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Abstract: Eigenvalues are special sets of scalars associated with a given matrix. In other words for a given matrix A, if there 

exist a non-zero vector V such that, AV= λV for some scalar λ, then λ is called the eigenvalue of matrix A with corresponding 

eigenvector V. The set of all nxm matrices over a field F is denoted by Mnm (F). If m = n, then the matrices are square, and 

which is denoted by Mn (F). We omit the field F = C and in this case we simply write Mnm or Mn as appropriate. Each square 

matrix AϵMnm has a value in R associated with it and it is called its determinant which is use full for solving a system of linear 

equation and it is denoted by det (A). Consider a square matrix AϵMn with eigenvalues λ, and then by definition the 

eigenvectors of A satisfy the equation, AV = λV, where v={v1, v2, v3…………vn}. That is, AV=λV is equivalent to the 

homogeneous system of linear equation (A-λI) v=0. This homogeneous system can be written compactly as (A-λI) V = 0 and 

from Cramer’s rule, we know that a linear system of equation has a non-trivial solution if and only if its determinant is zero, so 

the solution λ is given by det (A-λI) =0. This is called the characteristic equation of matrix A and the left hand side of the 

characteristic equation is the characteristic polynomial whose roots are equals to λ. 
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1. Introduction 

Each nxn square matrix A has a value associated with its 

determinant denoted by det (A), which is useful to solve a 

system of linear equation and moreover, if there exist a non- 

zero vector V and scalar λ such that AV = λ V, then λ is 

called eigenvalue of matrix A with corresponding 

eigenvector V. It is bare fact that, AV = λ V is equivalent to

( ) 0A I Vλ− =  where I is the identity matrix then, by 

Cramer’s rule we know that, linear system of equation has 

non-trivial solution if det 0A ≠ , so that λ  can be computed 

from this equation. 
Applications of eigenvalue problems play a great role in 

our real word. One class of applications which has recently 

gained considerable ground is that related to eigenvalues 

problems of a matrix. However, the most commonly solved 

eigenvalue problems today are those issues associated with 

the vibration analysis of large structures. The vibrational 

frequencies are therefore determined by the eigenvalues of a 

symmetric 3x3 matrix. This is an instance of simple 

eigenvalue problem AV Vλ=  that is common in practice. 

However, Since computing the eigenvalue λ  is equivalent to 

finding the roots of matrix’s characteristic polynomial, we 

can see that task is quickly too difficult for larger 

dimensional matrices/especially for the case of matrices 

which have more than three dimensions/ even if we know 

characteristic polynomial and algorithms such as Newton’s 

method for finding zeros cannot be depended upon produce 

all the zeros with reasonable speed and accuracy. Fortunately, 

numerical analysts have found an entirely different ways to 

calculate eigenvalues of a given square matrix. Among those 

methods QR method is the most widely used, important, 

accurate and speedy one. The primary reason that modern 

implementations of this method are efficient and reliable is 

that a QR factorization can be used to create each new matrix 

in the sequence and each QR factorization can be calculated 

quickly and accurately; it yields easily a new matrix 

orthogonally similar to the original matrix; and orthogonal 

similarities tend to minimize the effect of round off error on 

the eigenvalues. 
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2. The QR Method 

2.1. Householder Transformation 

There is no simple way to calculate eigenvalues for a 

matrix larger than 2x2 dimensions. The method of 

calculating the characteristic polynomial and then finding its 

zeros is not good numerically and moreover finding the roots 

of characteristic polynomial involves taking a determinant 

which uses large amount of computing time. The QR method 

is one of the most important methods which used to find 

eigenvalues of real square matrix. Therefore, the main idea of 

this chapter is determining all eigenvalues of real square 

matrix by using QR factorization (where Q is orthogonal and 

R is upper triangular matrices). To this end, suppose a real 

square A is given. Let A= Q0R0 be QR factorization of A 

(where Q is orthogonal and R is upper triangular matrices), 

and create A1 = R0Q0. Let A1 = Q1R1 be QR factorization of 

A1 and similarly create A2 = R1Q1, continue this process in 

the same fashion for  � ≥ 1, (��	ℎ �� = �) . Once Am has 

been created such that, Am= QmRm, and Am+1= RmQm. Thus, 

the sequence {Am} will usually converges to something from 

which the eigenvalues can be computed easily. Moreover, A2 

is similar to A and Am+1 is similar to Am and so on. Hence Am 

and Am+1 have the same eigenvalues as matrix A by 

definition of similarity of matrices. This process will be 

stopped when the entries below the main diagonal of current 

matrix Am are sufficiently small, or if it appears that 

convergence will not happen. This implies that, QR 

factorization sequence process can fail to converge or the 

convergence can be also extremely slow and expensive. If it 

converges to certain matrix, then the diagonal entries of this 

current matrix are tends to be eigenvalues of matrix A, if not, 

it can be modified in order to speed up convergence or to 

accelerate the rate of convergence of the given real square 

matrix dramatically we use methods like shifting of origin. 

