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Abstract: This paper investigates the stabilization of unstable equilibrium for a 4D hyperchaotic system. The linear, non-

linear and speed feedback controls are used to suppress hyperchaos to this equilibrium. The Routh-Hurwitz theorem and 

Lyapunov's second methods are used to derive the conditions of the asymptotic stability of the controlled hyperchaotic system. 

Theoretical analysis, numerical simulation and illustrative examples are given to demonstrate the effectiveness of the proposed 

controllers. 
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1. Introduction 

Chaos is an important topic in nonlinear science. In many 

cases, chaos is sometimes undesirable, so we wish to avoid 

and eliminate such behaviors [1]. Chaos control and chaos 

synchronization were once believed to be impossible until the 

1990s when Ott et al. developed the OGY method to suppress 

chaos. Recently, many different techniques and methods have 

been proposed to achieve chaos control such as impulsive 

control method, sliding method control, differential 

geometric method, ∞H  control, adaptive control method, 

and so on. Among them, the feedback control is especially 

attractive and has been commonly applied to practical 

implementation due to its simplicity in configuration and 

implementation [2]. Generally speaking, there are two main 

approaches for controlling chaos: linear feedback control and 

non- linear feedback control. The linear feedback control 

approach offers many advantages such as robustness and 

computational complexity over the non- feedback control 

method [2-7]. 

Many attempts have been made to control hyperchaos of 

hyperchaotic systems. Recently, Yan (2005)[8], Dou and Sun 

et al. (2009) [9], Zhu (2010)[10] and Aziz and AL-Azzawi 

(2015) [11] suppressed hyperchaotic systems to unstable 

equilibrium by using feedback control method. In 2017, the 

Ref. [12] present some problems of these strategies and how 

treatment. Our system is generated based on Pan system via a 

state feedback controller which is described by the following 

mathematical model: 

�	x� = ��y − x
 + w	y� = 
x − xzz� = xy − �z	w� = −	�y	                            (1) 

where ��, �, �, �
 ∈ �� , and �, �, 
, � ∈ �  are constant 

parameters. When parameters � = 10, � = 8 3⁄ , 
 = 28	and � = 10, system (1) is hyperchaotic and has two Lyapunov 

exponents, i.e. 	� `" = 0.3627 , 	� `& = 0.0008  [13], and 

hyperchaotic attractors and Lyapunov exponents spectrum 

are shown in Figure 1 and Figure 2 respectively. The system 

(1) has only one equilibrium	O�0,0,0,0
 and the equilibrium 

is an unstable under these parameters [13]. 

The aim of this paper is discuss three feedback control 

methods for a 4D hyperchaotic system. The rest of the paper 

is organized as follows. section 2 present helping results 

which inclined ordinary feedback control, dislocated 

feedback control, enhancing feedback control, and speed 

feedback control. main results are present in section 3. And 

section 4 present the flow chats for linear and non-linear 

feedback control. Finally, the conclusion are given in section 
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5. Moreover, numerical simulations and illustrative examples are applied to verify the effectiveness of chosen controllers. 

 

Figure 1. The attractor of system (1) in x-y-z space. 

 

Figure 2. The Lyapunov exponents of system (1). 

2. Helping Results 

To control the hyperchaotic system (1) to the unstable 

equilibrium O�0,0,0,0
 , we use the feedback control 

approach to control it. Let us assume that the controlled 

hyperchaotic system (1) is given by 

�	x� � 10�y 	 x
 � w � u"	y� � 28x 	 xz � u&z� � xy 	 8/3z � u*	w� � 		10y � u�	                        (2) 
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where u", u&, u* and u� are external feedback control inputs 

which will be suitably derive the trajectory of the 

hyperchaotic system, specified by �x, y, z, w
  to the 

equilibrium 	O�0,0,0,0
  of uncontrolled system (i.e. u+ =0, i = 1,2,3,4
. 
Remark 1 (Ordinary feedback control method) 

For the ordinary feedback control, the system variable is 

often multiplied by a coefficient as the feedback gain, and the 

feedback gain is added to the right -hand of the 

corresponding equation [3-5, 7, 10-12, 16]. 

