
 

Pure and Applied Mathematics Journal 
2017; 6(4): 114-119 

http://www.sciencepublishinggroup.com/j/pamj 

doi: 10.11648/j.pamj.20170604.12 

ISSN: 2326-9790 (Print); ISSN: 2326-9812 (Online)  

 

Galois and Post Algebras of Compositions (Superpositions) 

Maydim Malkov 

Russian Research Center for Artificial Intelligence, Moscow, Russia 

Email address: 

mamalkov@gmail.com 

To cite this article: 
Maydim Malkov. Galois and Post Algebras of Compositions (Superpositions). Pure and Applied Mathematics Journal.  

Vol. 6, No. 4, 2017, pp. 114-119. doi: 10.11648/j.pamj.20170604.12 

Received: June 10, 2017; Accepted: June 22, 2017; Published: July 20, 2017 

 

Abstract: The Galois algebra and the universal Post algebra of compositions are constructed. The universe of the Galois 

algebra contains relations, both discrete and continuous. The found proofs of Galois connections are shorter and simpler. It is 

noted that anti-isomorphism of the two algebras of functions and of relations allows to transfer the results of the modern algebra 

of functions to the algebra of relations, and vice versa, to transfer the results of the modern algebra of relations to the algebra of 

functions. A new Post algebra is constructed by using pre-iterative algebra and by adding relations as one more universe of the 

algebra. The universes of relations and functions are discrete or continuous. It is proved that the Post algebra of relations and the 

Galois algebra are equal. This allows to replace the operation of conjunction by the operation of substitution and to exclude the 

operation of exist quantifier. 
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1. Introduction 

The Post algebra was created by E. Post in [1] (1941). He 

used this algebra to construct the classification of Boolean 

functions.  

The term “Post algebra" appeared in the first in [2] (1942). 

But the mathematically precise definition of this algebra was 

given first by A. Mal’cev in [3] (1976). Mal’cev gave 

definitions of two algebras, which he called preiterative and 

iterative Post algebras. The Post algebra is the pre-iterative 

algebra. The iterative algebra was created by S. Jablonskij ([4], 

1958). He used it to construct a partial classification of 

finite-valued discrete functions. Therefore, he obtained results 

different from Post’s results at constructing the classification 

of Boolean functions ([5], 1966).  

The term “Galois connections" was introduced by G. 

Birkhoff ([6], 1940). 

The Galois algebra of compositions was created by D. 

Geiger in [7] (1968) and by V. Bondarchuk, L. Kaluzhnin, V. 

Kotov, B. Romov in [8] (1969). A mathematically precise 

definition of the Galois algebra was given by S. Marchenkov 

in [9] (2000).  

The term “Galois algebra of superpositions" is introduced 

in this article. This term is given because this algebra was used 

in [6 - 9] to construct the Galois connections.  

Classification of all subalgebras of Post algebra was given 

for any k in [10] (2014). 

Many statements are given without proofs or with ideas of 

proofs. Proofs are omitted, if they are obvious. The 

formalization of the remaining proofs would lead to increase 

the article volume and to difficulty in understanding it. Some 

statements and its proofs are better formalized. 

Notation 

The a  symbol is used for variable values, the a
⌣

 character 

is used for a column that contains some variable values. The 

i  symbol is used to index an arbitrary element of a set or a 

component of a sequence. The symbol n  is used for arity of 

functions and relations. The symbols f  and F  are used for 

functions and for function sets, the symbols r  and R  are 

used for relations and for relation sets. The S  character is 

used for sorts of values of variables.  

Terminology 

Predicate is a logical formula, relation is an interpretation 

of a predicate by a table or matrix. Matrix lines are columns of 

a table, matrix columns are lines of a table. These matrices are 

used to preserve a relation by a function ([11]): 

1( ,..., ) =n jf a a a
⌣ ⌣ ⌣

, where ia
⌣

 is any column (including equal) 

of a matrix, ja
⌣

 is one of the columns of a matrix.  

For simplicity, the term “relation table" is used instead of 

the term “relation table interpreting a predicate". Very often 
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the terms “predicate" and “relation" are identified.  

The set of values of a variable is called sort. For simplicity, 

all variables of relations and functions have the same sort. So a 

set of relations or functions has a sort, if these relations or 

functions have the same sort.  

Relations and functions can be either discrete or continuous. 

