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Abstract: In this paper we discuss cubic B-spline collocation method. We have given the derivation of the B-spline method 

in general. We have applied the method for solving one-dimensional heat equation and the numerical result have been 

compared with the exact solution. 
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1. Introduction 

Consider the one dimensional initial-boundary value 

problem 

�� = ����� = � �
	��
	 , � = 1
�0, �� = 0, 
�1, �� = 0	��. ���	
��, 0� = g���	��. ��                (1) 

This problem is one of the well-known second order 

parabolic linear partial differential equation [1, 3, 4]. The 

heat equation is a very important equation in physics and 

engineering. It shows that heat equation describes the 

distribution of heat (or variation in temperature) in a given 

region over time. The heat equation is of fundamental 

importance in diverse scientific fields. In mathematics, it is 

prototypical parabolic partial differential equation. In 

probability theory, the heat equation is connected with the 

study of Brownian motion via the Fokker – Planck equation 

[5]. Numerical solutions of those equations are very useful to 

study physical phenomena. One of the linear evolution 

equation which we deal with the numerical solution is the 

heat equation [2]. In financial mathematics it is used to solve 

the Black – Scholes partial differential equation. The 

diffusion equation, a more general version of the heat 

equation, arises in connection with the study of chemical 

diffusion and other related processes [5]. In history, the heat 

equation proposed by Fourier in 1822 has been applied to 

investigating a temperature distribution in materials [6]. The 

heat equation is used in probability and describes random 

walks. It is also applied in financial mathematics for this 

reason. It is also important in Riemannian geometry and thus 

topology: it was adapted by Richard S. Hamilton when he 

defined the Ricci flow that was later used by Grigori 

Perelman to solve the topological Poincaré conjecture. The 

heat equation arises in the modeling of a number of 

phenomena and is often used in financial mathematics in the 

modeling of options. The famous Black – Scholes option 

pricing model's differential equation can be transformed into 

the heat equation allowing relatively easy solutions from a 

familiar body of mathematics. Many of the extensions to the 

simple option models do not have closed form solutions and 

thus must be solved numerically to obtain a modeled option 

price. The equation describing pressure diffusion in a porous 

medium is identical in form with the heat equation. Diffusion 

problems dealing with Dirichlet, Neumann and Robin 

boundary conditions have closed form analytic solutions 

(Thambynayagam 2011). The heat equation is also widely 

used in image analysis (Perona & Malik 1990) and in 

machine-learning as the driving theory behind scale-space or 

graph Laplacian methods. The heat equation can be 

efficiently solved numerically using the implicit Crank – 

Nicolson method of (Crank & Nicolson 1947). This method 

can be extended to many of the models with no closed form 

solution, see for instance (Wilmott, Howison & Dewynne 
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1995). An abstract form of heat equation on manifolds 

provides a major approach to the Atiyah – Singer index 

theorem, and has led to much further work on heat equations 

in Riemannian geometry [5]. 

In this study the cubic B-spline collocation method is 

used [7, 9, 10] for solving the heat equation (1) and the 

solutions are compared with the exact solution. In the 

section two, we have given the derivation for the B-spline 

method and uniform convergence for the method has been 

discussed. Finally, we have solved the problem (1) using 

the method, the numerical results and graphs have also been 

shown.  

2. B-spline Collocation Method 

We define the cubic B-spline for � = 0,1,2, … , �. 

����� =
�  
 !
   
"#
$
%&	'( )* , if	� ∈ .��$/, ��$01,1 + 3 #
$
%&4'( ) + 3 #
$
%&4'( )/ + #
$
%&4'( )* , if	� ∈ .��$0, ��1,1 + 3 #
%54$
'( ) + 3 #
%54$
'( )/ + #
%54$
'( )* , if	� ∈ .�� , ��601,#
%5	$
'( )* , if	�	 ∈ 	 .��60, ��6/1,0, 	otherwise,

		                                    (2) 

where ℎ? = ��60 − �� , � = −1,0, … , � + 1.  
We introduce four additional knots as �$/ < �$0 < �B and �C6/ > �C60 > �C . 
From the above Eq. (2) we can simply check that each of 

the functions �����  is twice continuously differentiable on 

the entire real line, also 

��E�FG = H4, 	if	� = J,1, 	if	� − J = 	±1,0, if	� − J = 	±2,                         (3) 

and that ����� = 0	for	� ≥ ��6/	and	�	 ≤ ��$/.	 
Similarly we can show that  

��Q��R� = 	H0, 	if	� = J,± *'( , 	if	� − J = ±1,0, 	if	� − J = ±2,                    (4) 

and 

��QQE�FG = �−
0/'(		 , 	if	� = J,S'(		 , 	if	� − J = ±1,0, 	if	� − J = ±2.                  (5) 

Each ����� is also a piece-wise cubic with knots at T, and ����� ∈ U.  
The values of �����, ��Q��� and ��QQ��� at the nodal points ��′W are shown in Table 1. 

