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Abstract: In this paper, the solving of a class of both linear and nonlinear Volterra integral equations of the first kind is 

investigated. Here, by converting integral equation of the first kind to a linear equation of the second kind and the ordinary 

differential equation to integral equation we are going to solve the equation easily. The method of successive approximations 

(Neumann’s series) is applied to solve linear and nonlinear Volterra integral equation of the second kind. Some examples are 

presented to illustrate methods. 

Keywords: Volterra Integral Equation, First Kind, Second Kind, Kernel, Method of Successive Approximations 

 

1. Introduction 

The integral equation originates from the conversion of a 

boundary-value problem or an initial-value problem 

associated with a partial or an ordinary differential equation, 

but many problems lead directly to integral equations and 

cannot be formulated in terms of differential equations [7], 

[10] & [11]. There as on for doing this is that it may make 

solution of the problem easier, or sometimes enable us, to 

prove fundamental results on the existence and uniqueness of 

the solution. 

An integral equation is an equation in which the unknown 

function �(�)  to be determined appears under the integral 

sign [3] & [7].A typical form of an integral equation in �(�)	is of the form. 

�(�) = �(�) + λ	 
(�, �)�(�)
��(�)�(�)              (1) 

Where 	K(x, t) is called the kernel of the integral equation, 

and α(x)	and	β(x) are the limits of integration. It can be easily 

observed that the unknown function f(x)  appears under the 

integral sign. It is to be noted here that both the kernel K(x, t) 
and the function φ(x) in equation are given functions; and λ is a 

constant parameter [1], [3], [5], [7]&[9]. 

The prime objective of this paper is to determine the unknown 

function f(x)that will satisfy equation (1) using a number of 

Numerical techniques. It needs considerable efforts in exploring 

these methods to find solutions of the unknown function. 

The theory and application of integral equations is an 

important subject within applied mathematics, physics, and 

engineering. In particular, they are widely used in mechanics, 

geophysics, electricity and magnetism, kinetic theory of gases, 

hereditary phenomena in biology, quantum mechanics, 

mathematical economics, and queuing theory [2], [7], [8] & 

[11]. 

Integral equations are used as mathematical models for many 

and varied physical situations, and integral equations also occur 

as reformulations of other mathematical problems. Now begin 

with a brief classification of integral equations, and then in later 

sections, by considering volterra integral equations of the first 

and the second kind. By doing this, it helps the researchers to 

prepare themselves for more challenging problems that will be 

considered in subsequent topics. 

2. Significance of the Study 

Integral equations are often easier to solve, more elegant 

and compact than a corresponding differential equation. 

Because it does not require supplementary initial or boundary 

conditions and the contribution of this study is that: 

� Distinguish the importance of integral equation over the 

differential equation. 

� Initiate other researchers for depth study about integral 

equation using different numerical techniques. 



 Pure and Applied Mathematics Journal 2016; 5(6): 211-219 212 

 

� It gives clue to extend the concept of integral equation 

to many interdisciplinary areas instead of using 

differential equations. 

� It invites other researchers interested on the rest part of 

integral equations. 

3. Research Methods 

In this research, we had used successive approximation 

method of integral equations in transforming from ordinary 

differential equation (ODE). Integral equations of the first kind 

are often extremely ill-conditioned. Applying the kernel to a 

function is generally a smoothing operation, so the solution, 

which requires inverting the operator, will be extremely sensitive 

to small changes or errors in the input. 

The treatment of the equation will depend on the smoothness 

of K(x, t)	and	f(x). Integral equations of the first kind (linear or 

nonlinear) are generally suspected of being ill-conditioned or ill-

posed. In such circumstances small changes in f(x)	or	K(x, t)	may have a large effect in the numerical solution 

of f(x) of the problem. If the original problem had a solution the 

perturbed equation may have no solution, and vice-versa. 

4. Integral Equations and Their 

Relationship to Differential Equations 

The theories of ordinary and partial differential equations are 

a fruitful source of integral equations. The researcher shall 

sketch here one of the ways in which integral equations can arise 

from ordinary differential equations. Most ordinary differential 

equations can be expressed as integral equations, but the reverse 

is not true [10] & [11]. 

