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Abstract: In this paper, notions of A-almost similarity and the Lie algebra of A-skew-adjoint operators in Hilbert space are 

introduced. In this context, A is a self-adjoint and an invertible operator. It is shown that A-almost similarity is an equivalence 

relation. Conditions under which A-almost similarity implies similarity are outlined and in which case their spectra is located. 

Conditions under which an A-skew adjoint operator reduces to a skew adjoint operator are also given. By relaxing some 

conditions on normal and unitary operators, new results on A -normal, binormal and A-binormal operators are proved. Finally 

A-skew adjoint operators are characterized and the relationship between A-self- adjoint and A-skew adjoint operators is given. 
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1. Introduction 

In this paper, Hilbert space(s) or subspace(s) will be 

denoted by capital letters,	�	and	�	respectively and	�,	�	, 
 

etc denote bounded linear operators. In this context, an 

operator will mean a bounded linear transformation. 
(�) 
will denote the Banach algebra of bounded linear operators 

on a Hilbert space � and 
(�, �) denotes the set of bounded 

linear transformations from one Hilbert space � to another 

one �, which is equipped with the (induced uniform) norm. 

Hilbert space operators have been discussed by many others 

like [5], [16], [18] and [20] among other scholars. 

If � ∈ 
(�) , then �∗  denotes the adjoint 

while	���(�),	���(�), �� and �� stands for the kernel of �, 

range of � , closure of �  and orthogonal complement of a 

closed subspace � of � respectively. For an operator	�, we 

also denote by 	�(�) , 	∥ � ∥	 the spectrum and norm of � 

respectively. A contraction on �  is an operator �	 ∈
(�)	 such that �∗� ≤ �  (i.e. ∥ �� ∥≤∥ � ∥ 	∀	� ∈ �) . A 

strict or proper contraction is an operator �  with �∗� < � 
(i.e. 

�� 0 ≠ �  
∥#$∥
∥$∥ 	< 1) . If �∗� = � , then �	 is called a non-

strict contraction (or an isometry). Many authors like 

Kubrusly [5] and Nzimbi et al [10] have extensively studied 

this class of operators. 

An operator �	 ∈ 
(�) is said to be positive if '��, �	( ≥0	∀ �	 ∈ � . Suppose that �	 ∈ 
(�) is a positive operator, 

then an operator �	 ∈ 
(�) is called an � − +,�-��+-.,�  on �  if 	�∗�� ≤ � . If equality holds, 

that is		�∗�� = �, then � is called an � − ./,0�-�1, where �	 is a self adjoint and invertible operator.(See more of 

contractions in [4] and [17]). 

In this research, we put more conditions on 	� . In 

particular, if �	is a self adjoint and invertible operator, then 

we call such an � − ./,0�-�1 an � − 2�.-��1. Let � be a 

linear operator on a Hilbert space � . We define the � −�34,.�- of �	to be an operator � such that �� = �∗� whose 

existence is not guaranteed. It may or may not exist. In fact a 

given �	 ∈ 
(�) may admit many A-adjoints and if such an � − �34,.�- of � exists, we denote it as �[∗]. Thus ��[∗] =�∗� . As it were before, �  is invertible and so 	�[∗] =�78�∗�. It is also clear that � − �34,.�- of � is the adjoint 

of �  if	� = � . Earlier results proved by Kubrusly [5] have 

shown that, �  admits an � − �34,.�-  if and only if ���(	�∗�) ⊂ ���(�). In this case the operator � is acting as 

a signature operator on �. 

Two operators � ∈ 
(�)  and � ∈ 
(�)  are similar 

(denoted �	 ≈ �)  if there exists an operator ; ∈
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<	(�, �)	 where <	(�, �)  is a Banach subalgebra of 
	(�, �)	 which is an invertible operator from �  to �	such	that 
;� = �;	(i. e, ;78�;	,�	� = ;�;78). 

� ∈ 
(�)  and � ∈ 
(�) are unitarily equivalent 

(denoted �	 ≅ � ), if there exists a unitary operator 2 ∈<	(�, �)	such that 2� = �2 

(.. �, � = 2∗�2	,�	�F�.G�H��-H1	� = 2�2∗). 
Two operators are considered the “same” if they are 

unitarily equivalent since they have the same, properties of 

invertibility, normality, spectral picture (norm, spectrum and 

spectral radius). 