The method of orthogonal triangularization (orthogonal 

transformation) is analogous to Gaussian elimination. Since 

orthogonal transformation will not worsen the condition or 

stability of eigenvalues of a non-symmetric matrix we will 

attempt to decompose an arbitrary real square matrix A into a 

product QR, where Q is orthogonal and R is upper triangular 

matrices. 

Now, let us begin our discussion by looking at a special 

class of orthogonal matrices known as Householder matrices. 

Let w���with ���� = √�∗�  =  1. Define: U =  I − 2�∗�   (1) 

This is the general form of Householder matrix. 

Example. 1: For n=3, we require � = (��, ��, �$)% , ���� & � |��|� + |��|� + |�$|�  = 1   (2) 

The matrix U is given by; U 

=  )1 − 2|��|�  − 2���*�  − 2���*$ −2�*��� 1 − 2|��|�  − 2���*$−2�*���  − 2�*��$ 1 − 2|�$|� + ; For the particular 

case, 

let W =  -�$ , � $ , �$., then U =  �/  07 − 4 − 4−4 1 − 8−4 − 8 1 4 

Theorem 1: Let U be Householder matrix (U = I-2ww*). 

Then 

i). U is Hermitian (U*=U) 

ii). U is orthogonal (U*U=I). 

The Householder’s matrices will be used to transform a 

nonzero vector in to a new vector containing mainly zeros. 

Let b 0≠  be given, b ∈ ℜ  and suppose we want to produce 

U of form (1) such that Ub contains zeros in position r+1 

through n, for some given 1r ≥ . Choose w as in (2). Then 

the first r-1 columns of b and Ub are the same. To simplify 

the later work, let m = n-r+1 then 
10 −   

= =   
  

r c
w b

dw

 
With 1

, ,
r m

c w d
−∈ℜ ∈ℜ . 

Then our restriction on the form Ub requires the first r-1 

components of Ub to be c, and  (I − 2ww5)6 = (7, 0, … ,0)% , ���� = 1 for some 7   (3) 

Since  I − 2ww5  is orthogonal the length of d is 

preserved, and thus 

|7| = �6�� = : 7 = ±: = ±<6�� + 6�� + ⋯ + 6>�   (4) 

Define:  ? = �%6 d − 2pw = (7, 0, … ,0)%               (5) 

From (3) we have;  (I − 2ww5)6 = 6 − 2ww56 = (7, 0, … ,0)%    (6) 

Multiply by �%  and using  ���� = 1  implies that, P 

=−7�� 

Substituting this in to the first component of (5) give us; 

6� + 27���  =  7 which imply that, ��� = �� -1 − GHI .   (7) 

Choose the sign of 7 in (4) by Sign (7) = -sign (6�). This 

choice maximizes  J�� , and it avoids any possible loss of 

significance error in the calculation of ��. The sign for ��is 

irrelevant. Having  �� it is possible to obtain p from (6). 

Return to equation (5), and using components 2 through m, 

�K &  GL�M , N = 2,3, … , �                            (8) 

The equation (4) and (6) to (8) completely define w and 

thus w and U. The operation count is 2m + 2 multiplication 

and division, and one square root. A sequence of such 

operation is used to systematically reduce the given matrix to 

simpler form. 

Now, given a real square matrix A, we will show there is 

an orthogonal matrix Q and an upper triangular matrix R for 

which,  

A = QR                                       (9) 
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Let  ?P = Q − 2�(P)�(P)%, where r = 1, 2, 3…,      (10) 

With �(P) as is defined in equation (2) with r-1 leading 

zeros. Writing A interims of its column �∗�, �∗�, … , �∗�, then 

we have, ?�� = (?��∗�, ?��∗�, … , ?��∗� )% . Pick ?�  and �� 

using the preceding construction (4) to (8) with b= �∗�. Then, ?��  contains zeros below the diagonal in its first column. 