To investigate the relationship between integral and 

deferential equations, The researcher will need the following 

lemma which will allow us to replace a double integral by a 

single one. 

Lemma 1: (Replacement Lemma) suppose that � ∶[ , !] 	→ 	IR is continuous. Then 

&& �(�)
��'
(

�
( 
�) = &(� − �)�(�)
��

( , � ∈ [ , !] 
Proof:Define F ∶ [a, b] 	→ 	IR by 

0(�) = &(� − �)�(�)
��
( , � ∈ [ , !] 

As(x − t)f(t) and
112 [(x	 − 	t)f(t)]	are continuous for all x 

and t in [a, b], we can use [Leibniz rule] to differentiate	F: 

0)(�) = (� − �)�(�)345� 

� � + & 66� [(� − �)�(�)]�
( 
�

= &�(�)�
( 
�. 

Since, again by [Leibniz rule],		 7(8)9: ;8 and hence 
<=<>, are 

continuous functions of > on [:, ?], we may now apply the 

fundamental theorem of calculus I to deduce 

0(�)) = 0(�)	) − 0( ) = 	 0)(�)
��'( = 	 	 �(�)
��(�'( 
�   (2) 

Swapping the roles of x and x′ we have the result as stated. 

Alternatively, define, for (t, x′) ∈ [a, x′]@ 

A(�, �)) = B�(�), CℎEF ≤ � ≤ �) ≤ �,0, CℎEF ≤ �) ≤ � ≤ �.         (3) 

The function G = G(t, x′) is continuous, except on the line 

given by t = x′ , and hence integrable. Using Fubini’s 

Theorem 

&& �(�)
��'
(

�
( 
�) = &J&A(�, �))
��

( K
�)�
(  

= 	 L	 A(�, �))
�)�( M�( 
� = 	 L	 �(�)
�)�4 M�( 
� =	 (� − �)�(�)
��'(                (4) 

Hence proved. 

Now considering the first-order differential equation. 

NON� = P) = �(�, P)                 (5) 

With the initial condition y	(0) 	= 	 yR  if say, f(x, y)  is 

continuous function of (x, y) , integrate (5) from 	0	tox , 

obtaining  

&S
P
�T 
�
�
R =	&�(�, P)
��

R &
P�
R=	&�L�, P(�)M
��

R P(�) − 	P(0)
= 	&�L�, P(�)M
��

R  

P(�) = 	PR −		 �L�, P(�)M
��R , CℎEUEP(0) = 	PR    (6) 

This illustrates the general fact that, by going over to 

integral equations, it includes both the differential equation 

and the initial conditions in a single equation. Again consider 

the second-order differential equation. VWXV2W =	y)) = f(x, y), With initial conditions. 
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y(0) = 	 yR, y) =	yY                     (7) 

Then integrate (7)	from	0	to	x. Then 

& 

� S
P
�T 
�
�
R =	&[�L�, P(�)M]�

R 
� 
P)(�) −	P)(0) = 	&[�L�, P(�)M]�

R 
� 
P)(�) 	= 	P)(0) +	&[�L�, P(�)M]�

R 
�![�, P)(0) = 	PY	 
P)(�) 	= 	 PY +		 [�L�, P(�)M]�R 
�                 (8) 

Whence the second integration 

&S
P
�T 
�
�
R = &PY�

R 
� + &
��
R \&[�L[, P([)M]4

R 
[] 

P(�) − 	P(0) = 	PY� +	& 
��
R &�L[, P([)M4

R 
[, ![�P(0) = 	PR 

P(�) = 	PR	 + PY� +	&
��
R &�L[, P([)M4

R 
[ 

P(�) = 	PR	 + PY� +	&[�L�, P(�)M]4
R 
� &
[�

4  

P(�) = 	PR	 + PY� +		 (� − �)^�L�, P(�)M_4R 
�          (9) 

The argument is reversible, so that here again the 

differential equation (7), together with the initial conditions, 

is equivalent to the single integral equation (9). We see also 

that any solution of (7) satisfies an integral equation of the 

form. 

