +22):(22) = 
25 +22 +1 
Note that the next move will be a strong reduction. 
Movement III 
(25 +22 +1) x (2+1) + 1 =  
26 +25 +23 +22 +2 +1+1 = 
(26 +25 +24):(24) = 
22 +2 +1 
ICz (65) = {65, 49, 37, ICz{7}} 
If "n" is an odd number, after (n-1)/2 movements, the last 

terms will be: 2+1. Therefore, we shall have one or more 
augmentative movements, depending on the alignment of the 
last terms. 

Example: 
(25+1) x (2+1) + 1 = 
26 +25 +2 +1+1 = 
(26 +25 +22):(22) = 
24 +23 +1 
Movement II 
(24 +23 +1) x (2+1) = 
25 +24 +24 +23+2+1+1 = 
(26 +23 +22):(22) = 
23 +2 +1  
Note that the next move will be augmentative. 
Movement III 
(23 +2 +1) x (2+1) + 1 =  
24 +23 +22 +2 +2 +1+1 = 
(25 +2):(2) = 
24 +1 
ICz = {33, 25, 19, ICz{29}} 
Note as well that, with every two movements, the difference 
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between the second last and third last terms is only one unit, 
2n-1 + 2n-2 e 2n-5 +2n-6. This is key to understanding the orbits 
because it causes new alignments between the latter terms, 
which leads to new augmentative movements. This, in turn, 
makes the orbit of some numbers so complicated because the 
sequence decreases, and then increases again as the latter 
terms suffer repeated realignments. However, as has been 
shown in the previous item, the multiplication and addition 
operations produce terms with differing parity. As such, after 
an alternation of augmentative movements followed by 
monotonous movements, there will be a sequence of 
monotonous movements initiated by the penultimate term 
with an even exponent, which will end in a strong reduction. If, 
after the strong reduction, the penultimate term has and odd 
exponent, there will be monotonous movements followed by 
augmentative movement. Should it be even, there will be 
monotonous movements followed by a strong reduction. 

Example: 
9 = 23+ 1 
(23+ 1) x (2+1) + 1= 
24+23+2+ 1+1 = 
(24+23+22):(22) =  
22+2+1  
Note that the terms are aligned, and we shall have two 

augmentative movements. 
(22+2+1):(2+1) + 1= 
23+22+22+2+2+1+1 = 
(24+22+1):(2) = 
(23+2+1) x (2+1)+1= 
24+23+22+2+2+1+1= 
(25+2):(2) = 
Note that the parity of the penultimate term changed to even. 

As such, we shall have monotonous movements followed by 
strong reduction. 

(24+1) x (2+1) + 1= 
25+24+2+1+1 = 
(25+24+22):(22) = 
(23+22+1) x (2+1) +1 =  
24+23+23+22+2+1+1 = 
(25+23):(23) = 
(22+1) x (2+1) =  
23+22+2+1+1 =  
(24):(24) = 1 
This capacity for realignment is the reason that some of 

them (the number 129, for example) have such fantastic orbits. 
Note the segments in which, after one or more decreasing 
movements, the last terms suffer alignment, and begin 
growing anew. 

ICz (129) = {129, 97, 73, (55, 83, 125,) (47, 71, 107, 161), 
121, (91, 137), (103, 155, 233,) (175, 263, 395, 593), 445, 
(167, 251, 377), (283, 425, 319, 479, 719, 1079, 1619, 2429), 
(911, 1367, 2051, 3077), 577, 433, 325, 61, 23, 35, 53, 5}  

2.9. Analysis of the Augmentative Movement 

We take a number with aligned terms: 2n+2n-1....23+22+1. 
By applying a movement, we shall have: 

(2n+2n-1....23+22+1) x (2+1) +1 =  

After the multiplication phase, we shall have the new terms 
in bold: 