Choose ?�  similarly, so that R�R�� will contain zeros in its 

second column below the diagonal. Note that 

because �� contains a zero in position one, and R�� is zero 

in the first column below position one, thus the product R�R�� and R�� contains the same element in row and column 

one. Now choose ?�  and ��  as before in (4) to (8) with b 

equal to the second column of ?�� by carrying out with each 

column of A, we obtain an upper triangular matrix,  S =  ?�T�. ?�T� … . ?��                       (11) 

If at step r of the construction, all elements below the 

diagonal of column r are zero, then just choose ?P = Q and go 

on to the next step. To complete the construction, define, U% =  ?�T�. ?�T� … . ?�                      (12) 

This is orthogonal. Then A = QR as desired. It is useful to 

know to what extent the factorization A = QR is unique?. For 

non- singular matrix A, suppose � = U�S� =  U�S�                           (13) 

Then, S� and S� must also be nonsingular, and U�%U�= S�S�T� 

The inverse of an upper triangular matrix is upper 

triangular, and the product of two upper triangular matrices is 

upper triangular. Thus S�S�T�  is upper triangular. Also the 

product of two orthogonal matrices is orthogonal; and thus 

the product U�%U� is orthogonal. But it is not hard to show 

that the only upper triangular orthogonal matrices are the 

diagonal matrices for some diagonal matrix D. S�S�T� = V. Since S�S�T� is orthogonal, V� = Q. 

Since we are only dealing real matrices, D has a diagonal 

element equals to +1 or -1 combining the results we have,  U� = U�V, S� = VS�                           (14) 

Another practical matter is deciding how to evaluate the 

matrix R of (11). Let, 

�P = RP�PT� = (Q − 2�(P)�(P)%)�PT�, where r = 1, 2, 3, … , n (15) 

With  �X = �,  ��T� = S. If we calculate  RP  and then 

multiply it by  ��T� to form  �P , the number of multiplication 

will be; (Y − Z + 1)$ + �� (Y − Z + 2)(Y − Z + 1) 

There is a much more efficient method for calculating �P. 

By rewriting (15) as; �P = (�PT� − 2�(P)(�(P)%)�PT�                 (16) 

First calculate  �(P)�PT� ; and then calculate �(P)(�(P)%) �PT� and �P. 

Multiplications, which shows (16) is a preferable way to 

evaluate each �P and finally S = ��T�. 

2.2. Reduction of a Matrix to Tridiagonal and Hessenberg 

Matrix Form 

Let A be a real square matrix. To find the eigenvalues of 

A, it is usually first reduced to tridiagonal /if the given matrix 

is symmetric/or upper Hessenberg matrix form by orthogonal 

similarity transformations (since similar matrices have the 

same eigenvalues). Then, the eigenvalues of the reduced 

matrix can be calculated by using the QR algorithm more 

efficiently. 

Suppose A is a real square matrix. For the orthogonal 

matrices, we will use the Householder matrices of the above. 

Let  ?P = Q − �(P[�)�(P[�)% , Z = 1,2,3, … , Y − 2      (17) 

With �(P[�) defined as in (2.2), �(P[�) = (0, … ,0, �P[�, … , ��). 

The matrix �� = ?�%�?� = ?��?�  is similar to ��. The 

element \�� is unchanged, and �� will be symmetric. 

Produce �(�) and ?� to obtain, ?��∗� =(\��, \]��, 0, … ,0)% for some \]��. The vector �∗�  is the first 

column of A. use (4) to (8) with m = n-1 and 6 =(\��, \$�, … , \��)%. 

For example, from (2.9) with r =1 we have, ��� =�� -1 − ^_HI . where, 

7 = −:�`Y(\��)<\��� + ⋯ + \���  

Having obtained ?� and ?��, post multiplication by ?� will 

not change the first column of ?�� . The symmetry of �� follows from, ��% = (?��?�)% =  ?�%�%?�% = ?��?� = ��. 

Since �� is symmetric, the construction on the first column 

of A will imply that �� has zeros in position 3 through n of 

both the first row and column. Continue this process, and 

letting, �P[� = RP%�PRP , Z = 1,2,3, … , Y − 2           (18) 

With ��= A. pick RP to introduce zeros in to position r+2 

through n of column r. column one through r-1 will remain 

undisturbed in calculating RP�PT�, due to the special form of RP . 