P(�) = 	` + a� +		 (� − �)^�L�, P(�)M_4R 
�           (10) 

The constant A	and	B  being determined by the initial 

conditions. They may also be determined in other ways 

suppose, for instance, that y(x) is required to satisfy a two - 

point boundary condition, sayP(0) = d, P(e) = f(g�	� = e) 
substituting in (10), we obtain. d = P(0) = `f = P(e)= ` + ae +	& (e − �)�[L�, P(�)M]
�h

R  

`	 = 	d, a = �	i	�h −	Yh 	 (e − �)�[�, P(�)]
�hR        (11) 

Hence, the function y(x) must therefore satisfy the integral 

equation  

P(�) = d + f	 − 	de � +	&(� − �)�[�, P(�)]
��
R

− �e &(e − �)�[�, P(�)]
�h
R  

This can be written in the form 

P(�) = 	j(�) − 	 
(�, �)�[�, P(�)]
�hR         (12) 

Where j(�) = d + �	i	�h � 

k(�, �) = l�(e − �)e , �mU	0 ≤ � ≤ ��(e − �)e , �mU� ≤ � ≤ e  

K	(x, t) is the kernel of the equation the argument is again 

reversible, so that (12) is equivalent to (7) together with the 

boundary conditions. If the differential equation is linear, we 

are led in this way to a linear integral equation of the second 

kind. 

Example: 1 

Reduce the initial value problem P′′(�) + 4P(�) = qgF�,	 with initial conditions P(0) =0, P′(0) = 0	 �� = 0 to volterra integral equation of the 

second kind. 

Solution: 

Volterra equation can be obtained in the following manner: 

Let P))(�) = �(�)                        (13) 

Integrate (13) from	0	to�. We then have 

& 

�
�
R S
P
�T
� = &�(�)
��

R  

P)(�) − P)(0) = &�(�)
��
R  

P)(�) = P)(0) + &�(�)
��
R  

P)(�) = 0 + &�(�)
��
R = &�(�)
��

R  

Whence the second integration 

&
P
� 
�
�
R =	&&�([)
[4

R 
��
R  

=	&�(�)
��
R &
[�

4 = &(� − �)�(�)
��
R  
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Then the given ODE becomes  

�(�) + 4&(� − �)�(�)
��
R = qgF� 

This is the Volterra integral equation. 

5. Integral Equation 

Definition: Any equation in which the unknown function f(x) 

appears under the integral sign and integrals of that function to 

be solved for f(x) is known as integral equations. The general 

linear integral equation for the unknown function f(x) is 
s(�)�(�) = 0(�) + λ	 
(�, �)�(�)
��(�)�(�)              (14) 

K(x, t) is called the kernel, λ the parameter of the integral 

equation and α(x) and β(x) are constants orα(x) is a constant 

and β(x) = x. If F(x) 	= 	0, then the equation is referred to as 

homogeneous. Wheng	(x) 	= 	0, the equation is of the first 

kind; otherwise, it is of the second kind. The kernel is always 

defined and continuous on u = {(�, �): d(�) ≤ � ≤ f(�), d(�) ≤ � ≤ f(�)} 
classification of integral equations. 

An integral equation can be classified as a linear or nonlinear 

integral equation as we know in the ordinary and partial 

differential equations [4], [6] & [7]. In the previous section, 

These have noticed that the differential equation can be 

equivalently represented by the integral equation. Therefore, 

there is a good relationship between these two equations. The 

most frequently used integral equations fall under two major 

classes, namely Volterra and Fredholm integral equations. Of 

course, These have to classify them as homogeneous or non 

homogeneous; and also linear or nonlinear. In some practical 

problems. 

This research is focusing on the Volterra integral equations 

and its solution by the method of successive approximations 

(Neumann’s series) The classification of integral equations 

centers on three basic characteristics which together describe 

their overall structure and it is useful to set these down briefly 

before entering into greater detail. 

I The kind of an equation refers to the location of the 

unknown function. 

� First kindequations have the unknown function present 

under the integral sign only. 

� Secondkind equations also have the unknown function 

outside the integral. 

II The historical descriptions Fredholm and Volterra are 

concerned with the integration.interval. In a Fredholm 

equation the integral is over a finite interval with fixed 

endpoints. In a Volterra equation the integral is 

indefinite. 