They can be tabulated. A table of a continuous function is a 

discrete table which strings are presented by the lines of nodal 

values of variables such that the polynomial interpolation of 

values between nodes is highly accurate
1
. This excludes 

discontinuous functions. However, the result obtained for 

continuous functions are valid for discontinuous functions too. 

The relations can be continuous or partially continuous, if the 

set of continuous parts is finite or countable. 

2. Galois Algebra 

Definition 1. The Galois algebra Rs is  

Rs = ( ; , , , ,&)SR ζ τ ∆ ∃  

where SR  is a universe of all relations of a sort S  and ζ , 

τ , ∆ , ∃ , &  are fundamental (or Ω ) operations of the 

algebra.  

The sort is: Nk (the first k  natural numbers), N (natural 

numbers), Z (integers), Q (rational numbers), R (real 

numbers), C (complex numbers). It is generally accepted to 

denote Nk by k  in this definition.  

The members of the set SR  are relations and they are 

denoted by r . 

The fundamental operations are given over the set SR . The 

operations ζ  and τ  permute variables in relations. The 

operation ∆  reduces the number of variables by identifying 

the first two variables. The operation ∃  is an existence 

quantifier of the first variable. The operation &  is a 

conjunction of two relations. 

A. Mal’cev ([3]) gave the definitions of the first three 

operations for functions. But they are applicable to relations 

without changes.  

The operation ∃ is 1 1( ,..., )nx r x x∃ . As a result, the first 

column is removed from a table of a relation.  

A function can be represented by a relation and its first 

column can be removed by ∃. But the result may not be a 

function. So the operation ∃ can be applied only to relations.  

The conjunction of two relations 1
1

n
r  and 2

2

n
r  is  

1 2
1 11 21 1 1 2

( ,..., ) ( ,..., )
n n

n n n nr x x r x x+ +∧  

where the variables 1
1

,..., nx x  have not equal and variables 

                                                             
1
 For example, the table of real function 1 ... nx x+ +  is a table of integer discreet 

function 
nxx ++ ...1

. The real function inherits all properties of the discreet 

function: it belongs to maximal clone preserving 0 and to monotone clone, the 

clone of these functions is non-fictitious ([11]) since it has one-membered basis 

}{ 21 xx + , and so on. 

1
1 1 2

,...,n n nx x+ +  have not equal. But some variables from 

1
1

,..., nx x  can be equal to some variables from 

1
1 1 2

,...,n n nx x+ + . In this case, the conjunction of relations is 

constructed at first with unequal variables, and then the 

equality of the variables is realized.  

This conjunction is possible only after adding the fictitious 

variables 1
1 1 2

,...,n n nx x+ +  to the relation 1r  and fictitious 

variables 1
1

,..., nx x  to the relation 2r . After these additions 

and after consequent conjunction, the relation of arity 1 2n n+  

is obtained. The number of lines in this relation is 1 2n n , and 

some of these lines can be equal. The first 1n  components of 

each line in 1 2&r r  are one of lines of 1r , the following 2n  

components are one of lines of 2r .  

Fictitious variable is an jx  for which  

1 1 1 1 1 1  ( ,..., , , ,..., ) ( ,..., , , ,..., )j j j j j n j j j nx x r x x x x x r x x x x x− + − +′ ′′ ′ ′′∀ ∀ ≡  

If = 1n  then there is a line with any other value jx′′  for 

every line with value jx′ , i.e., the relation contains all values 

of its sort.  

A fictitious variable can be added to an arbitrary relation by 

conjunction of this relation and the one-ary diagonal 1δ  (this 

means that operation of adding fictitious variable is not 

primitive, i.e., the operation is not elementary).  

A diagonal of a relation 
nr  contains only ( ,..., )nr x x . The 

diagonal of the complete relation (the diagonal for the 

identically true n -ary predicate) is denoted by nδ . The 

diagonal of the empty relation (the diagonal for the identically 

false predicate) is denoted by 0δ . The diagonal 1δ , and only 

it, has a fictitious variable. The other complete diagonals have 

the same columns. The matrix of complete diagonals contains 

only one line, since all lines are equal. This line contains all 

values of a sort. Consequently, any function preserves all 

diagonals.  

Ultra-diagonal 
2
 is any diagonal nδ  or is conjunction of 

two or more complete diagonals including equal.  

Composition (superposition) is the application of the 

fundamental operations to functions or relations.  