Remark 2 (Dislocated feedback control method) 

If a system variable multiplied by a coefficient is added to 

the right -hand of another equation, then this method is called 

dislocated feedback control [1, 3-5, 7, 10-12, 16]. 

Remark 3 (Enhancing feedback control method) 

It is difficult for a complex system to be controlled by only 

one feedback variable, and in such cases the feedback gain is 

always very large. So we consider using multiple variables 

multiplied by a proper coefficient as the feedback gain. This 

method is called enhancing feedback control [1, 3-5, 7, 10-

12, 16]. 

Remark 4. 

The above three remarks are used in linear feedback 

control, also can use with nonlinear feedback control, but in 

nonlinear feedback the system variable multiplied by a 

quantity which contains coefficient and nonlinear term and 

added to the right -hand of equation according to each above 

three remarks. 

Remark 5 (Speed feedback control method) 

For the feedback control, the independent variable of a 

system function is often multiplied by a coefficient as the 

feedback gain, so the method is called displacement feedback 

control. Similarly, if the derivative of an independent variable 

is multiplied by a coefficient as the feedback gain, it is called 

speed feedback control [2-12, 16]. 

Remark 6 (Routh-Hurwitz method, [14]). All the roots of 

the indicated polynomial have negative real parts precisely 

when the given conditions are met. 

� λ& + /λ + B: A > 0, B > 0 

� λ* + /λ& + 4λ + C: A > 0, C > 0, AB − C > 0 

� λ� + Aλ* + 4λ& + 6λ + D:A > 0, AB − C >0, �AB − C
C − A&D > 0, D > 0 

Remark 7 (Barbalat Remark, [15, 16]). 

If 8�9
:�& ∪ �< and 8��9
:�<, then lim?→< 8�9
 = 0. 

3. Main Results 

Theorem 1 (Ordinary feedback control method). 

Let the controlled hyperchaotic system (2) be 

�	x� = ��y − x
 + w	y� = 
x − xz − ABz� = xy − �z	w� = −	�y	                               (3) 

where C is the feedback coefficient. When k > EF�FEG
HIF�FJHFGKH&FKGH�GL
&F , system (3) will gradually 

converge to the unstable equilibrium	O�0,0,0,0
. 
Proof. The Jacobi matrix of system (3) is  

M = N−� � 	0	 1c −k 	0 	000 	 0−d −�0 00Q                            (4) 

The characteristic equation of matrix (4) is �λ + b
�λ* + /λ& + 4λ + C
 = 0,              (5) 

where / = C + �, 4 = �C − �
, 6 = 
� 

According to the Routh-Hurwitz method, the Jacobian 

matrix of system (4) has four negative real part eigenvalues if 

and only if C + � > 0, 
� > 0, �C + �
��C − �

 − 
� > 0 

Implying /, 6 > 0  since �, 
  and 	� > 0  (given) and C  is 

always positive and 	/4 − 6 > 0  it is possible under the 

condition k > EF�FEG
HIF�FJHFGKH&FKGH�GL
&F . 

Thus system (3) will gradually converge to the unstable 

equilibrium O�0,0,0,0
. The proof is completed. 

Illustrative Example 1. the hyperchaotic system (3) be 

�	x� = 10�y − x
 + w	y� = 28x − xz − SBz� = xy − 8 3⁄ z	w� = −	10y	                             (6) 

When C > 28.7231, system (6) will gradually converge to 

the unstable equilibrium	O�0,0,0,0
 according to theorem 1. 

Sol. The characteristic equation of system (6) is 

�λ + 8/3
�λ* + �10 + C
λ& + �10C − 280
λ + 280
 = 0,   (7) 

Then the roots of equation (7) depended of the value of C 

as following: 

when	C = 29, the equation (7) became �λ + 8/3
�λ* + 39λ& + 10λ + 280
 = 0, 
and the all roots have negative real parts λ" = − U* , λ& = −38.9279, λ*,� = −0.0361 ± 2.6817W , 

therefore the system (6) is asymptotically stable. 

while C = 28.5, the equation (7) became �λ + 8/3
�λ* + 38.5λ& + 5λ + 280
 = 0, 
then not all roots have negative real parts λ" = − U* , λ& = −38.5587, λ*,� = 0.0293 ± 2.6946W  

therefore the system (6) is unstable. 