III The adjective singular is sometimes used when the 

integration is improper, either. because the interval is 

infinite, or because the integrand is unbounded within 

the. given interval. Obviously an integral equation can 

be singular on both counts. 

6. Volterra Integral Equation 

Definition: Volterra equations are written in a form where 

the upper limit of integration β(x) = x  (independent 

variable). The most standard form of Volterra linear 

integralequations is given by the form. s(�)�(�) = 	0(�) + λ	 
(�, �)�(�)
���(�)          (15) 

� Volterra integral equation of the first kind. Ifg(x) 	= 	0, 

then (15) yields 0 = 	0(�) + λ	 
(�, �)�(�)
���(�)               (16) 

This equation is called Volterra first kind integral 

equations. 

� Homogeneous volterra integral equations. If g(x) 	=	1and F(x) = 0, then eqn. (15)gives. �(�) = λ	 
(�, �)�(�)
���(�)                (17) 

� Volterra integral equation of the second kind, If the 

function g(x) 	= 1, then (15)yields. �(�) = 	0(�) + λ	 
(�, �)�(�)
���(�)          (18) 

This equation is called Volterra integral equations of 

second kind 

� Non homogeneous volterra integral equations. If g(x) = 1 and F(x) ≠ 0, hen eqn.(8) gives �(�) = 	0(�) + λ	 
(�, �)�(�)
���(�)            (19) 

This equation is called non homogeneous Volterra integral 

equations of second kind For non homogeneous Volterra integral 

equations λ is numerical parameter, whereas for homogeneous 

Volterra integral equations λ is an eigen value parameter because 

in such a case the integral equation presents an eigen value 

problem in which the objective is to determine those values of λ, 

called the eigenvalues for which the integral equation possesses 

nontrivial solutions called eigen functions. 

6.1. Kernel of an Integral Equation 

When considering numerical methods for integral 

equations, particular attention should be paid to the character 

of the kernel, which is usually the main factor governing the 

choice of an appropriate quadrature formula or system of 

approximating functions. Various commonly occurring types 

of singularity call for individual treatment. 

Likewise provision can be made for cases of symmetry, 

periodicity or other special structure, where the solution 

may have special properties and/or economies may be 

affected in the solution process. We note in particular the 

following cases to which we shall often have occasion to 

refer in the description of individual algorithms. The 

presence of the kernel under the operator makes the 
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behavior of these equations less transparent than 

differential equations. Consider the apparently benign 

kernel clearly the form of the kernel is crucial to nature of 

the solution, indeed, to its very existence. 

� A linear integral equation with a kernel k(x, t) 	=	k(t, x) is said to be symmetric. This property plays a 

key role in the theory of fredholm integral equations. 

� If K(x, t) = K(a + b − x, a + b − t) in a linear integral 

equation, the kernel is called centro-symmetric 

� If the equations of the kernel has the form K(x, t) =KLx, t, y(t)M = K(x − t)gLt, y(t)M,	the equation is called 

a convolution integral equation; in the linear case K(x − t)gLt, y(t)M = y(t). 
� If the kernel has the form KLx, t, y(t)M = KYLx, t, y(t)M, a ≤ t ≤ x. KLx, t, y(t)M = K@Lx, t, y(t)M, x ≤ t ≤ b 

Where the functions 
Y and 
@ are well behaved. 

6.2. The Conversion First Kind Integral Equations to the 

Second Kind Integral Equations 

Thus it would appear that Volterra integral equations of 

the second kind are more well behaved that Volterra 

integral equation of the first kind [7]. To the extent that 

this is true, we may replace any Volterra integral equation 

of the first kind with Volterra integral equations of the 

second kind. The relation between Volterra integral 

equations of the first and the second kind can be 

established in the following manner. The first kind 

Volterra equation is usually. �(�) = 		 k(�, �)�R [(�)
�                  (20) 

if the derivatives 
N{N� =	� ′(�), N|N� =	
�(�, �)	 F
 N|N4 	=	
4(�, �) exists and are continuous, then the equation can be 

reduced to one of the second kind into ways. 