Pick the vector �(P[�) in analogy with the above 

description for �(�). The final matrix a ≡ �PT� is tridiagonal 

and symmetric. 

a =
c
dde

7� f�  0 … 0f� 7�  f�  ⋱ ⋮0  f�  7$  ⋱ ⋮⋮ ⋱ ⋱  0 ⋮ ⋱   7�T�  f�T� 0 …  0 f�T�  7�
 
i
jjk                      (19) 

If A is non-symmetric, it is reduced to a similar Hessenbeg 

matrix form using the same algorithm. Reduction to 
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symmetric tridiagonal form requires 
�$ Y$ operations, where 

as the transformation to Hessenberg matrix form in the non-

symmetric case requires 
l$ Y$ operations. 

This will be much more convenient form for the 

calculation of the eigenvalues of A; and the eigenvectors of 

A can easily be obtained from those of T. 

Matrix A is related to T b; a = U%�U, Where  U = R�. R�. … R�T�                       (20) 

As before with the QR factorization, we seldom produce Q 

explicitly, preferring to work with the individual matrices RP  in analogy with (16). For an eigenvector x of A, say Ax, 

we have, am = m λ , n = Um                      (21) 

If we produce an orthogonal set of eigenvectors ompq for T, 

then oUmpq will be an orthogonal set of eigenvectors for A, 

since Q preserve length and angles. 

Example. 2: Use the Householder’s method to reduce the 

following given matrix A into the tridiagonal form. 

� = r 4 − 1 − 2 2−1 4 − 1 − 2 −2 − 1 4 − 12 − 2 − 1 4 s 

Solution: First transformation: �(�) = (0, ��, �$, �t)% 

By using equation (4) and (7) we get; 7 = u\��� + \�$� + \�t� = 3 and ��� = �� -1 + (T�)(T�)$ . = �$, 
which implies that  �� = <�$ , �$ = ��($) <�$ = �√v and �t =− �v 

Then, by using the formula 

RP  =  Q − �(P[�)�(P[�)%  ′ R� = Q − �(�)�(�)% =
xyy
yyy
z 1 0 0 00 −13  −23   2 30 −2 3  23 130 23 13 23 {||

|||
}
 

�� =  ?���?� =  
xyy
yyz

4 3 0 03 �v$  �$   � $0 � $  �v$  T�$0 �$  T� $  t$
 
{||
||} . Second transformation: 

�($) = (0,0, �$, �t)%
 7 = u\�$� + \�t� = √l$ , �$� = �� ~1 + _�√�� � = �� -√l[�√l . = \, 

�t� = 1 − �$� = 1 − √l[��√l = √lT��√l  =  ��X^ ; Where a = √l[��√l , 

then R� = Q − �($)�($)% =
xyy
yz 1        0         0   00      1       0    00    0  1 − 2\ T�√l 0  0   T�√l   1 − ��X^{||

|}
 

�$ = ?���?� =
xyy
yyz

4  3  0   03   �v$   Tl$√l   00  Tl$√l   �v$   /l 0  0  /l    ��l {||
||}; Now, �$ is in tridiagonal 

form. 

For an error analysis of this reduction to tridiagonal form, 

we give some result below. Let the computer arithmetic be 

binary floating-point with rounding, with t binary digits in 

the mantissa. Furthermore, assume that all inner products ∑ \p�p>p&�  that occur in the calculations are accumulated in 

the double precision, with rounding to single precision at this 

completion of the summation. These inner products occur in 

the variety of places in the computation of T from A. Let a� denote the actual symmetric tridiagonal matrix that is 

computed from A using the above computer arithmetic. Let R�P  denote the actual matrix produced in converting �PT� 	� �P, let RP be theoretical exact version of this matrix 

if no rounding errors occurred, and let U = ?�. ?� … ?PT� be 

the exact product of these RP′:, an orthogonal matrix. 

Let A be a real symmetric matrix of order n. Let a� be the 

real symmetric tridiagonal matrices resulting from 

Householder similarity transformation method (17) to A, as 

in (18). 

Assume the floating point arithmetic used has the 

characteristic described in the preceding paragraph. Let � iλ � and � iτ � be the eigenvalues of A and a� , respectively 

arranged in increasing order. Then, �∑ ( iτ T 2
)iλ���H

∑ 2
iλ���H �

H_ ≤
��2T�, with �� = 25(Y − 1)�1 + (12.36)2T����Tt. 