Two linear operators � ∈ 
(�) and � ∈ 
(�) are said to 

be � − ��.-��.H1 equivalent (denoted�	 ≅ �), if there exists 

an � − ��.-��1  operator 2 ∈ <	(�, �)	 such that �2 =2�.(For more details on this equivalence see [9] and [12]). 

The following classes of bounded linear operators shall be 

defined in this paper: 

An operator � ∈ 
(�) is said to be: 

self- adjoint or Hermitian if �∗ = �	( equivalently, if '��, �( ∀ � ∈ �) 
A projection if �I= � and �∗ = � 

unitary if �∗� = ��∗ 	= � 
isometric if ��∗ 	= � 
self-adjoint unitary or a symmetry if � =�∗ = �78. 

normal if �∗� = ��∗  (equivalently, if ∥ �� ∥=	∥ �∗� ∥	∀	�	 ∈ �), 

binormal if (�∗�)(��∗) = (��∗)(�∗�) 
Let � and � be Hilbert spaces. An operator	; ∈ 
(�, �) 

is invertible if it is injective (one -to- one) and surjective 

(onto or has dense range); equivalently if ���(;) = {0} and ���(;) = �.  We denote the class of invertible linear 

operators by <	(�, �). 
The commutator of two operators �  and 	
 , denoted by [�, 
] is defined by	�
 − 
�. The self –commutator of an 

operator � is [�, �∗] = �∗� − ��∗. 
Suppose � ∈ 
(�)  is a self- adjoint and invertible 

operator, not necessarily unique. An operator �  ∈ 
(�)  is 

said to be: � − /�HL	�34,.�-  .L	�∗ = ���78	( equivalently, �[∗] 	=�). � − /M�N − 	�34,.�-	.L	�∗ = −���78	( equivalently, �[∗] 	= −�). � − �,�0�H	 if �78	�∗�� = ��78	�∗�	 or equivalently, �[∗]T	= ��[∗]. � − ��.-��1	if 	�∗�� = �	or equivalently, �[∗] 	= �78. � − O.�,�0�H	if [�[∗]T, ��[∗]] = 0. 
It has to be noted that an �-isometry whose range is dense 

in � is an � − 	��.-��1. 

2. Basic Results 

Definition 2.1: Let �  denote a Hilbert Space and 
(�) 
denote the Banach algebra of bounded linear operators. Two 

operators � ∈ 
(�)  and 
 ∈ 
(�)  are similar (denoted by 

�	 ≈ 
)  if there exists an invertible operator P ∈<	(�, �)	where <	(�, �) is a Banach subalgebra of B	(�, �) 
which is an invertible operator from � to �	such	that			P� =
P	or equivalently � = P78
P or 
 = P�P78. 

Two operators �	 and 
  in 
(�)  are said to be almost 

similar (a.s) (denoted by �	 	
~S.T ) if there exists an invertible 

operator P  such that the following two conditions are 

satisfied: 

�∗� = P78(
∗
)P 

�∗ + � = P78(
∗ + 
)P. 
It has already been shown by many authors like [9], [12] 

and [13] that similarity, almost similarity and unitary 

equivalences are equivalence relations. 

Remark 2.2: It has to be noted that almost similarity 

generally does not imply similarity. However, certain 

conditions can guarantee this preservation. These may 

include the following: 

Theorem 2.3 [13]: If � ∈ 
(�) and � ∈ 
(�)	are almost 

similar projection operators, then �(�) = �(�). 
Proof: See [13]. 

Corollary 2.4 [13]: If � ∈ 
(�) and � ∈ 
(�)	are almost 

similar self-adjoint operators, then they are similar. 

Proof: See [13]. 

Corollary 2.5 [13]: If � ∈ 
(�) and � ∈ 
(�)	are almost 

similar self-adjoint operators, then �(�) = �(�). 
Remark 2.6: Equality of spectrum does not in general 

imply similarity of operators �  and �  unless if their 

multiplicities are the same. As an example if we consider 

operators �  and �  as � = V0 0 10 1 01 0 0W  and 

� = V−1 0 00 −1 00 0 1W. Clearly, both these operators are self-

adjoint. However, by computation we see that they are not 

almost similar because �(�) ≠ �(�) , that is �(�) ={−1,1,1} ≠ {−1,−1,1} = �(�) and so their multiplicities do 

not coincide. 