� The first and the simplest way are to differentiate both 

sides of equation (11) with respect to x and we obtain 

by using the Leibnitz rule. 

Leibniz General Rule 

If 

I(x) = 	 & f(x, t)dt,}(2)
~(2) then	I)(x) = 	 ddx [ & f(x, t)dt}(2)

~(2) ] 	
= & ∂∂x (f(x, t))dt

}(2)
~(2)  

=		 �{(�,4)���(�)�(�) 
� + �([(�), �)[)(�) − �(�(�), �)�)(�), N({(�)N� = 	 ��� (k(�, �)[(�))�R  

�)(�) = & 66� (k(�, �)[(�))
�
R + 
(�, �)[(�)�)
− 
(0, �)[(�)(0)) 
(�, �)[(�) +		 
�(�, �)�R [(�)
� = 	�)(�)         (21) 

If K(x, x) ≠ 0, then dividing throughout by this we obtain. 
(�, �)[(�) +		 
�(�, �)�R [(�)
� = 	�)(�)      (22) 

[(�) +		 |�(�,4)|(�,�)�R [(�)
� = 	 {'(�)|(�,�)              (23) 

And the reduction is accomplished. Thus, we can use the 

method already given above. If the kernel in (21) is square-

integrable, and [
{′(�)|(�,�)] ∈ �@[0,1] will have a unique solution in L@[0,1]. 

The second way to obtain the second kind Volterra integral 

equation from the first kind is by using integration by parts, if 

we set. 

	 [(�)
��R = 	∅(�)                        (24) 

Or equivalently 

	 [(�)
�4R = 	∅(�)                       (25) 

Then by using integration by parts, 

�
(�, �)&[(�)
(�)4
R �

45R
� −	&
4(�, �) 	J&[(�)
(�)4

R K
��
R 	= �(�) 

which reduces to  

[
(�, �)∅(�)]45R� −&
4(�, �)�
R ∅(�)
� = �(�) 

And finally we get 


(�, �)∅(�) − 
(�, 0)∅(0) − 	 
4(�, �)�R ∅(�)
� = �(�)    (26) 

It is obvious that φ (0) = 0, and dividing out by K(x, x) we 

have 

∅(�) = 	 � {'(�)|(�,�)� + 	 �|�(�,4)|(�,�)��R ∅(�)
�0(�) 	 A(�, �)�( ∅(�)
�  (27) 

where 

0(�) = 	 �(�)
(�, �)	 , A(�, �) = 	
4(�, �)
(�, �) 

For this second process it is apparently not necessary for 

f(x) to be differentiable However, the function u(x) must 

finally be calculated by differentiating the function φ(x) 

given by the formula. 

∅(�) = 	 � {'(�)|(�,�)� + 	 �(�, �; 1)�R � {'(4)|(4,4)� 
�         (28) 
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Where H(x, t ∶ 	1�  is the resolvent kernel corresponding 

to
|���,4�|��,��. To do this f�x�must be differentiable 

6.3. Solution of Volterra Integral Equation 

In the previous sections, we have clearly defined the 

integral equations with some useful illustrations. This section 

deals with the Volterra integral equations and their solution 

techniques. The approach of Volterra equations in much the 

same way as it has been done Fredholm equations, but there 

is the problem that the upper limit of the integral is the 

independent variable of the equation. For thus choose a 

quadrature scheme that utilizes the endpoints of the interval; 

otherwise we will not be able to evaluate the functional 

equation at the relevant quadrature points. One could adopt 

the view that Volterra equations are, in general, just special 

cases of Fredholm integral equation equations. 

���� � ���� � λ	 
��, ������
��R                   (29) 

Where K�x, t� is the kernel of the integral equation, φ	�x� a 

continuous function of x, and	λ a parameter. Here, φ	�x�and K�x, t�  are the given functions but f�x�  is an unknown 

function that needs to be determined. The limits of integral 

for the Volterra integral equations are functions ofx . The 

nonhomogeneous Volterra integral equation of the first kind 

is defined as  

���� � 	 
��, ������
��R                        (30) 

The important class of integral equations in which many 

features of the general theory already appeared in the 

introduction. There are a host of solution techniques to deal 

with the Volterra integral equations. 