The number of all possible operations over the set SR  is 

infinite, but all of them are constructed from the fundamental 

operations. Therefore, the fundamental operations are 

primitive (they cannot be constructed but they can construct 

all other operations of an algebra). It was shown above that the 

operation of adding a fictitious variable to a relation is not 

primitive.  

The fundamental operations are used to create universes 

that are subsets of the universe SR . 

Definition 2. Let 1R  be a subset of SR . Universe of 1R  is 

                                                             
2
 Ultra diagonals are called diagonals in [8, 9, 11]. Ultra-diagonals are redundant, 

they are present only in the classification of coclones as a minimal coclone. 
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the set 1[ ]R  containing  

- members of 1R , 

- the result of applying the operations of permutation, 

identification and existence to members of 1[ ]R ,  

- the result of conjunctions of members of 1[ ]R :  

1 2 1 2

2 2 2 2 2

[ ] = ( )

( )

R R g R g R

g R g R g R g R g Rζ τ
⇔ ∀ ∈ ∈ ∧

∀ ∈ ∈ ∧ ∈ ∧ ∆ ∈ ∧ ∃ ∈ ∧
 

1 2 2 1 2 2, &g g R g g R∧∀ ∈ ∈  

This definition is iterative. At the first step of the iteration, 

2R  contains all members of 1R . At the second step, 

compositions of members of 2R  are added to 2R . At the 

next step, the resulting set 2R  is added by compositions of its 

members. And so on.  

A universe of functions is called a clone, if it contains the 

selective (projective) function 2
1 1 2 1( , ) =e x x x . A clone also 

contains all selective functions 1( ,..., ) =n
m n me x x x . A universe 

of relations is called a coclone, if it contains the diagonal 2δ . 

Moreover, the coclone contains all the diagonals of nδ , since 
1 2

1 1 1 1( ,..., ) = ( ,..., ) ( , )n n
n n n nx x x x x xδ δ δ+

+ +∧ . A coclone 

also contains all ultra-diagonals.  

By the next lemmas, a set of functions preserving a relation 

is a clone, and a set of relations preserved by a function, is a 

coclone. The proof of the lemmas is given precise 

mathematically by using results of Mal’cev ([3]).  

Lemma 1. A set = ( )F Pol r  is a clone for any relation r .  

Proof. A set ( )Pol r  contains all selective functions n
me  

since 1( ,..., ) =n
m n me a a a
⌣ ⌣ ⌣

, where ia
⌣

 is any column from the 

matrix of r .  

Further it is proven that the set ( )Pol r  is a universe.  

Let ( )f Pol r∈ . Then f  preserves a relation r : 

1( ,..., ) =n jf a a a
⌣ ⌣ ⌣

, where ia
⌣

 (1 ≤ i ≤ n) are any columns of a 

matrix of r , ja
⌣

 is one of the columns of this matrix.  

If columns 
1
ia
⌣

 and 
2

ia
⌣

 of 1( ,..., )nf a a
⌣ ⌣

 are permuted 

then there exists 1 ≤  j0  ≤ n such that  

1 1 1 1 1
1 2 1 2 1 2 0

( ,..., , , ,..., , , ,..., ) =i i i i i i n jf a a a a a a a a a− + − +
⌣ ⌣ ⌣ ⌣ ⌣ ⌣ ⌣ ⌣ ⌣

 

since f  preserves r .  

Therefore, the result of the operations ζ  and τ  over 

functions from ( )Pol r  is a function of ( )Pol r .  

If the first two variables in a function f  are identifies then 

lines with unequal values of these variables will be removed 

from the table of f . The following lines will remain:  

1 1 3( , , ,..., )nf a a a a′ ′ ′ ′⌣ ⌣ ⌣ ⌣
 

where ia′⌣  is ia
⌣

 without some lines. But the function f  

continues to preserve r  after removal of some lines in the 

matrix of r . Therefore, the result of the operation ∆  is a 

function of ( )Pol r . It was necessary to prove that the result of 

the operation * over functions in ( )Pol r  is a function from 

( )Pol r . 