For small and moderate values of n, �� ≡ 25(Y − 1), the 

result above shows that the reduction to tridiagonal form is 

extremely stable operation, with little new errors introduced 

for the eigenvalues. 

2.3. The QR Algorithm 

Nowadays, QR method is the most efficient and widely 

used general method for the calculation of all eigenvalues of 

a matrix. The QR method is quite complex in both its theory 

and application, and hence this paper able to give only an 

introduction to the theory and method. 

Given real square matrix A, we know from our previous 

discussion that, there is a factorization, 

A = QR 

With R upper triangular and Q orthogonal matrices, with A 

real, Q and R can be chosen real; and their construction is as 

we have discussed before. We assume that A is real 

throughout this discussion. The basic QR algorithm is given 

as follows. 

QR algorithm: Suppose a real square matrix A is given. 

Let A= Q0R0 be QR factorization of A, and create A1 = R0Q0. 

Let A1 = Q1R1 be QR factorization of A and create A2 = 

R1Q1., Continue this process again. For � ≥ 1, (��	ℎ �� =�). Once Am has been created such that, 
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Am= QmRm, and Am+1= RmQm           (22) 

Theorem 2: The matrices Am, Qm, Rm in (2.3) and ?> =U�U� … U> , �> 
  S> , S>T� … S�, satisfy: 

a) Am+1 is orthogonally similar to Am. i.e. Am+1 

= U>% �>U>. 

b) �>[� 
 �U�U� … U>�%���U�U� … U>� 
 P�5��?>. 

c) �> 
 ?>�>. 

Example. 3: Let  

� 
 �2   1   01   3   10   1   4�                                (23) 

Solution: The exact eigenvalues are, 

1 2 33 3 4.7321 , 3 3 3 1.2679andλ λ λ= + ≈ = = − ≈ . 

The iterates  A� do not converge rapidly, and only few 

iterates are given to indicate the qualitative behavior of the 

convergence. �� 
 0  3.0000    1.0954       01.0954   3.0000    " 1.3416 0         " 1.3416       3.0000 4 

�$ 
 0 3.7059       0.9558       00.9558         3.5214      0.9738 0             0.9738       1.7727 4 

�t 
 0 4.6792      0.2979     00.2979     3.0524      0.02740           0.0274         1.2684 4, 

�� 
 0 4.6792          0.2979       00.2979       3.0524     0.02740            0.0274      1.2684 4, 

�/ 
 0 4.7723         0.1229       00.1229      3.0087      0.00480            0.0048      1.2680 4, 

��X 
 0 4.7285        0.0781         00.0781     3.0035    " 0.002200          " 0.0020        1.2680 4 

The diagonal entries of the current matrix are 

approximations of eigenvalues of the given matrix. 

The elements in the above matrices row-1, column-2 

position decrease geometrically with ratio of about 0.64 per 

iterate, and those in the row-2, column-3 position decrease 

with a ratio of about 0.42 per iterate. The value in the row-3, 

column-3 position of ��l will be 1.2679, which is correct to 

four decimal places. The QR algorithm (22) can be relatively 

expensive because the QR factorization is time consuming 

when repeated many times. To decrease the expense the 

matrix is prepared for the QR method by reducing it a 

simpler form, one for which the QR factorization is much 

less expensive. If A is symmetric, it is reduced to a similar 

tridiagonal matrix. If A is non-symmetric, it is reduced to a 

similar Hessenberg matrix exactly as described in discussion 

(2). It is upper triangular except for a single non-zero sub 

diagonal. The matrix A is reduced to Hessenberg matrix form 

by using the same algorithm as we have done for reducing 

symmetric matrices to tridiagonal form. With A diagonal or 

Hessenberg, the Householder matrices take a simple form 

when calculating the QR factorization. Having produced A1 

= Q1R1 and A2 = R1Q1, we have to know that the form 

of A� is the same as that of A1 in order to continue using the 

less expensive form of QR factorization. 

Suppose A1 is Hessenberg form, then from discussion (1) 

the factorization has following value for Q1: 

U� 
 ���� … ��T�                           (24) 

With each ��  a Householder matrix (2. 13) of discussion 

(2.1), 

�� 
 Q " 2��������% , 1 � � � Y " 1         (25) 

Because the matrix A1 is of the Heisenberg form, the 

vector ���� can be shown to have the special form;  

�p��� 
 0 for � ¡ � \Y6 � ¢ � ( 1             (26) 

This can be shown from the equation for the components 

of  ���� , and in particular (18) of equation (26). From 

equation (25), the matrix ��will differ from the identity in 

only the four elements in position (k, k), (k, k+1), (k+1, k) 

and (k+1, k+1). And from this it is a fairly straight forward 

computation to show that U� must be Hessenberg in form. 