Table 1. B-Spline basis values. 

Nodal values 

Let Ω = Y�$0, �B , �0, … , �C60Z  and let [*�T� = span	Ω. 
The functions Ω	  are linearly independent on .0,11,  thus [*�T�  is �� + 3� -dimensional. Even one can show that 

[*�T� ⊆^_ U. Let ` be a linear operator with domain U and 

with range in U. 

Now we define  

���� = ∑ ������� = �$0�$0��� + �B�B��� + �0�0��� +C60�b$0 ⋯+ 	�C�C��� + �C60�C60���.                 (6) 

Then force ���) to satisfy the collocation equations plus 

the boundary conditions. 

We have  	`0�E�FG = dE�FG	0 ≤ �F ≤ N,	                       (7) 

and ��0� = fB, ��1� = f0.                              (8) 

On solving Eq. (7), we get −g�QQ��F� + 	hE�FG���F� = 	d��F� 
⇒ −g j ����QQE�FG +hE�FG j ����E�FGC60

�b$0
C60
�b$0 = d��F� 

⟹ −g	l�F$0�F$0QQ E�FG + �F�FQQE�FG + �F60�F60QQ ��F�m+ h��F�l�F$0�F$0E�FG +	�F�FE�FG+ �F60�F60��F�m = 	d��F�	∀J = 0,1, … , �, 
⟹ �F$0l−g�F$0QQ E�FG +hF�F$0E�FGm + �Fl−g�FQQE�FG +hF�FE�FGm + �F60l�−g�F60QQ E�FG +hF�F60E�FG�m = dF 	∀J =0,1,2,… , �,                            (9) 

by using equations (3) and (5) we get  E−6g +hFh?/G�F$0 + E12g + 4hFh?/G�F + E−6g +hFh?/G�F60 = h?/dF , ∀J = 0,1, … , �,                   (10) 

where hE�FG = hF 	and	dE	�FG = 	dF .	 
The given boundary conditions (8) become 

x xi-2 xi-1 xi xi+1 xi+2 �����  0 1 4 1  ℎ?��Q���  0 −3  0 3  0 ℎ?/��QQ���  0 6  −12  6  0 
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���F� = ���B� = 	fB ⟹ �$0�$0��B� + �B�B��B� + �0�0��B� + ⋯+ �C60�C60��B� = fB ⟹ �$0 + 4�B + �0 =	fB,                              (11) 

and  ���F� = ���C� = 	f0 ⟹ �$0�$0��C� + �B�B��C� + �0�0��C� + ⋯+ �C$0�C$0��C� + �C�C��C�+ �C60�C60��C� = f0 ⟹ �C$0 + 4�C + �C60b	f0.                         (12) 

Eqs. (10), (11) and (12) lead to a �� + 3� × �� + 3� 
tridiagonal system with �� + 3�  unknowns �C =��$0, �B, … , �C60�� (where t stands for transpose).  

Now eliminating �$0  from the first equation of (10) and 

(11), we find  36g	�B = dBh?/ −	fBE−6g +hBh?/G.                (13) 

Similarly, eliminating �C60 from the last equation of (10) 

and from (12), we find  36g	�C = dCh?/ −	f0E−6g +hCh?/G.               (14) 

from (10) we get  

J = 1:	�−6g +h0	h?/��B + E12g + 4h0h?/G�0 + E−6g +h0h?/G�/ =	Z0h?/ 

J = 2: �−6g +h/h?/��0 + E12g + 4h/h?/G�/ + E−6g +h/h?/G�* = 	Z/h?/ ⋮ J = �:	�−6g +h�h?/���$0 + E12g + 4h�h?/G�� + E−6g +h�h?/G��60 =	Z�h?/ ⋮ J = � − 1:	E−6g +hC$0h?/G�C$/ + E12g + 4hC$0h?/G�C$0 + E−6g +hC$0h?/G�C =	Zt$0h?/. 
The above equations lead to the system of �� + 1� linear equations u�C = vC in the �� + 1� unknowns �C = ��B, … , �C�� 

of the form 

wx
xxx
y36gz { zz { z⋱ ⋱ ⋱z { z36g}~

~~~
�
wxx
xxy
�B�0�/⋮�C$0�C }~~

~~� =
wxx
xxx
ydBh?/ −	fBzd0h?/d/h?/⋮dC$0h?/dCh?/ −	f0z}~

~~~
~�,                                        (15)

where  z = −6g +hh?/, { = 12g + 4hh?/. 
Since h��� > 0,  it is easily seen that the matrix u  is 

strictly diagonally dominant and hence nonsingular. Since u 

is nonsingular, we can solve the system u�C =	vC  for �B, �0, … , �C and substitute into the boundary equations (11) 

and (12) to obtain �$0	and	�C60  

Lemma [8] The B-splines Y�$0, �B, … , �C60Z  defined in 

equation (2), satisfy the inequality  

j|B����| ≤ 10,t60
�b$0 	0 ≤ � ≤ 1. 