Let arbitrary functions 1f  and 2f  preserve the relation r : 

1 1
1 1

( ,..., ) =n jf a a a′ ′ ′⌣ ⌣ ⌣
, 2 1

2 2
( ,..., ) =n jf a a a′′ ′′ ′′⌣ ⌣ ⌣

, where ia′⌣  and ia′′⌣  

are any columns from the matrix of r , 
1
ja′⌣  and 

2
ja′′⌣  are one 

of the columns of this matrix. Then  

1 2 1 2 1 2
2 1 2 1

( ( ,..., ), ,..., ) = ( , ,..., )n n j nf f a a a a f a a a′′ ′′ ′ ′ ′′ ′ ′⌣ ⌣ ⌣ ⌣ ⌣ ⌣ ⌣
 

and there exists 3j  such that 1 2
2 1 3

( , ,..., ) =j n jf a a a a′′ ′ ′ ′⌣ ⌣ ⌣ ⌣
. □ 

Lemma 2. A set = ( )R Inv f  is a coclone for any function 

f . 

Proof. The set ( )Inv f  contains all diagonals nδ , since 

any function preserves any diagonal. 

Further it is proven that the set ( )Inv f  is a universe.  

A function f  preserving some relation will preserve the 

relation after permutation of columns in the table of this 

relation, i.e., after permutation of lines in the matrix of the 

relation. 

Therefore, the result of the operations ζ  and τ  over 

relations from ( )Inv f  is a relation from ( )Inv f .  

If two variables in r  are identified then lines with unequal 

values of the variables will be removed from the table of r . 

Therefore, corresponding columns in the matrix of r  will be 

removed. But the remained columns have two lines to be equal. 

The removed columns have not these two lines to be equal. So 

no of these columns can be values of the function when 

remained columns are values of variables of the function. 

Therefore, the result of the operation ∆  over relations from 

( )Inv f  is a relation from ( )Inv f . 

The result of the operation ∃ over relations from ( )Inv f  

is a relation from ( )Inv f  too. Indeed, removing a column in 

a relation table is removing a line in the relation matrix. But a 

function preserving a relation will preserve the relation after 

removing one or more lines.  

It is needed to prove finally that the result of the operation 

&  over relations from ( )Inv f  is a relation from ( )Inv f . 

Let 1 21 2
1 2= &
n nn n

r r r
+

 and let 1
1

n
r  and 2

2

n
r  be relations 

preserved by a function f : 1
1

( ,..., ) =n Jf a a a′ ′ ′⌣ ⌣ ⌣
, 

1
2

( ,..., ) =n jf a a a′′ ′′ ′′⌣ ⌣ ⌣
, where ia′⌣  and ia′′⌣  are any columns from 

matrices of 1
1

n
r  and of 2

2

n
r , and where 

1
ja′⌣ , 

2
ja′′⌣  are some 

columns of these matrices.  

A table of a relation r  contains the first 1n  columns, each 

line of which is a line from the table 1r . And the table contains 

the other 2n  columns, each line of which is a line from the 

table 2r . Hence, the matrix of the relation r  contains 
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columns which first 1n  lines are lines from the matrix of 1r  

and the other 2n  lines are lines from the matrix of 2r . Hence, 

a function f  preserving 1r  and 2r  preserves 1 2&r r  too. □ 

3. Galois Connections 

The set of all functions preserving the relation r  is 

( )Pol r . The set of all relations preserved by a function f  is 

( )Inv f , and  

( ) = ( ), ( ) = ( )

r R f F

Pol R Pol r Inv F Inv f

∈ ∈
∩ ∩  

for the set of relations R  and for the set of functions F .  

The Galois connection between ( )Pol R  and ( )Inv F  is 

given by two theorems, much simpler proofs of which are 

given below.  

The first Galois connection is given by the following 

theorem.  

Theorem 1. If and only if a set F  is a clone then 

= ( ( ))F Pol Inv F . 

Proof. If = ( ( ))F Pol Inv F  then F  is a clone (lemma 1). 

Let F  be a clone.  

Let 0R  be the set of all r  preserved by all f F∈ : 

0 = ( )R Inv F . And let 0ir R∈ . Then ( )iPol r  contains all 

functions of F  and functions that do not preserve the set of 

the other relations. But then the intersection of all these 

functions is F , i.e., = ( ( ))F Pol Inv F .                □ 

The second Galois connection is contained in one more 

theorem.  

Theorem 2. If and only if an R  is a coclone then 

= ( ( ))R Inv Pol R .  

Proof. If = ( ( ))R Inv Pol R  then R  is a coclone (lemma 

2). Let R  be a coclone.  