Theorem 2.6 [10]:	� ∈ 
(�) is �-self adjoint, if and only 

if is �� − self adjoint. 

Proof: See [10]. 

Corollary 2.8 [10]: Let � ∈ 
(�) be �-self- adjoint, � is 

self- adjoint if �� = ��. 

Proof: See [10]. 

3. A-Almost Similarity of Operators 

Definition 3.1: Let � ∈ 
(�)  and � ∈ 
(�) . Then �  is 

said to be � − �H0,/-	/.0.H�� to � (denoted by �	 S.S.T∼ �) if 

there exists an invertible operator P ∈ 
(�, �) such that the 

following two conditions are satisfied: 

�[∗]	� = P78Y�[∗]S[P 

�[∗] + 	� = P78Y�[∗] + S[P, 

where �[∗] = � and �[∗] = � are A-self-adjoint operators, that 
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is � = �78�∗�	and � = �78�∗� respectively. 

Theorem 3.2: � − �H0,/-	/.0.H��.-1  is an equivalence 

relation. 

Proof: It is shown that this relation is reflexive, symmetric 

and transitive. 

Reflexivity: Let � ∈ 
(�) . Then �[∗]	� = P78Y�[∗]T[P 

where P is an invertible operator. 

It is also clear that �[∗] + � = P78Y�[∗] + T[P . Hence �	 S.S.T∼ �. In this case we can choose (w.l.o.g) P = 1. 
Next symmetry is established, that is if �	 S.S.T∼ �  ⟹	�	 S.S.T∼ �.  Suppose that �	 S.S.T∼ �,  there exists an invertible 

operator P such that 

	�[∗]	� = P78Y�[∗]S[P                         (1) 

and 

�[∗] + 	� = P78Y�[∗] + S[P                     (2) 

Pre-multiplication of (1)  and (2)	 by P  and post 

multiplication of (1 ) and (2)  by P78  and applying the 

adjoint operation gives �[∗]	� = �78Y�[∗]�[� and �[∗] + � = �78Y�[∗] + �[� where P	 = �78  which is an 

invertible operator, since P78 is invertible. Hence	�	 S.S.T∼ �. 
Finally, let �, �	 and 	_  be in 
(�) . Suppose that �	 S.S.T∼ �	and �	 S.S.T∼ _. It then follows that 

�[∗]	� = P78Y�[∗]S[P, �[∗] + 	� = P78Y�[∗] + S[P       (3) 

and 

	�[∗]	� = �Y_[∗]Q[�, �[∗] + 	� = �78Y_[∗] + Q[�,      (4) 

where �	and P	are invertible operators. Using (3) and (4) it 
is found out that �[∗]� = P78c�78Y_[∗]_[�dP = (�P)78_[∗]_(�P) =;78(_[∗]_); and �[∗] + � = P78c�78Y_[∗] + _[�dP = (�P)78_[∗] +_(�P) = ;78(_[∗] + _);  where ; = �P , is invertible 

(since � and P	are invertible). Hence �	 S.S.T∼ _ which proves 

transitivity. 

Corollary 3.3: If � ∈ 
(�)  and � ∈ 
(�)  are projection 

operators such that �	./	� − �H0,/-	/.0.H��  to �  then �  is 

similar to �. Moreover,	�e(�) = �e(�). 
Proof: By definition of � − �H0,/-	/.0.H��.-1  there 

exists an �-invertible operator P such that 

�[∗]	� = P78Y�[∗]S[P                           (5) 

and 

�[∗] + 	� = P78Y�[∗] + S[P                        (6) 

From (5)  using the definition of � -Self adjoint of an 

operator we have, �78�∗�� = P78[�78�∗��]P , that is �78�∗�� = P78[�78�∗��]P (by [10, corollary 3.14] where �� = ��  and �� = ��  respectively). It follows that �78�I� = P78[�78�I�]P  (since �  and �  are projection 

operators) i.e. �78�� = P78[�78��]P , i.e., �78�� =P78[�78��]P (by [10, corollary 3.14]) i.e. � = P78�P	and 

so �~�. 

