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Abstract: This paper provides an overview of two types of linear block codes: Hamming and cyclic codes. We have generated, 

encoded and decoded these codes as well as schemes and/or algorithms of error-detecting and error-correcting of these codes. We 

have managed to detect and correct errors in a communication channel using error detection and correction schemes of hamming 

and cyclic codes. 
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1. Introduction 

Coding theory is concerned with the transmission of data 

across noisy channels and the recovery of corrupted 

messages, Altaian [1]. It has found widespread applications 

in electrical engineering, digital communication, 

Mathematics and computer science. While the problems in 

coding theory often arise from engineering applications, it is 

fascinating to note the crucial role played by mathematics in 

the development of the field. 

The importance of algebra in coding theory is a commonly 

acknowledged fact, with many deep mathematical results 

being used in elegant ways in the advancement of coding 

theory; therefore coding theory appeals not just to engineers 

and computer scientists, but also to mathematicians and 

hence, coding theory is sometimes called algebraic coding 

theory, Doran [3]. 

An algebraic techniques involving finite fields, group 

theory, polynomial algebra as well as linear algebra deal with 

the design of error-correcting codes for the reliable 

transmission of information across noisy channels. 

Usually, coding is divided into two parts: 

a Source coding: 

� Source encoding 

� Source decoding 

b Channel coding: 

� Channel encoding 

� Channel decoding 

 

Figure 1. Model of a Data Transmission System. 

Source encoding involves changing the message source to 

a suitable code say u to be transmitted through the channel. 

Channel encoding deals with the source encoded message u , 
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by introducing some extra data bits that will be used in 

detecting and/or even correcting the transmitted message, 

Hall [4]. Thus the result of the source encoding is a code 

word, say v . Likewise, channel decoding and source 

decoding are applied on the destination side to decode the 

received code word r as correctly as possible.  

Figure 1 represents a model of a data transmission system. 

For example: Consider a message source of four fruit 

words to be transmitted: apple, banana, cherry and grape. The 

source encoder encodes these words into the following binary 

data
1 2 3 4

( )u u u u : 

Apple → 
1

u = (0, 0), banana → 
2

u = (0, 1), 

Cherry → 
3

u = (1, 0), Grape → 
4

u = (1, 1). 

Suppose the message ‘apple’ is to be transmitted over a 

noisy channel. The bits 
1

(0,0)u =  will be transmitted 

instead. Suppose an error of one bit occurred during the 

transmission and the code (0, 1) is received instead as seen in 

the following figure. The receiver may not realize that the 

message was corrupted and the received message will be 

decoded into ‘banana’. 

 

Figure 2. A communication error occurred. 

With channel coding, this error may be detected (and even 

corrected) by introducing a redundancy bit as follows

1 2 3 4
( )v v v v : 

(00) (000),
1

(01) (011),
2

(10) (101),
3

(11) (110).
4

v

v

v

v

→ =

→ =

→ =

→ =

 

The newly encoded message ‘apple’ is now (000). Suppose 

this message was transmitted and an error of one bit only 

occurred. The receiver may get one of the following: (100), 

(010) or (001). In this way, we can detect the error, as none of 

(100), (010) or (001) is among our encoded messages. 

Note that the above channel encoding scheme does not 

allow us to correct errors. For instance, if (100) is received, 

then we do not know whether (100) comes from (000), (101) 

or (110). However, if more three redundancy bits are 

introduced instead of one bit, we will be able to correct errors. 

For instance, we can design the following channel coding 

scheme: 

(00) (00000),

(01) (01111),

(10) (10110),

(11) (11001)

→
→
→
→

 

Again if the message (00000) was transmitted over a noisy 

channel and that there is only one error introduced, then the 

received word must be one of the following five: (10000), 

(01000), (00100), (00010) or (00001). Since only one error 

occurred and since each of these five codes differs from 

(00000) by only one bit, and from the other three correct 

codes (01111), (10110) and (11001) by at least two bits, then 

the receiver will decode the received message into (00000) 

and, hence, the received message will be correctly decoded 

into ‘apple’. 

Algebraic coding theory is basically divided into two 

major types of codes: Linear block codes and Convolutional 

codes, Blahut [2]. 

In this paper we present some encoding and decoding 

schemes as well as some used error detection/correction 

coding techniques using linear block codes only. We discuss 

only two types of linear block codes: Hamming and cyclic 

codes. 

1.1. Problem Statement 

In any environment, noise, electromagnetic radiations and 

any other forms of disturbances affect communication leading 

to corrupted messages, errors in the received messages or even 

to an extent of the message not being received at all. 

1.2. Objectives of the Study 

1.2.1. General Objective 

The main objective of this study was to provide an overview 

of two types of linear block codes: Hamming and cyclic codes 

and study schemes and/or algorithms of error detection and 

correction of these codes. 

1.2.2. Specific Objectives 

To generate, encode and decode hamming and cyclic codes. 

To detect and correct errors using hamming and cyclic 

codes. 

1.3. Justification of Study 

Transmission of data across noisy channel and other forms 

of interference affect communication resulting to misdirected 

messages. Hence, we need the recovery of these corrupted 

messages. Considering the present concern with privacy and 

secrecy, and the prospect that such problems will increase 

significantly as communication services and data repositories 

grow, importance is thus attached to finding means of 

detecting and correcting any error that occur. Thus the need 

for a code that fully guarantees security in the sense that 

whenever two or more persons send or receive this code then 

data integrity and authentication are guaranteed. In this paper 

we present some encoding and decoding schemes as well as 

error detection/correction coding techniques using linear 
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block codes only. 

