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Abstract: The aim of this research is to extend the new type of compact spaces called Q* compact spaces, study its 

properties and generate new results of the space. It investigate the Q*-compactness of topological spaces with separable, Q*-
metrizable, Q*-Hausdorff, homeomorphic, connected and finite intersection properties. The closed interval [0, 1] is Q* 

compact. So, it is deduced that the closed interval [0, 1] is Q*-compact. For example, if ��, �� � � and (0, )A = ∞  then A  is 

not Q*-compact. A subset S  of � is Q*-compact. Also, if ( , )X τ  is a Q*-compact metrizable space. Then ( , )X τ  is separable.

1( , )Y τ  is Q*-compact and metrizable if f  is a continuous mapping of a Q*-compact metric space (X, d) onto a Q*-Hausdorff 

space 1( , )Y τ . An infinite subset of a Q*-compact space must have a limit point. The continuous mapping of a Q*-compact 

space has a greatest element and a least element. Eleven theorems were considered and their results were presented 
accordingly.  
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1. Introduction 

Borel proved in his 1894 Ph.D. thesis that a countable 

covering of a closed interval by open intervals has a finite 

subcover. It turns out that Borel's approach was similar to the 

approach Heine used to prove in 1872 that a continuous 

function on a closed interval was uniformly continuous 

(actually first proved, but unpublished for 60 years, by 

Dirichlet in 1852). In 1898, Lebesgue (and apparently 

someone named Cousins in 1895) removed "countable" from 

the hypothesis of Borel's result. Thus, the generalized 

theorem, which is now commonly called the Heine-Borel 

theorem. 
Murugalingam and Lalitha (2010) introduced the concept 

of Q* sets [2]. Lalitha and Murugalingam (2011) further 
studied the properties of Q* closed and Q* open sets in affine 
space [3]. Padma (2015) introduced the concept of Q*O 
compact spaces and obtained very crucial results [7, 8] and 
applied results from [6]. Some important results on 
bitopological spaces are obtained in [1], [4], [5] and [11]. Let 

( , )X τ  be a topological space. A subset S  in X  is said to be 

Q* closed in ( , )X τ  if S is closed and Int ( )S φ= . Its 

compliment �′ is therefore Q* open [9, 10]. If every open 
cover of X  has a finite sub cover then X  is called a 

compact space. ( , )X τ is said to be separable if it has a 

countable dense subset. Let X  be a set and ℑ  a family of 

subsets of X . Then ℑ  is said to have Finite Intersection 

Property if for any finite number 1 2, ,..., nF F F  of members of 

ℑ , 1 ... nF F φ∩ ∩ ≠  [9]. 

2. Preliminaries 

This section gives an overview of the basic definitions of a 
compact space, Q*-compact which is the new type of a 
compact space. 

Definition: A subset A of a topological space ( , )X τ  is said 

to be compact if every open covering of A has a finite 

subcovering. If the compact subset A equals X, then ( , )X τ  is 

said to be a compact space. 

Definition: Let ( , )X τ  be a topological space. Then it is said 

to be connected if the only clopen subsets of X are X and φ . 
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Definition: A subset A of a topological space ( , )X τ  is said 

to be Q*O - compact space if every *Qτ −  open cover of X 

has a finite sub cover. 

Definition: Let ( , )X τ  be a topological space. Then it is 

said to be Q*- connected if the only Q* open subsets of X are 

X and φ . 

3. Results on Generalization of Q*O 

Compact Space 

Theorem: The closed interval [0, 1] is Q*-compact. 

Proof: Let Gα , α ∈ Λ  be any open covering of $[0, 1]$. 

Then for each [0,1]x ∈ , there is a Gα  such that x Gα∈ . As 

Gα  is open in about x , there exist an interval xU , open in 

$[0, 1]$ such that xx U Gα∈ ⊆  

Now define a subset � of [0, 1] as follows: 

� � {�: 
0, ��	���	��	�������	��	�	������	������	��	 �� 	!"} 
[So 

1 2
[0, ] ...

nx x xz S z U U U∈ ⇒ ⊆ ∪ ∪ ∪  for some 

1 2, ,..., nx x x  

Now let x S∈ and xy U∈ . Then as xU  is an interval 

containing x and y , [ , ] xx y U⊆ . (Here we are assuming 

without loss of generality that x y≤ ). So 

1 2
[0, ] ...

nx x x xy U U U U⊆ ∪ ∪ ∪ ∪  and hence y S∈ . 

For each [0,1], x xx U S U∈ ∩ = or φ . 

This implies that ∪ x

x S

S U

∈

=  and [0,1] | ∪ x

x S

S U

∉

=  

Thus, S is open in [0,1] and S is closed in [0,1]. But [0,1] 

is connected. Therefore [0,1]S =  or φ  

However, 0 S∈  and so [0,1]S = ; that is, [0,1] can be 

covered by a finite number of xU . So 

1 2
[0,1] ...

mx x xU U U⊆ ∪ ∪ ∪ . But each xU  is contained in a 

,Gα α ∈ Λ . 