Another necessary lemma is that the product of a triangular 

matrix and a Hessenberg matrix is again Hessenberg. Just 

multiply the two forms of matrices, observing the perspective 

patterns of zeros, in order to prove this lemma. Combining 

these results, observing that S� is upper triangular, we have 

that  �� 
 S�U� must be in Heisenberg form. If A1 is 

symmetric and tri-diagonal, then it is trivially Heisenberg. 

From the preceding result  �� must also be Hessenberg. 

But  �� is symmetric since, ��% 
 �U�%��U��% 
 U�%��%U� 
U�%��U� 
  A� and since any symmetric Heisenberg matrix is 

tridiagonal, we have shown that A� tridiagonal. 
Theorem 3: Let A be a real matrix of order n, and let its 

eigenvalues satisfying that 

                (27) 

Then, iterates mA  of the QR algorithm, defined in (22), 

will converge to an upper triangular matrix that contains the 

eigenvalues { }iλ  in the diagonal position. If A is symmetric, 

then the sequence { }mA  converges to a diagonal matrix. 

2.3.1. The QR Algorithm with Shift/Improvement of 

Convergence 

The basic QR algorithm is too slow for it to be 

competitive, especially if some of the eigenvalues are close 

together, but two refinements will accelerate the convergence 

dramatically. First, we perform a preliminary reduction of the 

matrix into tridiagonal or upper Heisenberg form, which 

decreases the computations cost of the future QR iterations. 

Second, we use multiple translational shift of origin of the 

matrix to reduce the total number of iterations before 

convergence. In other word, the QR algorithm is generally 

applied with a shift of origin for the eigenvalues in order to 

increase the speed of convergence. 

During QR iterations on the matrix mA , where m is the 
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number of the iteration current step, the diagonal entry  7�(>)
∈ mA  will approach the eigenvalues nλ , assuming we meet 

the convergence criteria. Using our current methods, the rate 

of convergence will be linear with the ratio 
1

n

n

λ
λ −

 and 

observe that if 7�(>) is sufficiently close to nλ , and then we 

can create a substantial smaller ratio 
1

n nn

n nn

a

a

λ
λ −

−
<<

− 1

n

n

λ
λ −

, 

then the rate of convergence will be better than linear 

because 
1

n nn

n nn

a

a

λ
λ −

−
−

 tends to zero as m nα λ→ . 

Now, let us consider sequence of constant  o�>q be a shift 

and define 1A A=
 
and 

m m m mA c I Q R− =
; 1 , 1, 2,3...m m m mA c I R Q m+ = + =

 
The 

matrices �> are similar to �>[� since 

1

1

( )

( )

T
m m m m

T
m m m m m m

T
m m m m m

R Q A c I R

A c I Q A c I Q

c I Q A Q c I

+

= −

= + −

= + −

 

1, , 1
T

m m m mthus A Q A Q m+ = ≥
                           (28) 

Thus, �>[� is similar to �>  by definition of similar 

matrices. Therefore, the eigenvalues of �>[� are the same as 

those of �>, and hence the same as those of A. To be more 

specific on the choice of shifts  o�>q, we will consider only 

symmetric tridiagonal matrix A. 

For �>, let 

�> =
c
dd
e7�(>) f�(>)  … …  0f�(>) 7�(>) f�(>)  ⋮⋮ ⋱ ⋱ ⋮f�T�(>)  7�T�(>)  f�T�(>)

0 …  f�T� (>)  7�(>)
 
i
jj
k                           (29) 

For convergence, we can show that one the new 

coefficients  f�T�(>)  or  f�T�(>)  converges to zero extremely 

rapidly. If it is f�T�(>)
, then we will have 7�(>) is converging to 

an eigenvalue of A. When f�T�(>)  is sufficiently small, set
( )m

n nλ α= ; and then we delete the last row and column of �> and continue the same process with the new smaller 

matrix. When f�T�(>)  is converging to zero, we end up with a 

2x2 matrix and we proceed in much the same manner as 

before. 