This study is applicable in: 

� Deep space communication. 

� Satellite communication. 

� Data transmission. 

� Data storage. 

� Mobile communication. 

� File transfer. 

� Digital audio/video transmission. 

1.4. Null Hypothesis 

Codes for non-binary input channels such as the dual – 

code [1] useful on multiple frequency shift channels, and on 

practical implementations of high rate codes cannot work on 

binary channels. 

2. Literature Review 

The history of data-transmission codes began in 1948 with 

the publication of a famous paper by Claude Shannon. 

Shannon showed that associated with any communication 

channel or storage channel is a number C (measured in bits per 

second), called the capacity of the channel, which has the 

following significance: Whenever the information 

transmission rate R (in bits per second) required of a 

communication or storage system is less than C then, by using 

a data-transmission code, it is possible to design a 

communication system for the channel whose probability of 

output error is as small as desired. Shannon, however, did not 

tell us how to find suitable codes; his contribution was to 

prove that they exist and to define their role. Throughout the 

1950s, much effort was devoted to finding explicit 

constructions for classes of codes. The first block codes were 

introduced in 1950 when Hamming described a class of 

single-error-correcting block codes and he published what is 

now known as Hamming code, which remains in use in many 

applications today. 

In 1957, among the first codes used practically were the 

cyclic codes which were generated using shift registers. It was 

quickly noticed by Prange that the cyclic codes have a rich 

algebraic structure, the first indication that algebra would be a 

valuable tool in code design. 

In the 1960s, the major advances came in 1960 when 

Hocquenghem and Bose and Ray-Chaudhuri found a large 

class of multiple-error-correcting codes (the BCH codes). The 

discovery of BCH codes led to a search for practical methods 

of designing the hardware or software to implement the 

encoder and decoder. In the same year independently, Reed, 

Solomon and Arimoto found a related class of codes for 

non-binary channels. Concatenated codes were introduced by 

Forney (1966), later Justesen used the idea of a concatenated 

code to devise a completely constructive class of long block 

codes with good performance. 

During the 1970s, these two avenues of research began to 

draw together in some ways and to diverge further in others. 

Meanwhile, Goppa (1970) defined a class of codes that is sure 

to contain good codes, though without saying how to identify 

the good ones. 

The 1980s saw encoders and decoders appear frequently in 

newly designed digital communication systems and digital 

storage systems, Hamming [5]. 

The 1990s witnesses an evaluation of all groups in 

informatics at the universities in Norway. The evaluation was 

performed by a group of internationally recognized experts. 

The committee observed that the period 1988-92, had the 

largest number of papers (27) published in internationally 

refereed journals among all the informatics groups in Norway. 

In the period 1995-1997 the goal of finding explicit codes 

which reach the limits predicted by Shannon's original work 

has been achieved. The constructions require techniques from 

a surprisingly wide range of pure mathematics: linear algebra, 

the theory of fields and algebraic geometry all play a vital role, 

Han [6]. Not only has coding theory helped to solve problems 

of vital importance in the world outside mathematics, it also 

has enriched other branches of mathematics, with new 

problems as well as new solutions, Kolman [7]. In 1998 

Alamouti described a space-time code. 

In 2000 Aji, McEliece and others synthesize several 

decoding algorithms using message passing ideas. In the 

period 2002-2006 many books and papers are introduce such 

as Algebraic soft-Decision Decoding of Reed- Solomon 

Codes by Koetter R., and Error Control Coding: Fundamentals 

and Applications by Lin and Costello and Error Correction 

Coding by Moon T. in 2005. 

During this decade, development of algorithms for 

hard-decision decoding of large nonbinary block codes 

defined on algebraic curves, Kabatiansky [8]. Decoders for the 

codes known as hermitian codes are now available and these 

codes may soon appear in commercial products. At the same 

time, the roots of the subject are growing even deeper into the 

rich soil of mathematics. 

Doumen (2003), researched on the aims of cryptography in 

providing secure transmission of messages in the sense that 

two or more persons can communicate in a way that 

guarantees confidentiality, data integrity and authentication. 

Sebastia (2003) studied on the Block error correcting codes. 

He found that the minimum distance decoder maximizes the 

likelihood of correcting errors if all the transmission symbols 

have the same probability of being altered by the channel 

noise. He also noted that if a code has a minimum distance d, 

then d(C) - 1 is the highest integer with the property that the 

code detects d(C) - 1 errors. 

Todd [11], studied on the Error control coding. He showed 

that if a communication channel introduces fewer error than the 

minimum distance errors, d(C), then these can be detected and 

if d(C)- 1 errors are introduced, then error detection is 

guaranteed (see also [8]). He also noted that the probability of 

error detection depends only on the error introduced by the 

communication channel and that the decoder will make an error 

if more than half of the received bit strings are in error [9]. 

In 2009, Nyaga [10] studied the Cyclic ISBN-10 to improve 

the conventional ISBN-10. They designed a code that would 

detect and correct multiple errors without many conditions 

attached for error correction and found out that the code could 
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correct as many errors as the code could detect. The method 

involves trial and error calculation and thus it needs to be 

improved on and simplified to speed up the process. 