In like manner, from (6) �78�∗� + � = P78[�78�∗� +�]P = P78[	�78�∗�]P + P78�P, that is �78�� + � = P78[	�78��]P + P78�P	 i.e �78�� + � =P78[	�78��]P + P78�P  (by [10, corollary 3.14]), that is � + � = P78(� + �)P  i.e 2� = P78(2�)P  ⟹ � = P78�P 

and so �~� . But similar operators have the same point 

spectrum. Hence, �e(�) = �e(�) as required. 

Remark 3.4: 

a) The above corollary gives a condition under which � − �H0,/-	/.0.H��.-1	 ⟹ 	�.0.H��.-1	of operators. 

b) Conditions imposed on operators S and T so that they 

have the same spectrum is that they should both be 

projections, that is � = �∗; 	� = 	�∗ and �I = �; �I = �. 

4. A-Skew Adjoint and A-Normal 

Operators 

In this section, some properties of the Lie algebra hi	,L	� − /M�N − �34,.�-  operators are outlined. The 

following basic definitions are of essence: 

Definition 4.1: A Lie algebra is a vector space h over some 

field j	together with a binary operation [, ]:	h × h → h called 

the Lie bracket such that 

1) [, ]  is bilinear that is [	�� + O1, n	] = �[	�, 1	] +O[	1, n	]  and [n, �� + O1	] = �[	n, �] + O[n, 1	] ∀	�, O	 ∈ j and �, 1, n	 ∈ h 

2) [	�, �	] = 0 or [	�, 1	] = −[1, �	]	∀	�, 1 ∈ h 

3) c	�, [	1, n	]d + c	1, [	n, �	]d + c	n, [	�, 1	]d=0 ∀	�, 1, n ∈ h. 

This is called the Jacobi identity. 

Example 4.2: Let o be a vector space over a field j. Let h = p�3jo i.e the endomorphism of the vector space o over 

the field j, that is linear maps from o to o. Alternatively we 

may take (for finite dimensional o ) the set of all � × � 

matrices (operators). As usual, define on  [	�, 
	] = �
 −
� , ∀	�, 
	 ∈ p�3jo . Then [�, �] = 0 , 	[	�, 
	] = �
 −
� = −(
� − �
) = −[
, �]  and [	�, [
, q]	] + [	
, [q, �]	] +[	q, [�, 
]	] = 0. 

Note that if o  is n-dimensional, then p�3jo  is �I −dimensional vector space over j . This Lie algebra is 

called a Linear Lie algebra over j. 
Another example of a Lie algebra could be the ordinary 

vectors in three dimensions. They form a three dimensional 

vector space over a field ℝ. Define [	�, O] = � × O to be the 

usual vector cross product. Then, by computation it is seen 

that [	�, �] = 	� × � = 0, [�, O] = −[O, �] = � × O and � × (O × +) + 	O × (+ × �) + + × (� × +) = 0	�, O, +	 ∈ h. 

Remark 4.3: Denote by 

1) The Lie algebra hi	,L	� − /M�N − �34,.�-  operators 

is the set 

hi = {� ∈ 
(�):	�[∗] 	= −�} 
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2) The Jordan algebra si of � − /�HL	�34,.�- operators is 

the set si = {�  ∈ 
(�):	�[∗] 	= �} . Note that just like the Lie 

algebra hi, the	Jordan	algebra	si  is an ℝ- linear subspace. 

That is, it is closed under real linear combinations. (See more 

results of this class of operators in [2] and [10]. 

Remark 4.4: For � -self-adjoint and � -skew-adjoint 

operators, multiplication is not preserved at all. It has also to 

be noted that every � ∈ 
(�)  admits a Cartesian 

decomposition � = ��� + .�0� , where ��	� = 8
I (� + �∗) 

and �0	� = 8
I (� − �∗). In addition to this, if � is �-skew-

adjoint, then its adjoint �∗ is also �-skew-adjoint. 