Let 0F  be the set of all f  that preserve all r R∈ : 

0 = ( )F Pol R . And let 0if F∈ . Then ( )iInv f  contains all 

relations from R  and relations that are not preserved by the 

set of other functions. But then the intersection of all these 

relations is R , i.e., = ( ( ))R Inv Pol R .                □ 

The result of these two theorems is a very important  

Theorem 3. Diagrams of clone inclusions and of coclones 

inclusions are anti-isomorphic:  

1 2 2 1 1 2 2 1( ) ( ), ( ) ( )R R Pol R Pol R F F Inv F Inv F⊂ → ⊂ ⊂ → ⊂  

Proof. There is a one-to-one connection between clones and 

coclones. To each clone F  there corresponds a coclone 

=R InvF , and to each coclone R  there corresponds the 

same clone = ( ) = ( ( )F Pol R Pol Inv F  (theorem 1). 

Likewise, to each coclone R  there corresponds a clone 

=F PolR , and to each clone F  there corresponds the same 

coclone = ( ) = ( ( )R Inv F Inv Pol R  (theorem 2). 

Additional relations in the coclone 2R  reduce the number 

of functions in the clone 2 2= ( )F Pol R  with respect to the 

clone F1 = Pol(R1). Indeed, 2

2

( ) = ( )

r R

Pol R Pol r

∈
∩ , and 

additional r  reduce 2 2= ( )F Pol R  at intersection. So 

1 2 2 1( ) ( )R R Pol R Pol R⊂ → ⊂ . 

Likewise, additional functions in a clone 2F  reduce the 

number of relations in the coclone 2 2= ( )R Inv F  with respect 

to the coclone R1 = Inv(F1), since 2

2

( ) = ( )

f F

Inv F Inv f

∈
∩ . And 

1 2 2 1( ) ( )F F Inv F Inv F⊂ → ⊂                        □ 

The anti-isomorphism of clones and coclones generates an 

anti-isomorphism of the algebra of functions and of the 

algebra of relations.  

The main objects of mathematics are functions and relations 

that are objects of the algebra of functions and the algebra of 

relations. The main problem of these algebras is a 

classification of their objects. This classification is realized by 

diagrams of inclusions of clones and coclones. To build a 

classification of clones and then to classify coclones is much 

easier than to do the reverse - to build a classification of 

coclones and then to classify clones.  

The anti-isomorphism of these algebras allows to transfer 

the results of the modern algebra of functions to the algebra of 

relations, and to transfer the results of the modern algebra of 

relations to the algebra of functions.  

4. Post Algebra 

The definition of the Post algebra for discrete functions was 

given by Mal’cev ([3]). This definition is added by continuous 

functions and by discrete and continuous relations.  

Definition 3. The Post Algebra Ps is  

Ps = ( ; , , ,*)SP ζ τ ∆  

where SP  is a universe of the algebra, S  is a sort of 

members of the universe, ζ , τ , ∆  and * are fundamental 

operations of the algebra. 

The universe can contain functions or relations: =S SP F  

or =S SP R . 

First three operations coincide with the first three 

operations of the Galois algebra. These operations are 

applicable to functions without changes. 

Operation * for functions is substitution 2
2

n
f  instead of 

the first variable in 1
1

n
f :  

1 1
1 2 1 2 1 2

1 1 1 11 2 3 31 2 1 2
* = ,..., ( ,..., ) =

n n n n n n

n n n nf f f x x f x x
+ − + −

+ − + −⇔ ∀  

1 2
1 1 11 2 2 2 1 2

= ( ( ,..., ), ,..., ))
n n

n n n nf f x x x x+ + −  

Operation * for relations is substitution 2
2

n
r  instead of the 
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first variable in 1
1

n
r : 

),...,),,...,((  ,...,* 1
21

1
22

1211
21

1
2

2
1

1 −++−+∀⇔ nnnnnn

nn
xxxxrrxxrr

 

where  

),...,(),...,(),...,),,...,(( 1
212

1
2

121
21

1
22

121 −+−++ ∧⇔ nnnnnnnn xxrxxrxxxxrr
 

Substitution of the relation 2
2

n
r  into the relation 1

1

n
r  

generates a relation of arity 1 2 1n n+ − . Substitution of a 

null-ary relation into an arbitrary relation reduces arity of this 

arbitrary relation by one. An exception is substitution of a 

null-ary relation into a null-ary relation. The result of this 

substitution is a null-ary relation.  

Substitution of relations includes substitution of functions.  