Proof. We know that  

�j B����C60
�b$0 � ≤ j |�����|C60

�b$0 . 

At any �th nodal point �� we have  

j|B�| = 	 |B�$0| + |B�| + |B�60| = 6 < 10t60
�b$0 . 

Also we have  |�����| ≤ 4	and	|��$0���| ≤ 4	for	� ∈ 	 .��$0, ��1. 
Similarly  |��$/���| ≤ 1	and	|��60���| ≤ 1	for	� ∈ 	 .��$0, ��1. 
Now for any point � ∈ 	 .��$0, ��1 we have  

j|�����| = 	 |��$/| + |��$0| + |��| + |��60| ≤ 10.C60
�b$0  

Hence this proves the lemma.  

3. Numerical Result 

The exact solution of problem (1) is known to be  
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��, �� = �$��	� sin 2T�, 	g��� = sin 2T�.	 
Denote the value of 
	at the representative mesh point �E�F , ��G by 


� = 
E�F , ��G = 
F� 

The forward difference approximation for 
����  is 

���� ≈ ���54$���∆�                                  (16) 

Substitute � = 
F in (16) we get  ��60��� − �����∆� = �/��/ ��60��� ⟹−∆�	�

�60 + ��60 = �� 

At � = 0: �� = 0� ⟹ �B −∆�	�

0 + �0 = �B                            (17) ⟹ −g�QQ + � = g��� 
Substitute 

	�

0 = j ����QQ��F�C60
�b$0 , �0 = j ����E�FG,C60

�b$0 		�B = 	
E�F , 0G= gE�FG, ∆� = �	 
in (17) we get  

−� j ����QQ��F�C60
�b$0 + j ������F�C60

�b$0 = g��F� 
⟹−�	l�F$0�F$0QQ E�FG + �F�FQQE�FG + �F60�F60QQ ��F�m + �F$0�F$0E�FG + �F�FE�FG +	�F60�F60��F� = 	g��F�	∀J = 0,1, … , �, 
⟹ �F$0l−��F$0QQ E�FG + �F$0E�FGm + �Fl−��FQQE�FG + �FE�FGm + �F60l−��F60QQ E�FG +	�F60��F�m = gE�FG∀J = 0,1, … , �,    (18) 

by using equations (3) and (5) we get  	E−6�	 + 	h?/G�F$0 + E12� + 4h?/G�F + E−6� + h?/G�F60 = gFh?/	∀j = 0,1, … , N,                            (19) 

J = 1: �−6� +	h?/��B + E12� + 4h?/G�0 + E−6� + h?/G�/ =	g0h?/ 

J = 2: �−6� +	h?/��0 + E12� + 4h?/G�/ + E−6� + h?/G�* =	g/h?/ ⋮ J = �:	�−6� +	h?/���$0 + E12� + 4h?/G�� + E−6� + h?/G��60=	g�h?/ ⋮ J = � − 1:	E−6� + h?/G�C$/ + E12� + 4h?/G�C$0+ E−6� + h?/G�C =	gt$0h?/. 
The above equations lead to the system of �� + 1� linear 

equations u�C =	vC  in the �� + 1�  unknowns �C =��B, �0, … , �C�� of the form 

wx
xxx
y36�z { zz { z⋱ ⋱ ⋱z { z36�}~

~~~
�
wxx
xxy
�B�0�/⋮�C$0�C }~~

~~� =
wxx
xxx
y gBh?/g0h?/g/h?/⋮gt$0h?/gCh?/ }~

~~~
~�,    (20) 

where  z = −6� + h?/, { = 12� + 4h?/. 
We can see that the system is strictly diagonally dominant 

and hence nonsingular. So we can solve the system for �B, �0, … , �C and substitute into the boundary conditions (11) 

and (12) to obtain �$0 and �C60.  