The following results form a basis of discussion in this 

section and are stated without proof: 

Theorem 4.5 [10]: � ∈ 
(�) is skew-adjoint if ��� = 0. 

Theorem 4.6 [10]: Every skew-adjont operator �  is � -

skew-adjoint. 

Corollary 4.7 [10]: If � ∈ 
(�) is �-skew-adjoint, then � 

is skew-adjont if and only if [�, �] = 0. 
Remark 4.8: The above corollary is a condition which 

guarantees an � -skew-adjoint to be skew-adjoint. But � ∈ 
(�) admits a Cartesian decomposition as illustrated in 

Remark 4.4. It is clear that this operator � ∈ 
(�) is skew-

adjoint if ��	� = 0 . Now, some general results for an � -

skew-adjoint operator � ∈ 
(�)  which follow immediately 

from this remark are given: 

Theorem 4.9: � ∈ 
(�) is � −skew-adjoint if ��� = 0. 

Proof: Every � ∈ 
(�)  is a linear combination of self 

adjoint operators, that is � = �8 + .�I . But � ∈ 
(�)  is � − skew-adjoint and so �[∗] 	= −�, that is �∗ = −���78 = −�(�8 + .�8)�78 = −��8�78 −.��I�78. By the above remark � ∈ 
(�) is � −skew-adjoint 

implies that � ∈ 
(�) is skew-adjoint if and only if �� =�� that is [�, �] = 0. 

Thus �∗ = −�8��78 − .�I��78 = −�8 − .�8. 

But �∗ = (�8 + .�8)∗ = �8 − .�8  (since �8  and �I  are 

commuting self-adjoint operators). That is �8 − .�8 = −�8 −.�8 . Validity of this equality is guaranteed if and only if �8 = 0 which is ��� = 0. 

Theorem 4.10: Let �  be a symmetry. If �  is � -skew-

adjoint, then �∗is �-skew-adjoint. 

Proof: By definition, �  is � -skew-adjoint means � =−�78�∗�,  that is �[∗] 	= −�  and so �∗ = −���78.  Taking 

adjoints on both sides of this equation gives 

(�∗)∗ = (−���78)∗ = �∗�∗(�78)∗ 
i.e. � = −�78�∗(�78)78 (Since � is a symmetry) 

i.e. � = −�78�∗� (or equivalently	� = −�[∗]). Therefore �∗is �-skew-adjoint as required. 

Proposition 4.11 [10]: Every skew-adjont operator � ∈ 
(�) is normal. 

Proof: (See [10]). 

Proposition 4.12: Let � ∈ 
(�) be an �-skew-adjoint such 

that [�, �] = 0. Then � is normal. 

Proof: By definition, �∗ = −���78 . Simply check 

whether � and �∗ commute, that is 

�∗� = −���78� = −���78�  (Since [�, �] = 0 ) i.e. �∗� = −�I. 

Similarly 	��∗ = −����78 = −����78 = −�I . From 

the right hand side of these two equations, It is then 

established that [�, �∗] = 0. Therefore � is normal. 

Corollary 4.13: Let � ∈ 
(�) be an �-skew-adjoint such 

that [�, �] = 0. Then � is �-normal. 

Proof: Given � ∈ 
(�)  an � -skew-adjoint, then �∗ =−���78. It is sufficient enough to show that [�[∗], �] = 0. 

But � -normal means �78�∗�� = ��78�∗� . Since �  is � -

skew-adjoint, replacing �∗ = −���78 in this equation yields −�78���78�� = −��78���78� , i.e −�I = −�I ⇔�I = �I. 

This means that [�[∗], �] = 0 , so �  is � -normal as 

required. 

Theorem 4.14: Suppose � and �  are commuting �-skew-

adjoint operators. Then �∗ and �∗ commute. 

Proof: By definition of �-skew-adjointness, �∗ = −���78 

and �∗ = −���78. In addition, the operators � and � are also 

commuting, that is �� − �� = 0. It has to established that [�∗, �∗] = 0. 

Thus, (�� − ��)∗ = �∗ �∗ − �∗�∗ 
=(−���78)(−���78) − (−���78)(−���78) 
=���78���78 − ���78���78 

=����78 − ����78 = �(�� − ���)�78 = 0. 
From this, it is concluded that �∗ and �∗ commute, that is [�∗,�∗] = 0. 