Asma & Ramanjaneyulu [12] studied the implementation of 

Convolution Encoder and Adaptive Viterbi Decoder for Error 

Correction. Egwali Annie and Akwukwuma [13] investigated 

Performance Evaluation of AN-VE: An Error Detection and 

Correction Code. Vikas Gupta and Chanderkant Verma [14] 

examined Error Detection and Correction: Viterbi Mechanism. 

Error Detecting and Error Correcting Codes were examined 

by Chauhan et al [15]. 

3. Methodology 

This section sets the methodology of the research by 

discussing the Linear Block codes. 

3.1. Basic concepts of Block Codes 

The data of output of the source encoder are represented by 

sequence of binary digits, zeros or ones. In block coding this 

sequence is segmented into message blocks 
0 1 1

( ... )
k

u u u u −=
consisting of k digits each. 

There are a total of 2
k  distinct messages. The channel 

encoder, according to certain rules, transforms each input 

message into a word 
0 1 1

( ... )
n

v v v v −=  with n k≥ . 

3.2. Basic Properties of a Linear Block Code 

� The zero word (00…0), is always a codeword. 

� If c is a codeword, then (-c) is also a codeword. 

� A linear code is invariant under translation by a 

codeword. That is, if c is a codeword in linear code C, 

then C + c = C.  

� The dimension k of the linear code C(n, k) is the 

dimension of C as a subspace of 
n

V over GF(2), i.e. 

dim( )C k= . 

3.3. Encoding Scheme 

If 
0 1 1

( ... )
k

u u u u −=  is the message to be encoded, then the 

corresponding codeword v can be given as follows: v = u. G 

3.4. Error Detection, Error Correction & Decoding Schemes 

A fundamental concept in secure communication of data is 

the ability to detect and correct the errors caused by the 

channel. In this chapter, we will introduce the general 

schemes/methods of linear codes decoding. 

Channel Model / Binary Symmetric Channel 

The channel is the medium over which the information is 

conveyed. 

Examples of channels are telephone lines, internet cables 

and phone channels, etc. These are channels in which 

information is conveyed between two distinct places or 

between two distinct times, for example, by writing 

information onto a computer disk, then retrieving it at later 

time. 

Now, for purposes of analysis, channels are frequently 

characterized by mathematical models, which (it is hoped) 

are sufficiently accurate to be representative of the attributes 

of the actual channel. 

In this paper we restrict our work on a particularly simple 

and practically important channel model, called the binary 

symmetric channel (BSC), and defined as follows: 

Definition 1: A binary symmetric channel (BSC) is a 

memoryless channel which has channel alphabet {0, 1} and 

channel probabilities. 

p(1 received |0 send) = p(0 received | 1 sent) =
1

,
2

p <

( after = there should not be space) 

p(0 received | 0 send) = p(1 received | 1 sent) = 1 – p. 

Figure 3, shows a BSC with crossover probability p. 

 

Figure 3. Binary Symmetric Channel. 

3.5. General Methods of Decoding Linear Codes Over BSC 

In a communication channel we assume a code word

0 1
( ... )

n
v v v −=  is transmitted and suppose 

0 1
( ... )

n
r r r −=  is 

received at the output of the channel. If r is a valid codeword, 

we may conclude that there is no error in v. Otherwise, we 

know that some errors have occurred and we need to find the 

correct codeword that was sent by using any of the following 

general methods of linear codes decoding: 

� Maximum likelihood decoding, 

� Nearest neighbor/Minimum distance decoding 

� Syndrome decoding 

� Standard array 

� Syndrome decoding using truth table 

These methods for finding the most likely codeword sent 

are known as decoding methods. 

3.5.1. Maximum Likelihood Decoding 

Suppose the codewords 
0 1 2 1

{ , ,..., }kv v v
−

 form the linear 

block code C(n, k) and suppose a BSC with crossover 

probability 
1

2
p <  is used. 

Let a word 
0 1 1

( ... )
n

r r r r −=  of length n be received when a 

codeword 
0 1 1

( ... )
nr r r rv v v v C

−
= ∈ is sent. Then, the maximum 

likelihood decoding (MLD) will conclude that 
r

v  is the most 

likely codeword transmitted if 
r

v  maximizes the forward 

channel probabilities. 

3.5.2. Nearest Neighbor Decoding/Minimum Distance 

Decoding 

Important parameters of linear block codes called the 
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hamming distance and hamming weight are introduced as 

well as the minimum distance decoding. 

3.5.3. The Minimum Distance Decoding 

Suppose the codewords 
0 1 2 1

{ , ,..., }kv v v
−

 from a code C(n, 

k) are being sent over a BSC. If a word r is received, the 

nearest neighbor decoding or (minimum distance decoding) 

will decode r to the codeword 
r

v  that is the closest one to 

the received word r. Such procedures can be realized by an 

exhaustive search on the set of codewords which consists of 

comparing the received word with all codewords and 

choosing of the closest codeword.  

3.5.4. Syndrome & Error Detection 

Consider an (n, k) linear code C. Let 
0 1 1

( ... )
n

v v v v −=  be a 

codeword that was transmitted over a noisy channel (BSC). 