The table 2 below illustrates the numerical, exact solution 

and error for the heat equation ��  

Table 2. Numerical, Exact Solution And Error For The Heat Equation ��. 
x p_i Numerical U_exact error 

0 0 0 0 

0.0500 0.0108 0.0060 0.0185 

0.1000 0.0206 0.0113 0.0353 

0.1500 0.0284 0.0156 0.0486 

0.2000 0.0333 0.0184 0.0571 

0.2500 0.0351 0.0193 0.0600 

0.3000 0.0333 0.0184 0.0571 

0.3500 0.0284 0.0156 0.0486 

0.4000 0.0206 0.0113 0.0353 

0.4500 0.0108 0.0060 0.0185 

0.5000 0.0000 0.0000 0.0000 

0.5500 -0.0108 -0.0060 0.0185 

0.6000 -0.0206 -0.0113 0.0353 

0.6500 -0.0284 -0.0156 0.0486 

0.7000 -0.0333 -0.0184 0.0571 

0.7500 -0.0351 -0.0193 0.0600 

0.8000 -0.0333 -0.0184 0.0571 

0.8500 -0.0284 -0.0156 0.0486 

0.9000 -0.0206 -0.0113 0.0353 

0.9500 -0.0108 -0.0060 0.0185 

1.0000 0 -0.0000 0.0000 
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Figure 1. Exact solution for the heat problem ��. 

 

Figure 2. Numerical solution for the heat problem �� using ℎ = 0.05 and � = 0.01.  
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Figure 3. This shows the error for the heat problem �� using ℎ = 0.05	and � = 0.01. 

 

Figure 4. This shows the error for the heat problem �� using ℎ = 0.01	and � = 0.001. 
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Figure 5. This shows the error for the heat problem �� using ℎ = 0.01	and � = 0.0001. 
4. Conclusion 

We applied the cubic B-spline collocation method to solve 

one-dimensional heat equation. The results and graphs have 

also been shown using MATLAB for the comparison 

between the numerical and exact solutions. 

Numerical experiments are conducted to demonstrate the 

viability and the efficiency of the proposed method 

computationally. 

Appendix 

Program for the heat problem ��: 

Main_bspline: 

clc 

clear 

h = 0.05; x0 = 0; x1 = 1; b = 1; t0 = 0; t1 = 0.1; k = 0.01; 

 % h = 0.05; x0 = 0; x1 = 1; b = 1; t0 = 0; t1 = 0.1; k = 

0.001; 

% h = 0.01; x0 = 0; x1 = 1; b = 1; t0 = 0; t1 = 0.1; k = 

0.001; 

% h = 0.01; x0 = 0; x1 = 1; b = 1; t0 = 0; t1 = 0.1; k = 

0.0001; 

 % j = 0;1;...;n; 

x = x0: h: x1; 

sizex = x; 

t = t0: k: t1; 

M = length(x); 

N = length(t); 

p0 = sin(2*pi*x); 

u = zeros(N,M); 

u(1,:) = p0; 

% M = M - 2; 

for i = 2: N 

[p_i] = fun_bspline(p0,h,k,M); 

u(i,:) = p_i; 

p0 = p_i; 

end 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%% 

V = zeros(N,M);  

V(1,:) = sin(2*pi*x); 

for i = 1: N 

for j = 1: M 

V(i,j) = exp(-4*t(i)*pi^2)*sin(2*pi*x(j));  

U_exact(j) = exp(-4*t(i)*pi^2)*sin(2*pi*x(j)); 

end 

end 

error = max(abs(u – V)); 

yerr = abs(u-V);  

y=[x' p_i' U_exact' error'] 

%----------------- 

Figure(1) 

surf(x,t,V) 

%----------------- 

% figure(1) 

 % plot(x,yerr) 

%----------------- 

figure(2) 

surf(x,t,u) 

%----------------- 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%% 

 %  
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 % surf(x,t,u) 

Fun_bspline: 

function YYp = fun_bspline( p0,h,k,M) 

 gammaj = 12*k + 4*h^2; 

alphaj = -6*k + h^2; 

betaj = -6*k + h^2; 

A = zeros(M,M); 

Mvalue = M; 

A = diag([36*k ones(1,M-2)*gammaj 36*k],0 +… 

diag([0 ones(1,M-2)*alphaj],1) +… 

diag([ones(1,M-2)*betaj 0],-1); 

ft = p0; 

alpha0 = 0; 

alpha1 = 0; 

yp0 = alpha0; 

yp1 = alpha1; 

dm = h^2*ft; 

dm(1) = dm(1) - yp0*(-6*k+h^2); 

dm(M) = dm(M) - yp1*(-6*k+h^2); 

Amatrix = A;  

dm = dm'; 

sizeA = size(A); 

sizedm = size(dm); 

cc = A\dm; 

ccm1 = 0 - 4*cc(1) - cc(2); 

ccmp1 = 0 - 4*cc(M) - cc(M-1); 

ccc = [ccm1 cc' ccmp1]; 

YYp = ccc(1:M) + 4*ccc(2:M+1) + ccc(3:M+2); 

end 
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