Remark 4.15: For an operator � ∈ 
(�) which is both �-

skew-adjoint and � −unitary, its spectrum can be found from 

its Eigen values. A quick computation shows that � + �78 = 0. Thus for any 0 ≠ � ∈ �, it follows that 

0='(	� + �78)�, �( = '��, �( + '�78�, �( = '{�, �( +
|8} �, �~ = {'�, �( + 8

} '�, �( 
= ({I + 1)'�, �( = 0, that is {I + 1 = 0 i.e, { = ±.. 

From this result, it is seen that �(�) ⊆ {., −.}. 
Note also that if �  is � -self-adjoint, then �  and �∗  are 

similar and hence have the same spectrum. However, this is 

not always the case for an A-normal operator. This is 

illustrated in the example below: 

Example 4.16: Consider �	to be a diagonal operator	{	��}. 
Denote the adjoint of � by 

�∗ = {	��}������.  Without loss of generality, let � = �. 00 . �. 
Clealy, �(�) = {., −.} and �(�∗) = {−., −.}. So � and �∗ are not similar although � 

being normal implies that �  is � − normal. Letting � =
�1 00 1�, then it is evident that � is �-normal,	�-unitary, and 

�-skew-adjoint. Additionally, � is unitary and skew adjoint. 

However, it is not �-self-adjoint (and hence not self-adjoint). 

Hence there are some operators which are skew-adjoint and 

not �-self-adjoint. 

Theorem 4.17 [10]: Let � = �8 + .�I  be a 

decomposition 	� , where �8 and �I  are commuting � -self-

adjoint operators. Then � is �-normal. 

Proof: (See [10]). 
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Theorem 4.18: Let � = �8 + .�I  be a decomposition 	� , 

where �8 and �I  are commuting � -self-adjoint operators. 

Then � is � −binormal. 

Proof: Given � = �8 + .�I, by the definition of the adjoint 

of an operator �, then �∗ = �∗8 − .�∗I. It suffices to show that [�[∗]�, ��[∗]] =0	i.e. 

(�[∗]�)(��[∗]) = (��[∗])(�[∗]�). 
Now (�[∗]�)Y��[∗][ = (�78�∗��)(��78�∗�) 

={[�78(�∗8 − .�∗I)�](�8 + .�I)}{(�8 + .�I)[�78(�∗8 −.�∗I)�]} 
But �∗ = ���78. It then follows that 

(�[∗]�)Y��[∗][ 
=[�78(��8�78 − .��I�78)�](�8 + .�I)}{(�8 +.�I)[�78(��8�78 − .��I�78)�] 

=(�8I + �II)(�8I + �II). In like manner,	Y��[∗][Y	�[∗]�[ =(�8I + �II)(�8I + �II). Therefore � is �-binormal. 

Remark 4.19: In view of the above theorem it can be 

deduced that if � is a decomposition such that � = �8 + .�I 

where �8  and �I  are � -self-adjoint operators, then �  is 

normal. (This follows from Theorem 3.13 and Corollary 3.14 

[10]). A quick computation shows that �∗� = (�∗8 −.�∗I)(�8 + .�I) = (��8�78 − .��I�78)(�8 + .�I) 
= (�8��78 − .�I��78)(�8 + .�I) = (�8 − .�I)(�8 +.�I) = ��∗. 
Proposition 4.20 [10]: Every skew-adjont operator � ∈ 
(�) is binormal. 

Proof: (See [10]). 

Example 4.21: Define on the function Hilbert space �I[�	O] a differential operator by �L = ��
�$ and show that it is 

skew-adjoint. Using integration by parts and the definition of 

an inner product space, it is clearly seen that '�L, �( = � ��
�$ �(�)3������������S = L(O)�(�)������ − � L(�)��(�)��������S 3� =

−� ��
�$ L(�)3� = 'L, −��(�S . This clearly shows that -�∗ = −� is a skew-adjoint operator. 

Proposition 4.22: Every � -skew-adjoint operator � ∈
(�) is binormal. 