Let
0 1 1

( ... )
n

r r r r −=  be the received vector at the output of the 

channel. Because of the channel noise, r may be different 

from v. Hence, the vector sum 
0 1 1

( ... )
n

e r v e e e −= + = is an 

n-tuple where 1,
i

e =  and 
i i

r v≠  for 0,1,..., 1.i n= −  This 

n-tuple is called an error vector or (error pattern). The 1s in e 

are the transmission errors that the code is able to correct. 

3.5.5. Syndrome & Error Correction 

The syndrome s of a received vector r = v + e depends 

only on the error pattern e, and not on the transmitted 

codeword v. 

3.5.6. Error-Detecting& Error-Correcting Capabilities of 

Block Codes 

Error-Detecting Capabilities of Block Codes 

Let m be a positive integer. A code C is u error detecting if, 

whenever a codeword incurs at least one and at most u errors, 

the resulting word is not a codeword. 

A code is exactly u error detecting if it is m error detecting 

but not ( 1)m + error detecting. 

Error-Correcting Capabilities of Block Codes 

If a block code with minimum distance 
min

d  is used for 

random-error correction, one would like to know how many 

errors that the code is able to correct. 

A block code with minimum distance 
min

d  guarantees 

correcting all the error patterns of min 1

2

d
t

− =  
 

 or minimal 

errors. The parameter t is called the random-error-correcting 

capability of the code. 

3.5.7. Syndrome Decoding 

We will discuss a scheme for decoding linear block codes 

that uses a one-to-one correspondence between a coset leader 

and a syndrome. So we can form a decoding table, which is 

much simpler to use than a standard array. The table consists 

of 2n k−  coset leaders (the correctable error patterns) and 

their corresponding syndromes. 

So the exhaustive search algorithm on the set of 2n k−  

syndromes of correctable error patterns can be realized if we 

have a decoding table, in which syndromes correspond to 

coset leaders. 

4. Binary Hamming Codes 

4.1. Construction of Binary Hamming Codes 

Hamming codes are the first important class of linear 

error-correcting codes named after its inventor, Hamming [1] 

who asserted by proper encoding of information, errors 

induced by a noisy channel or storage medium can be 

reduced to any desired level without sacrificing the rate of 

information transmission or storage. We discuss the binary 

Hamming codes with their shortened and extended versions 

that are defined over GF (2). These Hamming codes have 

been widely used for error control in digital communication 

and data storage. They have interesting properties that make 

encoding and decoding operations easier. 

In this section we introduce Hamming codes as linear 

block codes that are capable of correcting any single error 

over the span of the code block length. 

Let ,r Z∈  the hamming code of order r is a code 

generated when you take a parity check matrix H and 

(2 1)rr × −  matrix with columns that are all the (2 1)r −  

non-zero bit strings of length r in any order such that the last 

r columns form an identity matrix. 

Remark 1: 

Interchanging the order of the columns lead to an 

equivalent code. 

Example 1: 

Find codewords in hamming code C of order. 

1 b) 2 c) 3 

Solution 

r = 1 

1
1 (2 1)

1 1

(1)

1

( / )

( / )

(1)(1) 1

(1)(0) 0

{0,1}

t

matrix

G

G I A

H A I

C

× −
⇒ ×
⇒

=
=

=
=
=

⇒ =

 

r = 2 

2

2

2 (2 1)

2 3

110
( / )

101

1

1

(11)

( / )

(111)

t

t

matrix

H A I

A

A

G I A

× −
⇒ ×

 
= ⇒ 
 

 
=  
 

∴ =
=

=
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Perform linear combinations of rows of G. 

C = {111, 000} 

Remark 2: 

Let 1.r =  Then the G is a 1 1× matrix. Since ( / )G I A=  

and ( / )tH A I= , we conclude that (1)G =  and hence

{0,1}C = . 

Since all the codewords are linear combinations of the 

rows of G, this code has only two codewords. 

r = 3 

3

3

3 (2 1)

3 7

0111100

1011010

1101001

( / )

0111

1011

1101

011

101

110

111

( / )

1000011

0100101

0010110

0001111

t

t

matrix

H matrix

H

H A I

A

A

G I A

× −
⇒ ×

 
 =  
 
 

=

 
 =  
 
 

 
 
 =
 
 
 

=

 
 
 =
 
 
 

. 

Perform linear combination of rows of G. 

= {1000011, 0100101, 0010110, 0001111, 1100110, 

1010101, 1001100, 0110011, 0101100, 0011001, 1110000, 

1101001, 0111100, 1111111, 0000000 and 0101010} 

Suppose the linear code ( , )C n k  has a ( )n k n− ×  matrix 

H as the parity check matrix and that the syndrome of the 

received word r  is given by .T TS H r= . Then the decoder 

must attempt to find a minimum weight e which solves the 

equation .T TS H e= . 

Write 
0 1 1

( , ,..., )
n

e e e e −=  and
0 1 1

( ,..., )
n

H h h h −= , where 

(2) 0,1,..., 1
i

e GF i n∈ ∀ = −  and each 
i

h is an ( )n k−
dimensional column vector over (2)GF , then 

0

1
1

0 2 1 0

1

[ ... ] .

.

nT

n i ii

n

e

e

S h h h e h

e

−
− =

−

 
 
 
 = =
 
 
 
 

∑ . 