6.3.1. The Method of Successive Approximations for Linear 

Volterra Integral Equations 

In this method, replace the unknown function f�x� under 

the integral sign of the Volterra equation by any selective 

real-valued continuous function fR�t� , called the zeroth 

approximation [10]. This substitution will give the first 

approximation fY�t� by. 

�Y��� � ���� � λ	 
��, ���R���
��R                (31) 

It is obvious that fY�x� is continuous if φ�x�, K�x, t�, and fR�x� are continuous. The second approximation f@�x� can be 

obtained similarly by replacing fR�x�  in equation (31) by fY�x� obtained above. And we find  

�@��� � ���� � λ	 
��, ���Y���
��R           (32) 

Continuing in this manner, we obtain an infinite sequence 

of function fR�x�,fY�x�, f@�x�,f��x�,f��x�, 
That satisfies the recurrence relation 

����� � ���� � λ	 
��, ����iY���
��R          (33) 

for n � 1, 2, 3, . ..	and fR�x� is equivalent to any selected real-

valued function. The most commonly selected function 

forfR�x�	are	0, 1, and	x. Thus, at the limit, the solution f�x� of 

the equation (29) is obtained as  

���� � 	 eg��→� �����                   (34) 

so that the resulting solution f�x� is independent of the choice 

of the zeroth approximation fR�x� . This process of 

approximation is extremely simple. However, if we follow 

the Picard’s successive approximation method, it needs to set fR�x� = φ�x� , and determine fY�x�  and other successive 

approximation as follows: 

�Y��� � ���� � λ	 
��, ���R���
��R �@��� � ���� �
λ	 
��, ���Y���
��R ��iY��� ����� � λ	 
��, ����i@���
��( ����� � ���� �

λ	 
��, ����iY���
��R                     (35) 

The last equation is the recurrence relation. Consider 

�@��� * �Y���λ	 
��, ������� � λ	 
��, ������
�"	
�4R�R *
λ	 
��, ������
��R � λ

@ 	 
��, �� 	 
��, ������
�
�4R�R �
λ
@s@���                               (36) 

Where 

s@��� � 	 
��, �� 	 
��, ������
�
�4R�R           (37) 

Thus, it can be easily observed from equation (36) that 

����� � ∑ λ
�s������5R                 (38) 

If gR�x� � φ�x�,	and further that 

s���� � 	 
��, ��s�iY���
��R              (39) 

Where m= 1, 2, 3, and hence gY�x� � 	 K�x, t�φ�t�dt2R  

The repeated integrals in equation (37) may be considered 

as a double integral over the triangular region indicated in 

Figure 1; thus interchanging the order of. 

 

Figure 1. Double integration over the triangular region (shaded area). 

Integration, we obtain. 
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s@��� � &����
� &
��, �)
(�, �)
��
�

�
R = &
@(�, �)�(�)
��

R  


@(�, �) = 		 
(�, �)
(�, �)
��� .  Similarly, we find in 

general. s�(�) = 	 
�(�, �)�(�)
��R , � = 1, 2, 3,          (40) 

Where the iterative kernels 
Y(�, �) ≡ 
(�, �), 
@(�, �), 
�(�, �), …. are defined by the 

recurrence formula  
��Y(�, �) = 	 
@(�, �)
�(�, �)
��4             (41) 

Thus, the solution forf�(x) can be written as  ��(�) = �(�) + ∑ λ
���5Y 	 
�(�, �)�(�)
��R          (42) 

= �(�) + 	 	{	∑ λ
���5Y�R 
�(�, �)	}	�(�)
�         (43) 

Hence it is also plausible that the solution of equation (29) 

will be given be as n → ∞ 

lim�→� f�(x) = f(x) = �(�) + & 	{	¢ λ
��

�5Y
�
R 
�(�, �)	}	�(�)
� 

= �(�) + λ	 �(�, �;�R λ)	�L�(�) + λ	 E�i4�(�)
��R �M
�    (44) 

Where �(�, �;λ) = ∑ λ
�
�(�, �)��5Y                    (45) 

is known as the resolvent kernel. 