Hence 
1 2

[0,1] ...
m

G G Gα α α⊆ ∪ ∪ ∪  and it has been 

established that [0,1] is Q*-compact. 

Example: If ��, �� = ℝ and (0, )A = ∞  then A  is not Q*-

compact 

Proof: For any integer α , Let Gα , be any interval (0, )α . 

Then clearly, 

1

∪A Gα
α

∞

=

⊆ . But there do not exist 

1 2, ,..., nα α α  such that 1 2(0, ) (0, ) ... (0, )nA α α α⊆ ∪ ∪ ∪ . 

Therefore, A is not Q*-compact. 

Corollary: For a  and b  in ℝ	 with a b< , [a, b] is Q* 

compact, while (a, b) is not Q*-compact. 
Proof: The space [a, b] is homeomorphic to the Q*- 

compact [0, 1] and so, and by Padma (2015), is Q*- compact. 

The space ( , )a b  is homeomorphicto (0, )∞ . If ( , )a b  were 

Q*-compact, then (0, )∞  would be Q*-compact, but by 

example 4.1 (0, )∞  is not Q*-compact. Hence ( , )a b  is not 

Q*-compact. 

Example: Suppose { } { } { }{ }, , , , , , , , , , ,X e f g h X e f g e f hτ φ= = , 

Let { }, ,S e g h= . Now { } { }, ,A a d b c⊂ ∪ . By definition, S  

is compact set. But S  is not a Q*O - compact set because S  

is not Q* closed since its complement { }b  is not Q* open. 

Remark: Every Q*O - compact space is compact, but the 
converse is not necessarily true. 

Theorem: A subset S  of ℝ is Q*-compact if and only if S  

is closed and bounded. 

Proof: First suppose that S  is Q*-compact. To see that S is 

bounded is fairly simple: Let ( ),nI n n= −  

Then ⋃ I&'&() = ℝ 

Therefore S  is covered by the collection of { }nI . Hence, 

since S  is Q*-compact, finitely many will suffice, 

( )
1

...
kn n mS I I I⊆ ∪ ∪ =  

Where { }1,..., km max n n= . Therefore | |x m≤  for all 

x S∈ , and S  is bounded. 

Now showing that S  is closed. Suppose not. Then there is 

some point ( )( ) |p cl S S∈ . For each n , define the 

neighborhood around p  of radius 1 / n , ( ),1 /nN N p n= . 

Take the complement of the closure of | ( )n n nN U R cl N=  is 

open (since its complement is closed), and we have 

*!&

'

&()
= ℝ|,�-�.&�

'

&()
= ℝ{/} ⊇ � 

Therefore, { }nU  is an open cover for S. Since S is Q*-

compact, there is a finite subcover
1
,...,

kn nU U for S . 

Furthermore, by the way, they are constructed, i jU U⊆ if 

i j≤ . It follows that mS U⊆ where { }1,..., km max n n= . But 

then ( ,1 / )S N p m φ∩ = , which contradicts our choice of 

( ) |p cl S S∈ . 

Conversely, there is need to show that if S  is closed and 

bounded, then S  is Q*-compact. Let ℑ  be an open cover for 

S . For each 12ℝ, define the set 

( , ],xS S x= ∩ −∞  

and let 

{ }: ?        xB x S is covered by a finite subcover of= ℑ . 

Since S  is closed and bounded, hypothesis tells us that S  

has both a maximum and a minimum. Let d minS= . Then 

{ }xS d=  and this is certainly covered by a finite subcover of 

ℑ . Therefore, d B∈  and B  is nonempty. If it is shown that 

B is not bounded above, then it will contain a number p  

greater than max S. But then, pS S=  so we can conclude 

that S  is covered by a finite subcover, and is therefore Q*-
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compact. 
Toward this end, suppose that B  is bounded above and let 

m supB= . We shall show that m S∈  and m S∉  both lead 

to contradictions. 

If m S∈ , then since ℑ  is an open cover of S , there exists 

0F  in ℑ  such that 0m F∈ . Since 0F  is open, there exists an 

interval 1 2[ , ]x x  in 0F  such that 1 2x m x< < . Since 1x m<
and m supB= , there exists 1,..., kF F  in ℑ  that cover 

1xS . 

But then 0 1, ,..., kF F F cover 
2xS , so that 2x B∈ . But this 

contradicts m supB= . 

If m S∉ , then since S  is closed there exists 0>ε  such 

that ( , )N m S φ∩ =ε . But then 

m mS S− +=
ε ε

 

Since m B− ∈ε  then m B+ ∈ε , which again contradicts 

m supB= . 