In other words, the syndrome may be interpreted as the 

vector sum of those columns of the matrix corresponding to 

the positions of the errors. 

Now, consider all error words of weight one are to have 

distinct syndromes, and then it is evidently necessary and 

sufficient that all columns of the matrix must be distinct. 

For if ( ) 1w e =  say 1
i

e =  then T

i iS h=  if 1je =  then 

T

j jS h= now, if
T T

i jS S=  then 
i jh h≠  for i j≠ . 

In other words, the parity-check matrix H of this code 

consists of all the nonzero ( )n k− -tuples as its columns. Thus, 

there are 
( )2 1n kn −= −  possible columns. 

The code resulting from above is called a Binary Hamming 

code of length 2 1mn = −  and 2 1mk m= − −  where

m n k= − . 

Definition 2:  

For any integer 1m >  there is a Hamming code, Ham ( )m , 

of length 2 1m −  with m  parity bits and 2 1m m− −  

information bits. 

Using a binary m n×  parity check matrix whose columns 

are all of the m  - dimensional binary vectors different from 

zero, the Hamming code is defined as follows:  

Ham 
0 1 1( ) { ( ... ) : . 0}T

n nm v v v v V H v−= = ∈ =  

Table 1. ( , )n k Parameters for Some Hamming Codes. 

M Hamming Code 

3 (7, 4) 

4 (15, 11) 

5 (31, 26) 

6 (63, 57) 

7 (127, 120) 

Theorem 1: The minimum distance of a Hamming code is 

at least 3. 

Proof: 

If Ham ( )m  contained a codeword v  of weight 1, then

v  would have 1 in the 
thi  position and zero in all other 

positions. 

Since 0T

iHv h= = , then 
thi  column of H must be zero. 

This is a contradiction of the definition of H. So Ham ( )m

has a minimum weight of at least 2. 

If Ham ( )m  contained a codeword v  of weight 2, then 

v would have 1 in the 
thi  and thj  positions and zero in all 

other positions. Again, since 0T

i jHv h h= = + , then &i jh h

are not distinct. This is a contradiction. 

So Ham ( )m  has a minimum weight of at least 3. 

Then
min

3W ≥ . Since 
min min

d W=  in linear codes, then

min
3d ≥ , therefore the minimum distance of Hamming code 

is at least 3. 

Theorem 2: The minimum distance of a Hamming code is 

exactly 3. 

Proof:  

Let ( , )C n k  be a Hamming code with parity-check matrix

m n
H × . Let us express the parity-check matrix H in the 

following form: 
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1 2 1
[ ,.., ,.., ,.., ]mi jH h h h h

−
= , where each 

i
h  represents the

thi  column of H. Since the columns of H are nonzero and 

distinct, no two columns add to zero. It follows that the 

minimum distance of a Hamming code is at least 3. Since H 

consists of all the nonzero m -tuples as its columns, the 

vector sum of any two columns, say 
i

h  and
jh , must also 

be a column in H, say 
S

h  i.e. 
i j sh h h+ = . Thus, 

0i j sh h h+ = =  (In modulo 2-addition) 

It follows from that the minimum distance of a Hamming 

code is exactly 3. 

Corollary 1: The Hamming code is capable of correcting 

all the error patterns of weight one and is capable of 

detecting all 2 or fewer errors. 

Proof:  

min 1 3 1
1

2 2

d
t

− −   = = =   
  

. So the Hamming code is 

capable of correcting all the error patterns of weight one. 

And
min

1 3 1 2d − = − = . Thus it also has the capability of 

detecting all 2 or fewer errors. 

Result  

For any positive integer 1m > , there exists a Hamming 

code with the following parameters: 

Code length: 2 1mn = −  

Number of information symbols: 2 1mk m= − −  

Number of parity-check symbols: n k m− =  

Random-error-correcting capability: 
min

1( 3)t d= = . 

4.2. The Generator and the Parity Check Matrices of Binary 

Hamming Codes Ham (m) 

GENERATOR MATRICES  

When we use PCB we encode a message 
1 2

...
k

x x x  as

1 2 1
...

k k
x x x x +  where 1

1

(mod 2)
k

k i

i

x x+
=

=∑ . 

To generalize this notion we add more than one check bit 

and encode the message 1 2 ... kx x x  as 1 2 1... ...k k nx x x x x+ . Where 

the last n – k bits are PCB’s obtained from the k bits in the 

message. 

The PCB are 1 2 ...k k nx x x+ +  specified as follows: 

i. Consider the k bit message 1 2 ... kx x x  as a 1 x k matrix 

X. 

ii. Let G be a k x n matrix that begins with kI . I.e. k x k 

identity matrix. Hence ( / )kG I A=  where A is a k x (n 

- k) matrix. G is called a generator matrix. 

iii. We encode the message X as E(X) =XG doing 

arithmetic mod 2. 

Example 3: 

a Consider encoding by adding the PCB to a 3 bit 

message, where 

1001

0101

0011

G

 
 =  
 
 

. 

(I.e.) The column of 1’s is added to 3I .  

3( / )G I A= . Where

1

1

1

A

 
 =  
 
 

 

b Consider the encoding using triple repetition for 3 bit 

messages as follows. 

3 3 3( | | )G I I I= . 