Proof: Let �  be 	�-skew-adjoint. Then �[∗] = −� , that is �∗ = −���78 . Here it is shown that [�∗� ,��∗] = 0  i.e. (�∗�)(��∗) = 	 (��∗)(�∗�). (�∗�)(��∗) = ((−���78�)Y�(−���78)[ =(���78�)(����78) . By [10, Corollary 4.3], �  commutes 

with �	 and so (�∗�)(��∗ = (���78�)(����78) =(��)(��) = 	�� = (��∗)(�∗�). We conclude that � ∈ 
(�) is binormal. 

Corollary 4.23: Every �-skew-adjoint operator � ∈ 
(�) 
is � −binormal. 

Proof: If � be	�-skew-adjoint, then �[∗] = −� . A simple 

calculation shows that [�[∗]�, ��[∗]] = 0. 
Remark 4.24: It is well known by earlier results that every 

skew-adjont operator � is �-skew-adjoint (see [10]). In view 

of this and the corollary above, it can also be deduced that 

every skew-adjoint operator � ∈ 
(�) is � −binormal. 

5. Some Results on A-self adjoint and  

A-skew-adjoint Operators 

In what follows, the relationship between 	�-self adjoint 

and �- skew -adjoint operators is investigated. It is known 

that every normal operator is quasinormal and every 

quasinormal operator is binormal. Using results in [10, 

Theorem 3.9] and [10, Proposition 4.4], some common 

behaviour of �-self adjoint and skew adjoint operators are 

established. It is also well known that every part of a skew 

adjoint is skew adjoint and so every part of a skew-adjoint 

operator is normal. Thus a skew adjoint operator has no 

completely non-normal part. 

Proposition 5.1 [10]: Let � be an �-skew adjoint operator. 

Then �� is �-self adjoint for even values of � ∈ P and �� is (−�)-skew adjoint for odd values of � ∈ P. 
Remark 5.2: This proposition is simply interpreted as 

follows: that if � is �-skew adjoint, then �� is (−1)�	�-self 

adjoint. That is to say that ��  is � -skew- adjoint for odd 

values of � ∈ P and �� is �-self- adjoint for even values of � , which can also be extended to polynomials. The Lie 

Algebra hi is closed under all odd degree polynomials over a 

field j  while the Jordan Algebra si  is closed under all 

polynomials over j. 
The following proposition now provides a characterization 

of an �-skew adjoint operator: 

Proposition 5.3: Suppose 	_ = �� , where �  is invertible 

and self-adjoint, then � is skew adjoint if and only if _	is �-

skew adjoint. 

Proof: Let � be skew-adjoint and _ = ��	with � invertible 

and self-adjoint. Then �_�78 = ����78 = �� = −�� = −_∗ , that is _	 is � -

skew adjoint. 

Conversely, let _	be � -skew adjoint with _ = �� , then � = _�78 and so �∗ = �78_∗ = �78(−	�_�78) = −_�78 = −�  that is � 

a skew-adjoint operator and this completes the proof. 

Remark 5.4: The converse of the above proposition gives a 

more general property of an �-skew adjoint operator. It is 

also worth noting that the Lie Algebra hi is a linear space but 

it is not closed under multiplication. Nonetheless, hi  is 

closed under the Lie bracket [�8	, �I	] = �8	�I − �I�8	. 
Question: Is there any relationship between the Lie 

Algebra hi and the Jordan Algebra, si? A possible answer to 

this question can be summarised in the following 

propositions: 

Proposition 5.5: Let �8	  and �I	 be commuting � -skew 

adjoint linear operators. Then the product �8	�I  is � -self-

adjoint. 

Proof: By definition �8	 , �I	 	 ∈ hi  means that �8∗ =−��8	�78 and �I∗ = −��I	�78. 

Since [�8	, �I	] = 0 , we have (�8	�I)∗ = �I∗�8∗ =−��I	�78(−��8	�78) = ��I	�8	�78 = ��8	�I	�78 . This 

proves that �8	�I is �-self-adjoint. 

Proposition 5.6: Let �8	  be � -skew adjoint and �I  be � -
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self-adjoint. If �8	  and �I	 commute, then �8	�I  is � -skew-

adjoint. 