Indeed, the substitution operation for three-ary functions is  

1 2 3 1 2 1 2 3( , , ) = ( ( , ) )f x x x f f x x x  

But there is no information about the values of the functions 

f , 1f  and 2f . Including this information, 

1 2 3 4 1 2 1 2 0 3 4( , , ) = ( ( , ) = , ) =f x x x x f f x x x x x≡  is got. 

The variable 0x  is a fictitious, since it is not present in the 

left part.  

The same substitution operation for relations is  

1 2 0 3 4 2 1 2 0 1 0 3 4( , , , , ) ( , , ) ( , , )r x x x x x r x x x r x x x≡ ∧  

Here functions 1f  and 2f  are represented by three-ary 

relations 1r  and 2r . The relation r  represents the function 

f  after removing the fictitious variable 0x .  

The operation ∇  (which adds a fictitious variable to a 

relation) is absent in the definition of the Post algebra. This 

operation is not primitive, since substitution a two-ary relation 

with two fictitious variables into any relation adds a fictitious 

variable to this relation.  

There are subalgebras of the Post algebra. A universe of a 

subalgebra is closure of a subset of SP . But fundamental 

operations are equal to fundamental operations of SP . 

5. Galois and Post Algebras Are Equal 

The universes of the Galois algebra and of the Post algebra 

are equal for =S SP R . The fundamental operations ζ , τ , 

∆  are present in both algebras. The operations & , ∃ and 

the operation are different.  

Lemma 3. The operations &  and ∃ are generated by the 

primitives of the Post algebra.  

Proof. First the theorem is proven for & , and then for ∃.  

�  Let a conjunction be 

1 2
1 11 21 1 1 2

( ,..., ) & ( ,..., )
n n

n n n nr x x r x x+ +  

It is necessary to construct substitution 3 4
3 4*
n n

r r  equaling 

the conjunction above.  

Let 3 2= 1n n + , let 3
3

n
r  be obtained from 2

2

n
r  by adding 

a fictitious variable as the first. And let 4 1=n n , 4 1
4 1=
n n

r r . 

Then  

3 4
1 13 4 4 4 3 4

( ( ,..., ), ,..., )
n n

n n n nr r x x x x+ + ≡  

34
1 14 31 1 1 2

( ,..., ) ( ,..., )
nn

n n n nr x x r x x + +≡ ∧ ≡  

1 2
1 11 21 1 1 2

( ,..., ) & ( ,..., )
n n

n n n nr x x r x x+ +≡  

Indeed, 3
3

n
r  has the first variable to be fictitious before 

intersection. After intersection this first variable and the last 

variable of 4
4

n
r  are identified, but identification of this 

fictitious variable and 
4

nx  gives 
4

nx . And this identification 

decreases the number of variables. The number equals 

1 2n n+ .  

�  Substitution of null-ary relation instead of the first 

variable in an arbitrary relation 
nr  implies removal of the 

first variable, i.e., it leads to 1 1 ( ,..., )n
nx r x x∃ .          □ 

Lemma 4. The operation * is generated by primitives of the 

Galois algebra.  

Proof. If the first variable in 1r  and the last variable in 2r  

are identified in the conjunction of r1&r2 then r1*r2 is got.  □   

Hence, the sets of all possible operations in both algebras 

are equal. 

Theorem 4. Post algebra of relations and Galois algebra are 

equal. 

Proof follows from lemmas 3 and 4. 

6. Conclusion 

The Galois algebra of superpositions is constracted. The 

universe of the algebra contains both discrete and continuous 

relations. The fundamental operations of this algebra include 

the conjunction and the existence quantifier. Much shorter and 

simpler proofs of Galois connections is found (the proofs of 

Galois connections in the fundamental papers take several 

pages). It is noted that the anti-isomorphism of inclusions of 

clones and coclones allows a laborious classification of 

relations to replaced by a less laborious classification of 

functions. It is shown that the ultra-diagonals are redundant 

and can be replaced by more simpler diagonals.  

The Post algebra has been constructed such that the algebra 

has universe containing either discrete or continuous functions 

or relations. Almost all researchers include the addition of 

fictitious variables to the Post algebra as one more fundamental 

operation. It is shown that this operation is not a primitive.  

It is shown that the Galois algebra and the Post algebras of 

relations are equal. But the Post algebra is simpler and 

includes the algebra of functions too. 
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