100100100

010010010

001001001

G

 
 =  
 
 

. 

c Let 

100111

010110

001101

G

 
 =  
 
 

. 

3( | )G I A= . Where 

111

110

101

A

 
 =  
 
 

. 

What codewords does G generate? 

Solution: 

E(X) = XG 

3 6

3

:

{000,001,010,100,011,101,110,111}

f B B

B

→
=

. 

(000) 000000

(001) 001101

(010) 010110

(100) 100111

(011) 011011

(101) 101010

(110) 110001

(111) 111100

G

G

G

G

G

G

G

G

=
=
=
=
=
=
=
=

 

{000000,001101,010110,100111,011011,101010,110001,111100}G =  

Remark 3: 

a The codewords in a binary code generated by the 

generator matrix G can be obtained by performing all 

possible linear combinations of the rows of G working 

mod 2. 

I.e. 

100111

010110

001101

G

 
 =  
 
 

. 
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Rows = 100111, 010110, 001101 

Adding any = 110001, 011011, 101010, 111100, 000000. 

The binary codes formed using the generator matrix have 

the closure property. They are therefore linear codes. I.e. 

consider 
1

y  and 
2

y  codewords generated by G. 

1 1 1

2 2 2

1 2 1 2

. . , . .. ( )

, . .. ( )

( ) ( )

I e y x G i e E x

y x G i e E x

E x x x x G

=
=

+ = +
. 

1 2

1 2

x G x G

y y

= +
= +

. 

Parity Check Matrices 

A simple way to detect errors is by use of parity check bit 

(PCB).  

A parity bit, or check bit is a bit added to the end of a 

string of binary code that indicates whether the number of 

bits in the string with the value one is even or odd. Parity bits 

are used as the simplest forms of error detecting code. There 

are two types of parity bits: even parity bit and odd parity bit. 

An odd number of bits (including the parity bit) are 

transmitted incorrectly; the parity bit will be incorrect, thus 

indicating that a parity error occurred in the transmission. 

Because of its simplicity, parity is used in many hardware 

applications where an operation can be repeated in case of 

difficulty, or where simply detecting the error is helpful. In 

serial data transmission, a common format is 7 data bit, an 

even parity bit, and one or two stop bits. This format neatly 

accommodates all the 7-bit ASCII characters in a convenient 

8-bit byte. 

If a bit string contains an even number of 1s we put 0 at 

the end. 

If it contains an odd number of 1s we put a 1 at the end. 

Our aim is to ensure an even number of 1s in any 

codeword. 

I.e. message 1 2
...

n
x x x . 

Encoded as 1 2 1
...

n n
x x x x + . 

Where 1 1 2
...

n n
x x x x+ = + + + . 

A single error in communication will therefore be noted 

since it will change the parity. 

Example 4: 

Message: 101 

Encoded as 1010 

Suppose sent: 101 

Received: 111 (check 111(odd) → error) 

Example 5: 

Message: 10101 

Encoded as 101011 

Suppose sent: 101011 

Received: 111111(check (even number of 1s) → no error), 

but there is an unnoticed error. 

Remark 4: 

We notice that, when an even number of errors occur, it is 

not noticed. 

Suppose a PCB is added to a bit string during transmission, 

what would you conclude on the following received 

messages. 

a 101011101 – It contains an even number of 1s. Hence it 

is either a valid codeword or contains an even number 

of errors. 

b 11110010111001 – It contains an odd number of 1s 

hence it cannot be a valid codeword and must therefore 

contain an odd number of errors. 

Consider the generator matrix  

100111

010110

001101

G

 
 =  
 
 

 the bit string 
1 2 3

x x x  is encoded as 

1 2 3 4 5 6
x x x x x x where: 

4 1 2 3

5 1 2

6 1 3

x x x x

x x x

x x x

= + +
= +
= +

. 

I.e. 

1 2 3 4

1 2 5

1 3 6

0

0

0

x x x x

x x x

x x x

+ + + = 
+ + = 
+ + = 

– parity check equations. 

I.e. 

1

2

3

4

5

6

111100 0

110010 0

101001 0

x

x

x

x

x

x

 
 
        
  =   
    

    
 
 
 

. 

[ ( ) ] 0tH E x = . Where ( )tE x  is the transpose of E(x) and 

the parity check matrix is 

3

111100

110010

101001

( / )t

H

A I

 
 =  
 
 

=

. 

In general H = ( / )t

n kA I − . 

Remark 5: 

� Relationship between generator matrix and parity check 

matrix. Suppose G is a k x n matrix (i.e.) G = ( / )
k

I A . 

Hence A is a k x (n - k) matrix. We associate to G the 

parity check matrix H where: H = ( / )t

n kA I − . x is then a 

codeword iff G = ( / )
k

I A , H = ( / )t

n kA I − . 

� From a generator matrix, we can find the associated 

parity check matrix and vice versa. 

4.3. Syndrome & Error Detection/Correction 

The parity check matrix is used to detect errors. 

Any received bit string y that does not satisfy the equation, 
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0tHy =  is not a valid codeword, that is, it is in error. 

When the columns of the parity check matrix are distinct 

and are all non-zero, H can be used to correct the errors. 

Suppose x is sent and y received in error then y = x + e, e 

being the error string. 

If e = 0 then no error. 