Also can justified the same result that obtain in theorem 1 

by using MATLAB software where numerical simulations 

are used to investigate the controlled hyperchaotic system (3) 

using fourth-order Runge-Kutta scheme with time step 1.0 . 

The initial values are taken as by Y��0
 = −5, ��0
 =5, ��0
 = 10, ��0
 = 15Z . The feedback coefficients are 

given by C = 29,	C = 28.5 in Figure 3- a, b respectively. The 

behaviors of the states	���9
, ��9
, ��9
, ��9

 of the control 
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hyperchaotic system (6) show converging to O�0,0,0,0
 when C � 29  (Figure 3,a.) and divergence to O�0,0,0,0
  when 

C � 28.5 (Figure 3,b.) 

 

Figure 3. The difference of the state of the controlled system (3) with the control gain change. 

Theorem 2 (Dislocated feedback control method). 

Let u" � 	C� , u& � u* � u� � 0  and the controlled 

hyperchaotic system (2) be 

�	x� � ��y 	 x
 � w 	 AB	y� � 
x 	 xzz� � xy 	 �z	w� � 		�y	                      (8) 

where	C is the feedback coefficient. When	C 3 [KH\[ , system 

(8) will gradually converge to the unstable equilibrium O�0,0,0,0
. 
Proof. The Jacobi matrix of system (8) is 

M � ]	� � 	 C 	0	 1c 0 	0 	000 	 0	d 	�0 00^                      (9) 

The characteristic equation of matrix (9) is �λ � b
�λ* � /λ& � 4λ � C
 � 0,              (10) 

where / � �, 4 � 
C 	 �
, 6 � 
� 

By using Routh-Hurwitz method, the Jacobian matrix of 

system (9) has four negative real part eigenvalues if and only 

if � 3 0, 
� 3 0	��
C 	 �

 	 
� 3 0, 
Implying /, 6 3 0 since a, c and d are positive (given) and 

k is always positive and /4 	 6 3 0, it is possible under the 

condition C 3 [KH\[ . Thus system (8) will gradually converge 

to the unstable equilibrium O�0,0,0,0
 . The proof is 

completed. 

Illustrative Example 2: Let the hyperchaotic system (8) be 

�	x� � 10�y 	 x
 � w 	 AB	y� � 28x 	 xzz� � xy 	 8 3⁄ z	w� � 		10y	                 (11) 

When 	C 3 11, system (11) will gradually converge to the 

unstable equilibrium O�0,0,0,0
 according to theorem 2. 

Sol. The characteristic equation of system (11) is �λ � 8/3
�λ* � 10λ& � �28C 	 280
λ � 280
 � 0   (12) 

Then the roots of equation (12) depended of the value of k 

as following: 

when C � 11.1, the equation (12) became �λ � 8/3
�λ* � 10λ& � 30.8λ � 280
 � 0, 
and the all roots have negative real parts λ" � 	 U* , λ& � 	9.7785, λ*,� � 	0.01107 V 5.3499W , 

therefore the system (11) is asymptotically stable. 

While C � 10.9, the equation (12) became �λ � 8/3
�λ* � 10λ& � 25.2λ � 280
 � 0, 
then not all roots have negative real parts λ" � 	 U* , λ& � 	10.2161, λ*,� � 0.1081 V 5.2341W  

therefore the system (11) is unstable. 
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The feedback coefficients are given by	C � 11.1,	C � 10.9 

in Figure 4- a, b respectively. The behaviors of the states ���9
, ��9
, ��9
, ��9

  of the control hyperchaotic system 

(11) show converging to O�0,0,0,0
. when	C � 11.1 (Figure 

4,a.) and divergence to O�0,0,0,0
 when C � 10.9 in (Figure 

4,b.). 