2n+1+2n+2n+2n-1+2n-1+2n-2....24+23+23+22+22+2+2+1+1 
Summing up, separately, the new terms in bold with the last 

two terms, we shall have: 
2n+1+2n+2n-1....23+22+2+1+1= 2n+2 
Let's add this new term to the others, and divide by 2:  
(2n+2 +2n+2n-1+2n-2....23+22+2):2= 
2n+1 +2n-1+2n-2+2n-3....22+2+1 
Producing other movements, we shall have: 
(2n+1 +2n-1+2n-2+2n-3....22+2+1) x (2+1)+1 = 
2n+2+2n+1+2n+2n-1+2n-1 +2n-2....24+23+23+22+22+2+2+1+1 =  
(2n+3 + 2n-1+2n-2+2n-3....22+2):(2) = 2n+2 + 

2n-2+2n-3+2n-4....22+2+1 
(2n+2 + 2n-2+2n-3+2n-4....22+2+1) x (2+1) +1 =  
2n+3 + 2n+2 +2n-1+2n-2+2n-2+2n-3....22+2+2+1+1 
(2n+3 + 2n+2 +2n+2n-2+2n-3....23+22+2):(2) = 2n+2 + 2n+1 

+2n-1+2n-3+2n-4....22+2+1 
(2n+2 + 2n+1 +2n-1+2n-3+2n-4....22+2+1) x (2+1) +1= 
Using associativity to highlight the fusions, we have: 
(2n+3 + 2n+2 +2n+2) + (2n+1 +2n+2n-1+2n-2+2n-3 

+2n-3+2n-4+....22+22+2+2+1+1) = 
2n+4 + 2n+2 +2n-3+2n-4....22+2= 
(2n+4 + 2n+2 +2n-3+2n-4....22+2):(2) = 
2n+3 + 2n+1 +2n-4+2n-5....22+2+1 
Note that, with each new movement, the quantity of queued 

terms decreases. This process will occur "n" times until the 
penultimate term is affected. After that, we shall have one or 
more monotonous movements. 

If after "n" movements the penultimate term has an even 
exponent, we shall have monotonous movements followed by 
of a strong reduction. Inversely, if the penultimate term is odd, 
we shall have one or more monotonous movements followed 
by an alignment that will cause an increasing sequence in the 
orbit. 

However, the effects of multiplication and addition 
operations will cause the terms to separate. The difference 
between the exponents of the terms that fall out of alignment 
will constantly increase, making new alignments impossible. 
This, in turn, will decrease movements predominant. Note that 
the difference between the exponents of the terms that fell out 
of alignment increased with each new movement. 

3. Results  

The orbits of the sequences produced by the Collatz C (n) 
operations can be divided into increasing and decreasing 
sub-sequences. Additionally, each sub-sequence can be 
determined by the binary ED form of each number initiating 
the subsequence.  

The IC (n) subsequence, which uses only odd numbers, 
allows for more regular observation of the sub-sequence’s 
behavior than C (n).  

The obtained results allow for the creation of sequences 
with a desired behavior, with more or fewer terms where the 
3n+1operation doesn’t appear, occurs only once or at least "n" 
times.  
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4. Discussion  

Mathematicians who have studied the Collatz Conjecture 
over the past 80 years have come to the conclusion that the 
mathematical knowledge available to them, including 
computers, was not up to the task of demonstrating. It took a 
new kind of number, the binary ED, to unravel this puzzle.  

The ED numbers also produced other discoveries which can 
be found in Santos' book. It has only been published in 
Portuguese, to date, and does not contain the results laid out in 
this article. This, in fact, is the great advantage of researching 
conjectures in any area of mathematics. In addition to being 
fun and challenging, it also produces new mathematical 
knowledge that can be used in other areas. 

Demonstrations of the generalizations created by other 
researchers are still lacking, and should remain for other 
mathematicians. They should be all that much easier with the 
knowledge found in the results of this research. 

5. Conclusion 

The factor that ensures that the Collatz Conjecture is a 
Theorem, is that the decreasing movements predominate in 
relation to the increasing movements. Even in a number 
formed by terms of odd exponents and a large initial alignment, 
the effect of multiplication and addition operations will cause 
the terms to have exponents with increasing differences. 
Additionally, the fusions will change the parities of the 
exponents. This leads to monotonous movements followed 
strong reductions. 

Even if someone produces a very complicated number, 
using all of the knowledge about sockets and binary numbers, 
this sequence will have decreasing orbits with monotonous 
movements and strong reductions that, together, will 
predominate in relation to the increasing movement. This will 
always lead to the sequence ending in the number 1. 
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