In general the error string e has a 1 in the position where y 

differs from x and 0 in all other places. 

Example 6: 

x = 110010 

y = 100010 

, 010000

y x e

Hence e

⇒ = +
=

. 

Remark: 

[ ] [ ]t tH y H x e= + . 

t t

t

Hx He

He

= +
=

. 

t t

jHy He c= = . Where 
jc  is the j

th
 column of H . 

Assuming no more than one error exists, we can find the 

codeword x that was send by simply computing tHy . If tHy

= 0, then no error and y is the sent codeword. Otherwise the 
thj  bit is in error and should be changed to produce x. 

Example 7: 

Let G =

100111

010110

001101

 
 
 
 
 

. 

Obtain H. 

Determine the codeword sent given the received: 

y = 001111 

y = 010001 

Assuming no more than one error. 

Solution 

3
( / )G I A=

. 

Where A =
tHy . 

3( / )tH A I= ⇒ 111100

110010

101001

H

 
 =  
 
 

 

(i) 
tHy . 

0

0
111100 0

1
110010 1

1
101001 0

1

1

jc

 
 
    
    = =    
    

    
  
 

. 

Check H 
jc⇒ is the 5

th
 column. Hence the 5th bit string 

received is in error. 

001111y = . 

Hence x = 001101 

(ii) 
tHy . 

0

1
111100 1

0
110010 1

0
101001 1

0

1

jc

 
 
    
    = =    
    

    
  
 

. 

Check H
jc⇒  is the 1st column. Hence the 1st bit string 

received is in error. 

010001y =
. 

Hence x = 110001. 

4.4. Cyclic Codes 

Cyclic codes form an important subclass of linear block 

codes and were first studied by Prange in 1957. These codes 

are popular for two main reasons: first, they are very 

effective for error detection/correction and second, they 

possess many algebraic properties that simplify the encoding 

and the decoding implementations. 

A code C is said to be cyclic if: 

i. C is a linear code. 

ii. Whenever a right or left shift is performed on any 

codeword it yields another codeword. 

i.e. whenever
0 1 1 2 0... ...n na a a C then a a a a C∈ ∈ .  

Remark 6: 

1 2 0
...

n
a a a a  is the first cyclic shift. 

Example 8: 

C = {000, 110, 101, 011} 

Hence C is cyclic. 

000 000 000

110 101 011 110

→ →
→ → → . 

Cyclic codes are useful in: 

i. Shift registers. 

ii. On the theoretical side, cyclic codes can be investigated 

by means of algebraic theory of rings and polynomials. 

Description of Cyclic Codes 

If the components of an n –tuple 
0 1 1

( ... )
n

v v v v −=  are 

cyclically shifted one place to the right, we obtain another 

n-tuple, (1)

1 0 2( ... )n nv v v v− −=  which is called a cyclic shift of v . 

Clearly, the cyclic shift of v  is obtained by moving the 

right most digit 
1n

v −  of v  to the left most digit and moving 

every other digit 
0 1 2
, ,...

n
v v v −  one position to the right. 
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Shifting the components of v  cyclically, i  places to the 

right, the resultant n-tuple would be 

( )

1 1 0 1 1( ... . ... )i

n i n i n n iv v v v v v v− − − − − −=  

Remark 9: Cyclically shifting v  i -places to the right is 

equivalent to cyclically shifting ( )v n i− -places to the left. 

Definition 3: An ( , )n k  linear code C is called cyclic if any 

cyclic shift of a codeword in C is also a codeword in C, i.e. 

whenever
0 1 1

( ... )
n

v v v C− ∈ , then so is
1 0 2

( ... )
n n

v v v− − . 

Example: Consider the following (7, 4) linear code C; 

{(0000000), (1101000), (0110100), (1011100),(0011010), (1110010), (0101110),

(1000110), (0001101), (1100101), (0111001), (1010001), (0010111), (1111111),

(0100011), (1001011)}

C =
 

One can easily check that the cyclic shift of a codeword in C 

is also a codeword in C. For instance, let (1101000)v C= ∈ , 

then (1) (0110100)v C= ∈ : 

Hence, the code C is a cyclic. 

Correspondence between bit string and polynomials over

2
Ζ . 

The key to algebraic treatment of cyclic code is the 

correspondence between the word 
0 1 2 1

...
n

a a a a a −=  is
n nV or B  and polynomial 

2 1

0 1 2 1 2
( ) ... [ ]n

n
a x a a x a x a x in x−

−= + + + + Ζ
. 

In this correspondence the first cyclic shift of a codeword â  

is represented by the polynomial 

0 2 1

1 0 1 2
ˆ( ) ... n

n na x a x a x a x a x −
− −= + + + + . 

i.e. 

Table 2. First Cyclic Shift 

 0
x  1

x  2
x  3 1.... n

x x
−  

)(xa  0a  1a  2a  3a …. 1−na  

ˆ( )a x  
1−na  0a  1a  2a … 2−na  

Consider: 

2 1

0 1 2 1

1

1

1

0 1 1 1

2

0 1 1 1 1

1

( ) ( ... )

( )

( ... ) ( 1)

ˆ... ( )

ˆ( ) ( ) ( 1)

( ) mod( 1)

n

n

n

n

n n

n n

n n

n n n

n

n

n

xa x x a a x a x a x

Consider

xa x a x

x a a x a x a x

a x a x a x a x a a x

a x xa x a x

xa x x

−
−

−
−

−
− −

− − −

−

= + + + +

−

= + + + − −

⇒ + + + − + =

= − −

= −

. 