 

Figure 4. The difference of the state of the controlled system (11) with the control gain change. 

Theorem 3 (Enhancing feedback control method): 

Let u" � 	C�, u& � 	C�, u* � u� � 0 and the controlled 

hyperchaotic system (2) be 

�	x� � ��y 	 x
 � w 	 A_	y� � 
x 	 xz 	 ABz� � xy 	 �z	w� � 		�y	                    (13) 

where	C is the feedback coefficient. 

When 2C* � 3�C& � ��& 	 2�

C 	 
��& � �
 3 0 , 

system (13) will gradually converge to the unstable 

equilibrium O�0,0,0,0
. 
Proof. Analogously as in proof of Theorem 1 and Theorem 

2. 

Illustrative Example 3: Let the hyperchaotic system (13) 

be 

àb
ac	
x� � 10�y 	 x
 � w 	 A_	y� � 28x 	 xz 	 ABz� � xy 	 �U*
z	w� � 		10y	                    (14) 

When 	C 3 12.6894, system (14) will gradually converge 

to the unstable equilibrium	O�0,0,0,0
 according to theorem 

3. 

Sol. The characteristic equation of system (14) is 

�λ � 8/3
�λ* � �2C � 10
λ& � �C& � 10k 	 280
λ � 280
 � 0,                                (15) 

Then the roots of equation (15) depended of the value of k 

as following: 

when C � 13, the equation (15) became �λ � 8/3
�λ* � 36λ& � 19λ � 280
 � 0, 
and the all roots have negative real parts λ" � 	 U* , λ& � 	35.6875, λ*,� � 	0.1563 V 2.7967W  

therefore the system (14) is asymptotically stable. 

while C � 12, the equation (15) became 

�λ � 8/3
�λ* � 34λ& 	 16λ � 280
 � 0, 
then not all roots have negative real parts λ" � 	 U* , λ& � 	34.6938, λ*,� � 0.3469 V 2.8196W  

therefore the system (14) is unstable. 

The feedback coefficients are given by C � 13, C � 12 in 

Figure 5- a, b respectively. The behaviors of the states ���9
, ��9
, ��9
, ��9

  of the control hyperchaotic system 

(14) show converging to O�0,0,0,0
  when C � 13  (Figure 

5,a.) and divergence to O�0,0,0,0
 when 	C � 12 (Figure 5,b.). 
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Figure 5. The difference of the state of the controlled system (14) with the control gain change. 

Theorem 4 (Speed feedback control method). 

Let u� � 	C�� , 	u" � u& � u* � 0  and the controlled 

hyperchaotic system be 

�	x� � ��y 	 x
 � w	y� � 
x 	 xzz� � xy 	 �z	w� � 		�y	 	 ky�                        (16) 

where	C is the feedback coefficient. When	C 3 [KH\[ , system 

(16) will gradually converge to the unstable equilibrium O�0,0,0,0
. 
Proof. Analogously as in proof of Theorem 1 and Theorem 

2. 

Illustrative Example 4. Let the hyperchaotic system (16) 

be 

àb
ac	
x� � 10�y 	 x
 � w	y� � 28x 	 xzz� � xy 	 �U*
z	w� � 		10y	 	 ky�                        (17) 

When C 3 11, system (17) will gradually converge to the 

unstable equilibrium O�0,0,0,0
 according to theorem 4. 

Sol. The characteristic equation of system (17) is 

�λ � 8/3
�λ* � 10λ& � �28C 	 280
λ � 280
 � 0     (18) 

Then the roots of equation (18) depended of the value of C 

as following: 

when	C � 11.5, the equation (18) became �λ � 8/3
�λ* � 10λ& � 42λ � 280
 � 0, 
and the all roots have negative real parts 

λ" � 	83 , λ& � 	8.8337, λ*,� � 	0.5832 V 5.5997W 
therefore the system (17) is asymptotically stable. 

while C � 10.5, the equation (18) became �λ � 8/3
�λ* � 10λ& � 14λ � 280
 � 0, 
then not all roots have negative real parts λ" � 	 U* , λ& � 	11.0317, λ*,� � 0.5158 V 5.0115W  

therefore the system (17) is unstable. 