Example 1 

Solve the following Volterra integral equation of the 

second kind of the convolution type using successive 

approximation method. �(�) = �(�) + λ	 E�i4�(�)
��R                (46) 

Solution: 

� using successive approximation method 

Let us assume that the zeroth approximation is �R(�) = 0                                (47) 

Then the first approximation can be obtained as �Y(�) = 	�(�)                             (48) 

Using this information in equation (46), the second 

approximation is given by. 

�@(�) = �(�) + λ&E�i4�Y(�)
��
R  

�@(�) = �(�) + λ	 E�i4�(�)
��R                 (49) 

Proceeding in this manner, the third approximation can be 

obtained as  

��(�) = �(�) + λ&E�i4�@(�)
��
R= �(�)

+ λ&E�i4 \�(�) + λ&E4i��(�)
�4
R ]
��

R  

= �(�) + λ&E�i4�(�)
��
R + λ

@&&E�i��(�)
�4
R 
��

R 	
= �(�) + λ&E�i4�(�)
��

R + λ
@&(� − �)E�i4�(�)
��
R  

In the double integration the order of integration is 

changed to obtain the final result. In a similar manner, the 

fourth approximation 	f£(x) can be at once written as. 

�£(�) = �(�) + λ&E�i4�(�)
��
R + λ

@&(� − �)E�i4�(�)
��
R+	λ�&(� − �)@2!

�
R E�i4�(�)
� 

Thus, continuing in this manner, we obtain as n → ∞ �(�) = 	 eg��→� ��(�)= �(�)
+ λ ¥& E�i4�

R L1 + λ(� − �) + λ
@(� − �)@

+⋯M�(�)
�§
= �(�) + λ&E�i4Eλ(�i4)�(�)
��

R �(�)
+ λ&E(Y�λ)(�i4)�(�)
��

R  

Here, the resolvent kernel is �(�, �; 	¨) = E(Y�λ)(�i4) 
� Another method to determine the solution by the 

resolvent kernel 

The procedure to determine the resolvent kernel is the 

following: Given that 

�(�) = �(�) + λ&E�i4�(�)
��
R  



 Pure and Applied Mathematics Journal 2016; 5(6): 211-219 218 

 

Here, the kernel is 
��, �) = E�i4 . The solution by the 

successive approximation is. 

���� = ���� + λ& ���, �; λ�����
�
�

R
 

where the resolvent kernel is given by 

���, �; λ� = ¢ λ
�
��Y��, ��

�5R
 

In which 


��Y��, �� = ���� + λ& 
��, ��
���, ������
�
�

4
, F = 1,2,3 

It is to be noted thatK��x, t� = K�x, t�Thus, we obtain 

K@�x, t� = & e2i©e�2i©�dτ
2

«
= e2i« & dτ

2

«
= �x − t�e2i« 

Similarly, proceeding in this manner, we obtain 

K��x, t� = & e2i©�e�2i©��τ − t��dτ
2

«
= e2i« �x − t�@

2!  

K£�x, t� = e2i« �x − t��
3! = 

K��Y�x, t� = e2i« �x − t��
n!  

Hence the resolvent kernel is  

H�x, τ;λ� = ¢ λ
�K��Y�x, t�

�5R
= e2i« ¢ �x − t��

n!
�

�5R
H�x, t;  λ�

= e�Y�λ��2i«� 

Once the resolvent kernel is known therefore succeeded in 

inverting the integral equation because the right- hand side of 

the above formula is a known quantity. 

6.3.2. The Method of Successive Approximations for  

Non-Linear Integral Equations 

Nonlinear integral equations yield a considerable amount 

of difficulties. However, due to recent development of novel 

techniques it is now possible to find solutions of some types 

of nonlinear integral equations if not all. In general, the 

solution of the nonlinear integral equation is not unique. 

However, the existence of a unique solution of nonlinear 

integral equations with specific conditions is possible. 