Working with polynomials help us to perform operations on 

cyclic codes for better understanding. 

We denote the ring of polynomials modulo 1nx −  by

[ ]nV x  with coefficients in
2

Ζ . 

The addition and multiplication of polynomials modulo

1nx −  can be regarded as addition and multiplication of 

equivalence classes of polynomials. 

The equivalence classes form a ring, and iff F(x) is 

reducible we get a field. 

Example 9: 

2 3( ) 1 [ ]f x x in V x= + . 

Solution: Elements P(x) in 3[ ]V x  are; 

2 2 2 2
0,1 ,1, , ,1 ,1 ,x x x x x x x x+ + + + + . 

2 2 2

2

2

1 {0,1 ,1 , }

0 000

1 101

1 110

011

x x x x x

x

x

x x

< + >= + + +
→
+ →
+ →

+ →

. 

C = {000, 101, 110, 011} 

4.4.1. Shift-Register Encoders for Cyclic Codes 

In this section we present circuits for performing the 

encoding operation by presenting circuits for computing 

polynomial multiplication and division. 

Hence, we shall show that every cyclic code can be encoded 

with a simple finite-state machine called a shift-register 

encoder. 

To define the shift register we want to by the following 

definition; 

Definition 4: A D flip-flop is a one-bit memory storage in 

the field (2)GF . 

 

Figure 4. Flip-Flop. 

External clock: Not pictured in our simplified circuit 

diagrams, but an important part of them, which generates a 

timing signal ("tick") every 
0

t  seconds. 

When the clock ticks, the content of each flip-flop is shifted 

out of the flip-flop in the direction of the arrow, through the 

circuit to the next flip-flop. 

The signal then stops until the next tick. 

Adder: The symbol of adder has two inputs and one output, 

which is computed as the sum of the inputs (modulo 

2-addition  
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Figure 5. Adder. 

Multiplication: The symbol of multiplication has one input 

and one output, where the output is the multiplication of the 

input and the number
i

g  which is stored in this symbol (either 

1 or 0), where 0 represented by no connection and 1 by a 

connection. 

 

Figure 6. Multiplication. 

Definition: A shift-register is a chain of ( )n k−  D 

flip-flops connected to each other, where the output from one 

flip-flop becomes the input of the next flip-flop. 

 

Figure 7. Shift Register. 

All the flip-flops are driven by a common clock, and all are 

set or reset simultaneously. 

4.4.2. Cyclic Codes Decoding 

Decoding of cyclic codes consists of the same three steps as 

for decoding linear codes: 

a Syndrome computation. 

b Association of the syndrome to an error pattern. 

c Error correction. 

For any linear code, we can form a standard array, or we can 

use the reduced standard array using syndromes. For cyclic 

codes it is possible to exploit the cyclic structure of the code to 

decrease the memory requirements. 

First we must determine if the received word r is a 

codeword in C or not using a Theorem which states that an 

( )r x C∈  if and only if 

( ) ( ) 0 mod 1 ( 1)n nr x h x x x divided≡ + ⇒ + ( ) ( )r x h x . 

If ( )r x C∉ we determine the closest codeword in ( , )C n k

using the syndrome of as r(x) follows: 

Since every valid received code polynomial ( )r x  must be 

a multiple of the generator polynomial ( )g x  of C, then when 

we divide ( )r x  by ( )g x  the remainder is zero exactly 

when ( )r x  is a codeword, i.e. 

( ) ( )( ) 0r x a x g x= +  

Thus we can employ the division algorithm to obtain a 

syndrome as follows: 

( ) ( ) ( ) ( )r x a x g x s x= +  

where ( )a x  is the quotient and ( )s x  is the remainder 

polynomial having degree less than the degree of ( )g x : 

1

0 1 1( ) ... n k

n ks x s s x s x − −
− −= + + +  

Thus, to compute the syndrome we can use a circuit. 

5. Applications, Conclusion and 

Recommendation 

5.1. Applications 

This study is applicable in: 

� Deep space communication. 

� Satellite communication. 

� Data transmission. 

� Data storage. 

� Mobile communication. 

� File transfer. 

� Digital audio/video transmission. 

5.2. Conclusion 

Decoding can be accomplished in the following manner: 

i. If ( ) 0s r = , then we assume that no error occurred. 

ii. If ( ) 0s r ≠  and it contains odd number of 1's, we 

assume that a single error occurred. The error pattern of a 

single error that corresponds to s is added to the received 

word for error correction. 

iii. If ( ) 0s r ≠  and it contains even number of 1's, an 

uncorrectable error pattern has been detected. 

5.3. Recommendation 

Hamming code corrects only the error patterns of single 

error and is capable of detecting all 2 or fewer errors hence 

finding a way to correct more than one error and detect more 

than two errors would be effective. 

All error detection, correction controlling mechanisms has 

been studied. Hamming code is most efficient error correction 

mechanism in long distance communication. Interesting area 

of future research is the study of how the presence of caches 

would affect the correlation in the data input to the ECC 

memory, and whether there is any systematic pattern there that 

can be exploited by the optimization algorithms 
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