Therefore, either way, if B  is bounded above, we get a 
contradiction. We conclude that B is not bounded above, and 
S must be Q*-compact. 

Theorem: Let ( , )X τ  be a Q*-compact metrizable space. 

Then ( , )X τ  is separable. 

Proof: Let d  be a metric space on X  which induces the 

topology τ . For each positive integer n , let nS  be the 

family of all open balls having centres in X  and radius 
1

n
. 

Then nS  is an open covering of X  and so there is a finite 

subcovering { }
1 2
, ,...,

kn n n nU U Uµ = , for some k ∈ℵ . Let 

jny  be the centre of 
jnU , 1,...,j K= , and 

{ }
1 2
, ,...,

kn n n nY y y y= . 

Put 

1

∪ n

n

Y Y

∞

=

= . Then Y  is a countable subset of X . Now 

showing that Y  is dense in ( , )X τ . 

If V  is any non-empty open set in ( , )X τ , then for any 

v V∈ , V  contains an open ball, B , of radius 
1

n
, about v , 

for some n ∈ℵ . As nµ  is an open cover of X , 
jnv U∈ , for 

some j . Thus ( ) 1
,

jnd v y
n

<  and so 
jny B V∈ ⊆ . Hence, 

V Y φ∩ ≠ , and so Y  is dense in X . 

Theorem: Let ( , )X τ  be a topological space. Then ( , )X τ  

is Q*-compact if and only if every family ℑ  of closed 

subsets of X  with the finite intersection property satisfies 

∩
F

F φ
∈ℑ

≠ . 

Proof: Assume that every family ℑ  of closed subsets of 

X  with the finite intersection property satisfies ∩
F

F φ
∈ℑ

≠ . 

Let µ  be any open covering of X . Put ℑ  equal to the 

family of complements of members of µ . So each F ∈ ℑ  is 

closed in ( , )X τ . AS µ  is an open covering in X , 

∩
F

F φ
∈ℑ

≠ . By our assumption, then ℑ  does not have finite 

intersection property. So, for some 1 2, ,..., nF F F in ℑ , 

1 2 ... nF F F φ∩ ∩ ∩ ≠ . Thus 1 2 ... nU U U X∪ ∪ ∪ = , where 

|i iU X F= , 1,...,i n= . So µ  has a finite subcovering. 

Hence, ( , )X τ  is Q*-compact. 

The converse statement is proved similarly. 

Theorem: Let f  be a continuous mapping of a Q*-

compact metric space (X, d) onto a Q*-Hausdorff space 

1( , )Y τ . Then 1( , )Y τ  is Q*-compact and metrizable. 

Proof: Since every Q*-continuous image of a compact 

space is compact (Padma 2015), the space 1( , )Y τ  is certainly 

compact and metrizable. As the map f  is surjective, define 

the metric 1d  on Y  as follows: 

( ) ( ) { } { }{ }1 1
1 1 2 1 2, , :d y y inf d a b a f y andb f y− −= ∈ ∈ , for 

all 1y  and 2y  in Y . 

To show that 1d  is indeed a metric. Since { }1y  and { }2y  

are closed in the Q*-Hausdorff space 1( , )Y τ , { }1
1f y

−
 and 

{ }1
2f y

−
 are Q*- compact. So, the product 

{ } { }1 1
1 2f y f y

− −× , which is a subspace of the product 

space ( , ) ( , )X Xτ τ× , is Q*-compact, where τ  is the 

topology induced by the metric d . 

Observing that �: ��, �� × ��, �� → ℝ  is a continuous 

mapping, then { } { }( )1 1
1 2d f y f y− −× , has a least element. 

So there exist an element { }1 1 1x f y−∈  and an element 

{ }2 1 2x f y−∈  such that 

( ) ( ) { } { }{ } ( )1 1
1 2 1 2 1 1 2, , : , ,d x x inf d a b a f y b f y d y y− −= ∈ ∈ =

 

Clearly if 1 2y y≠ , then { } { }1 1
1 2f y f y φ− −∩ = . Thus 

1 2x x≠  and hence ( )1 2, 0d x x > ; that is ( )1 1 2, 0d y y > . 

It is easily verified that 1d  has the other properties 

required of a metric, and so a metric on Y . 

Let 2τ  be the topology induced on Y by 1d . To show that 

1 2τ τ= . 

Firstly, by the definition of 1d , 2: ( , ) ( , )f X Xτ τ→  is 

certainly continuous. 