We first define a nonlinear integral equation in general, and 

then cite some particular types of nonlinear integral 

equations. In general, a nonlinear integral equation is defined 

as given in the following equation: 

f�x� =  F�x� + λ& K�x, t�GLf�t�Mdt
2

­�2�
orf�x�

=  F�x� + λ& G�x, t, f�t��dt
2

­�2�
 

Where α�x� and β�x� are constants and the equations are 

called non linear Fredholm integral equations. 

f�x� =  F�x� + λ& K�x, t�GLf�t�Mdt
2

­�2�
orf�x�

=  F�x�  +  λ& GLx, t, f�t�Mdt
2

­�2�
 

Where α�x� is constant and xis independent variable the 

equations are called non linear Volterra integral equations. 

The function G �f �t�� is non-linear except G =a constant or 

G �f�x��  = f�x�  in which case G  is linear. GLf�x�M =
f ��x�, forn ≥ 2, then function G is non linear. 

Example 1 

f�x� =  x + λ& �x − t�f @�t�dt
2

R
 

and 

�x� = 1 + λ& K�x, t� lnLf�t�M dt
2

R
 

Are non linear volterra integral equations. By contrast, 

solving nonlinear Volterra equations usually involves only a 

slight modification of the algorithm for linear equations. 

The Picard’s method to obtain successive algebraic 

approximations. By putting numbers in these, we generally 

get excellent numerical results. Unfortunately, the method 

can only be applied to a limited class of equations, in which 

the successive integrations be easily performed. We shall 

treat everal examples by these methods to enable their merits 

to be compared. 

Consider the initial value problem given by the first-order 

nonlinear differential equation. 

df/dx = φ �x, f�x�� with the initial condition f�a� =
batx = a.This initial value problem can be transformed to the 

nonlinear integral equation and is written as 

���� = ! + & � ��, �����
�

(

� 

For a first approximation, we replace 

the f�x�in φLx, f�x�Mbyb , for a second approximation, we 

replace it by the first approximation, for the third by the 

second, and so on. 

�R��� = !�Y��� = ! + & � ��, !�
�

(

� 
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�@��� � ! � & °! � &���, !)�
( 
�±�

( 
� 
�@(�) = ! + &!�( 
� + &&�(�, !)�

(
�
( 
�
� 

To demonstrate this method by examples. 

Example 1 Solve the integral equation by Picard’s method 

of successive approximation. 

�(�) = &L� + �@(�)M�
R 
� 

Solution 

The given differential equation can be written in integral 

equation form as 

�(�) = &(� + �@(�))	�
R 
� 

Zeroth approximation is: f(x) 	= 	0. 
First approximation: Put f(x) = 0in x + f@(x), yielding 

�(�) = & ��R 
� = 12 � 

Second approximation:put �(�) = �W@ in � + �@(�) , 

yielding 

�(�) = &²� + �@2 ³
�
R 
� = �@2 + �´20 

Third approximation: f = 2W@ + 2µ@R in x + f@, giving 

f(x) = &¶t + (t@2 + t´20)	@	·
2
R dt	 = &²t + t£4 + t¸20 + tYR400³

2
R dt

= x@2 + x´20 + x¹10 + xYY4400 

Proceeding in this manner, Fourth approximation can be 

written after a rigorous algebraic manipulation as 

Fourth approximation 

f(x) = x@2 + x´20 + x¹160 + 7xYY8800 + 3xY£49280 + x@R7040000+ x@�445280000, 
and so on. This is the solution of the problem in series form, 

and it seems from its appearance the series is convergent. 

 

7. Conclusion 

In thispaper we proposed some of the numerical methods 

to solve volterra (linear and non linear) integral equations. 

f(x) = φ(x) + λ & k(x, t)f(t)dt2
­(2)  

And 

f(x) = 	φ(x) + λ& K(x, t)GLf(t)Mdt2
­(2)  

To solve this for f(x) the choice of the initial data f0(x), 

plays an essential role on the speed of the convergence of the 

numerical methods, successive approximation method. 

Numerical methods have been selected based on the ability to 

obtain rapid convergence, based on existence of reliable and 

cheaply computable error estimates and personal predilection 

When the kernel is simple enough to be closely 

approximated by a degenerate kernel with a few functions, 

this can be very efficient. How competitive in general such a 

method is with the more usual approaches is an unresolved 

question. 

A solution of the integral equation gives more accurate 

results than a solution of the differential equation using the 

same step size and degree of precision in the integration 

procedure. 
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