The behaviors of the states �x�t
, y�t
, z�t
, w�t

  of the 

control hyperchaotic system (17) show converging to O�0,0,0,0
  when C � 11.5  (Figure 6,a) and divergence to O�0,0,0,0
 when C � 10.5 (Figure 6,b). 
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Figure 6. The difference of the state of the controlled system (17) with the control gain change. 

Theorem 5 (Nonlinear feedback control method). 

Consider the controlled hyperchaotic system (2) as 

follows: 

àb
ac	x� � ��y 	 x
 � w	y� � 
x 	 xz 	 Ce"�z� � xy 	 �z	w� � 		�y	 	 Ce&�

                         (19) 

Where Ce"� � f"�&, Ce&� � f&�&, f", f&  are a positive 

feedback gain, then system (19) will converge to the unstable 

equilibrium point O�0,0,0,0
. 
Proof. Construct the Lyapunov function 

g � 	12 ��& � �& � �& � �&
 � 12f" �Ce" 	 C∗
& � 12f& �Ce&	 C∗
& 

where C∗ is a parameter to be determined. 

The derivation of g is: g� � ��� � ��� � ��� � ��� � �Ce" 	 C∗
�& � �Ce& 	 C∗
�& 

� 	��& 	 C∗�& 	 ��& 	 C∗�& � �� � 

�� � �� 	 	��� 

� 	Y�, �, �, �Z
ij
jjj
jk � 	� � 
2 	0	 	 12	� � 
2 C∗ 	0	 	d20	12 	0	d2 	�0 	 0C∗ lm

mmm
mn N����Q

� 	opqo 

To ensure the system (19) asymptotically stable, the 

symmetric matrix P should be positive definite, and when P 

satisfy the following conditions: 

àb
ac	

1. � 3 0	2. �C∗ 	 �[Hr
� & 3 0	3. ��C∗ 	 � �[Hr
� & 3 0	4. �C∗& 	 "� �1 � �� � 

&C∗ � "� ��� � 

� 	 ��&
 3 0	
 

we can choose the constant C∗ as 

C∗ 3 s�� t�� � 

4� & , 1 � �� � 

& � I�1 � �� � 

&
& 	 16���� � 

� 	 ��&8� u 
so that	g is positive definite and g�  is negative semi-definite. 

However, cannot get immediately the controlled system (19) 

is asymptotically stable at equilibrium O�0,0,0,0
 
i.e. , x, y, z, w ∈ �<  and Ce" 	 C∗, Ce& 	 C∗ ∈ �< , for this 

reason, x� , y� , z� , w� ∈ �< then, we have 

vλwxy�z
‖�‖&�9 | vopqo � v}	g� ~�9 �?
�

?
�

?
� g�0
 	 ��9


| g�0
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where λwxy�z
  is the smallest eigenvalue of the positive 

matrix P. and so as x, y, z, w ∈ �&, according to the Barbalat 

Lemma, implies x, y, z,w → 0  as t → 0 , therefore the 

controlled hyperchaotic system (19) is asymptotically stable 

to equilibrium point, This completes the proof. 

4. Flow Chart of Linear and Non-linear 

Feedback Control Strategies 

The following flow charts explains briefly the Linear and 

non-linear feedback control strategies respectively 

 

Figure 7. Flow chart of Linear feedback control strategies. 

 

Figure 8. Flow chart of non-Linear feedback control strategies. 



 Pure and Applied Mathematics Journal 2017; 6(1): 5-13 13 

 

 
5. Conclusions 

In this paper, the control problem of a 4D hyperchaotic 

system is investigated: ordinary feedback control, dislocated 

feedback control, enhancing feedback control, speed 

feedback control are used to suppress hyperchaos to unstable 

equilibrium. The Routh-Hurwitz and Lyapunov's second 

methods are applied to derive the conditions of the 

asymptotic stability of the controlled hyperchaotic system. 

Theoretical analysis,numerical simulation and illustrative 

examples are given to demonstrate the effectiveness of the 

proposed controllers. 
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