Observe that for a subset C of Y , 

C is a closed subset of 1( , )Y τ  

( )1
f C

−
⇒ is a closed subset of ( , )X τ  

( )1
f C

−
⇒  is a Q*-compact subset of ( , )X τ  

( )( )1f f C−
⇒  is a Q*-compact subset of 2( , )X τ  
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SO 1 2τ τ⊆  

Similarly, we have 2 1τ τ⊆ , and thus 1 2τ τ=  

Theorem: Let ( , )X τ  be a Q*-compact space and 

�: ��, �� → ℝ  a continuous mapping. Then ( )f X has a 

greatest element and a least element. 

Theorem: If 1 1 2 2( , ), ( , ),..., ( , )n nX X Xτ τ τ  are Q*- compact 

spaces, then 

1

( , )

n

i i

i

X τ
=

∏  is a Q*- compact space. 

Proof: The first part of this proof is to show that the 
product of any two Q*- compact topological spaces is Q*- 
compact. 

Suppose 1 1( , )X τ  and 1 1( , )X τ  are Q*- compact then 

1 1 2 2( , ) ( , )X Xτ τ×  is also Q*- compact Padma (2015). 

Then by induction, we can say that: 

1 1 2 2 3 3 1 1 2 2 3 3( , ) ( , ) ( , ) [( , ) ( , )] ( , )X X X X X Xτ τ τ τ τ τ× × = × ×
is also Q*- compact since it is also a product of two Q*- 
compact spaces. 

Conclusively, suppose that the product of any two N Q*- 
compact spaces is Q*- compact. Consider the product 

1 1 2 2 1 1( , ) ( , ) ... ( , )N NX X Xτ τ τ+ +× × ×  of Q*- compact spaces 

( , )i iX τ , i = 1,..., N+1. Then,  

1 1 1 1 1 1 1 1( , ) ... ( , ) ( , ) [( , ) ... ( , )] ( , )N N N N N N N NX X X X X Xτ τ τ τ τ τ+ + + +× × × ≅ × × ×  

By our inductive hypothesis 1 1( , ) ... ( , )N NX Xτ τ× ×  is Q*- 

compact, so the right-hand side is the product of two Q*- 
compact spaces and thus is Q*- compact. Therefore, the left-
hand side is also Q*- compact. 

Theorem: Let ( ){ }, :i iX i Iτ ∈  be any family of 

topological spaces. Then ( ),i i

i I

X τ
∈
∏  is Q*-compact if and 

only if each ( ),i iX τ  is Q*-compact. 

Theorem: If X  is not Q*-compact, then X  is 

homeomorphic to an open dense set in χ . (Where χ  is not 

too larger than X ). 

Proof: Suppose we ensure that χ  is not “too large”, that is, 

not “too much larger” than X . 

First show that X  is homeomorphic to the set { }X χ⊂ . 

Construct a function that sends each point of X  to the 

corresponding point in { }X . This function is obviously one-

to-one and onto, and it is continuous (and so is its inverse) 

because the open sets in { }X  are exactly the open sets in X . 

The set { }X  is open in χ , because it does not contain ∞  

and it is open in X . To show that { }X  is dense, we can 

simply show that it is not closed, or that ∞  is not open. (If 

that’s the case, then { }X  is not its own closure, and the only 

other option is that its closure is χ ). If ∞  is open, then its 

complement, { }X , must be compact. But this would imply 

that X is Q*-compact, contradicting our earlier assumption. 

So ∞  cannot be open, meaning { }X  must be dense. 

Theorem: If none of the components of X is Q*-compact, 

then χ  is connected. 

Proof: Assume that χ  is not connected, i.e. there is some 

set U in χ  that is open and closed, but is not φ  or χ . Its 

complement, V , is also open and closed without being φ  or 

χ . Either U  or V contains ∞ ; take the one that does not, 

and call it W. W is Q*-compact because its complement is 
open and contains ∞ . 

First let us consider the case that X  is connected. We have 

already established that W  is not φ . It cannot be all of X  

either, because W  is Q*-compact and X  is not. W  is open 

in X  because it is open in χ  and does not contain ∞ . It is 

closed in X because its complement (either U X∩  or 

V X∩ ) is open in X . So, W is open, closed, not φ , and not 

X , which implies that X  is not connected. This contradicts 

our assumption, so χ  must be connected. 

4. Conclusion 

But what if X  is not connected? In this case, we look at 
the connected components of X . Any open set including ∞  
must also contain points in each of the components of X  
(because the complement of the open set is Q*-compact, and 
if the complement included an entire connected component, 
then that component would need to be Q*-compact, but it is 

not). So W  contains some points in each of the components. 

But this would imply that the connected components are not 

connected, which is our contradiction. So again, χ  must be 

connected. 
It is also true that every Q*O compact space is a Q* - 

Lindelof space. Every Q*O –compact topological space is 
Q* - countably compact. Since the space is Q*O –compact, 

every �- Q* open covering of X has a finite subcover. Hence, 

every countable � - Q* open covering of X has a finite 
subcover and therefore it is countably compact. 
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