Proof: Given that �8		�-skew adjoint and �I	�-self-adjoint 

then (�8	�I)∗ = �I∗�8∗ = ��I	�78(−��8	�78) = −��I	�8	�78 . 

But �8	  and �I	  are commuting and so −��I	�8	�78 =−��8	�I	�78 . It follows that (�8	�I)∗ = −��8	�I	�78 . This 

shows that �8	�I is �-skew-adjoint as required. 

Corollary 5.7: Let �  ∈ 
(�)  is an � − /M�N	�34,.�- . 

Then 

a) �e(�) = �e(−�∗) 
b) ��(�) = ��(−�∗) 
c) ��(�) = ��(−�∗) 
Proof: Since �  is � − /M�N	�34,.�-  then by 

definition 	�∗ = −���78 . Thus, �	and 	−�∗  are similar and 

hence have the same spectrum. As a consequence of this the 

above claims follow immediately since �(�) is the disjoint 

union of �e(�), ��(�) and	��(�). 
Remark 5.8: From the above corollary, equality of spectra 

is evidently seen and this is indeed a necessary condition for �-skew-adjointness of an operator. As an example, consider 

the backward shift operator �: HI → HI  defined by �(�8, �I, ��, … ) = (�I, ��, ��, … )  that is never � -skew- 

adjoint. Its adjoint (called the unilateral shift) is defined by �∗(�8, �I, ��, … ) = (0, �8, �I, … ) . It is true (as an infinite 

matrix) that every { ∈ ℂ  with │{│ < 1  (open unit disc 

centred at the origin) is in �e(�) and that �e(�∗) = ∅. Also, 

{	{ ∈ ℂ: │{│ < 1} ⊆ ��(�∗). Hence � is not �-skew adjoint 

(for any � with the required properties: that it should self- 

adjoint and invertible) because the necessary condition for �-

skew- adjointness is not satisfied (equality of spectra of �	and 	�∗) i.e. �(�) ≠ �(�∗). (See a similar result on �-self-

adjointness Corollary 3.8, pp 59 [2]). 

This operator, namely, the backward shift operator �: HI → HI is an example of an operator that is neither in the 

class of the Jordan algebra of � -self-adjoint nor the Lie 

algebra of the �-skew adjoint operators. However we should 

also note that there exist non-zero operators that are skew-

adjoint and �-self-adjoint. This is illustrated in the example 

that follow: 

Example 5.9: Let � = �−. 00 . � and � = �0 11 0�. Then a 

quick computation shows that �	is both �-self-adjoint (that is �∗ = ���78)  and skew-adjoint (i.e. �∗ = −� ). In view of 

this, it is seen that the only operator satisfying both 

conditions for �-self-adjointness and �-skew-adjointness is 

the zero operator. 

6. Conclusion 

From the preceding discussions and results above, it is 

clearly evident that � -self-adjoint,� -skew-adjoint and � -

unitary operators are special casae of �-normal operators. It 

has also been noted that the class of �-self-adjoint operators 

contains some self-adjoint operators, some skew-adjoint 

operators and some which are neither of these categories. The 

backward shift operator as an example of such an operator as 

shown in the preceding section. That there exist operators 

which are skew-adjoint and �-self-adjoint but not �-skew-

adjoint. 

There is no class inclusion between �-self-adjoint and �-

skew-adjoint operators. However, zero is the only operator 

that can satisfy this inclusion. The following class inclusions 

also hold: 

Symmetry ⊊ Unitary ⊊ Normal ⊊ �- Normal and 

Symmetry ⊊ Self- adjoint ⊊ Normal ⊊ �- Normal 

Skew –adjoint ⊊ Normal ⊊ �- Normal. In addition the 

intersection of the class of self-adjoint and unitary operators 

yields a symmetry, i.e. 

{	��HL − 	�34,.�-} ∩ {2�.-��1} = {�100�-�1}. 
Just like 	�-self-adjoint operators, the spectrum of an �-

skew-adjoint operator −�  and the adjoint operator 	�∗  is 

equivalent, that is �(�) = �(−�∗). 
Finally, it has also been established that � -almost 

similarity is an equivalence relation just like other 

equivalences like unitary and almost similarity on a Hilbert 

space.	�-almost similar operators have equal spectra if they 

are projection operators. 
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