Example 4: Let � = 05  4  0 4  3  20  2  14 now, let us try to compare 

the eigenvalues of symmetric matrix A with & without 

shift/improvement. 

The exact eigenvalues that are correct to five decimal 

places are: 

1 8.33816λ = , 2 1.95205λ =
 
and 3 1.29021λ = −  

The first four iteration of matrix A with shift/acceleration 

are: 

�� = 0 8.00000              − 1.73205       0.0−1.73205             − 0.66667         0.94281 0.0                           0.94281      1.66667 4 

��  = 0 8.27835              0.75631        0.00.75631     −  1.22744         0.09834 0.0                 0.09834        1.94909 4 

�$ = 0 8.32273       − 0.38506      0.0−0.38506           − 1.27478       0.00009 0.0                         0.00009         1.95205 4 

�t =  0 8.33418          0.19573      0.00.19573         − 1.28623    0.0 0.0                           0.0      1.952054 

As we can observe the entries of �t , the element f�(t)
 

converges to zero extremely rapidly and dramatically, but the 

element f�(t)
 converges to zero geometrically. Moreover, 

Since off-diagonal elements are approaching to zero or very 

small number, the eigenvalues of A are approaching to 

diagonal entries of �t. 

In contrast, without shift/ improvement of convergence we 

have, 

At =  0 8.33213     − 0.01285      0.0−0.01285              1.75703       0.77093 0.0                      0.77093      − 1.09512 4 

Similarly, Since the off-diagonal elements of �t are 

approaching to zero or small number, the eigenvalues of A 

are approaching to diagonal elements of �t. 

Now, let us take the diagonal entries of iteration  �t as 

approximated eigenvalues in both cases (which is computed 

with and without shift/improvement or acceleration) and let 

us compare those with exact eigenvalues of the same given 

square matrix A. 

Table 1. Error analysis of eigenvalues with and without shift. 

Exact eigenvalues Approximated eigenvalues without shift Approximated eigenvalues with shift Error without Shift Error with Shift 

8.33816 8.33213 8.33418 0.00603 0.00398 

1.95205 1.75703 1.95205 0.195202 0.00000 

-1.29021 -1.09512 -1.28623 0.019509 0.00398 

 

As it is shown in the table (1), the error with shift is 

smaller as compare to without shift. It is possible to improve 

the eigenvalues more than this by applying some more 

shifting methods and hence the round-off error will decrease 

with shift as compare to without shift. This implies that, 

shifting technique is very important in QR method to reduce 

the cost per iteration but QR method barley by itself is too 

slow, too expensive and because of this reason it is 
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impractical without improvement technique. 

2.3.2. The Double QR Algorithm 

Now, let us consider the important special case of real 

square matrix with complex eigenvalues. In order to realize 

the faster rate of convergence of general QR method (using 

shifts) on such matrices complex shifts must be employed at 

some stage. After such stage the matrices will contain 

complex elements and so will all the extra work involved in 

treating complex matrices (double storage, at least four times 

the work). There is thus storage incentive for seeking an 

algorithm which produces a real matrix from which the 

complex eigenvalues can be calculated easily as conjugate 

root of 2x2 real principal sub matrices. 

Consider two steps of the generalized QR transformation 

of general real matrix ��. 

We have, 

�$ 
 U�%��U� 
 U�%U�%��U�U� 
 U��S�U� " ��Q� S� =U�S�U�S� − U�QS� = ��U�S�−��U�S� = (�� −��Q)U�S� = (�� − ��Q)(�� − ��Q) = £          (30) 

Thus, setting UX = U�U� and SX = S�S� , the formulas 

above says that �$ = UX%��UX where, by uniqueness, UXSX is 

the QR factorization of the non-singular matrix G. It is now 

clear what should be done. Suppose that �� is complex shift 

and that �� is forced to be �¤�, then G will be real, UX will be 

its (real) orthogonal factor, �$  will be real, and the 

computation of complex �� will be circumvented. The 

solution is therefore to use the generalized QR 

transformation with the providing every shift with positive 

imaginary part is followed by its conjugate, the intermediate 

complex matrix being avoided as indicated above. Ignoring 

the storage of the auxiliary matrix G it turns out the 

formation of G, its decomposition, and the formation of �$ (one double steps) require at least as much as work as two 

real QR steps. Note that apart from the decided advantage of 

keeping the arithmetic real there no extra gain. 

3. Conclusion 

We have seen that calculating eigenvalues a matrix is an 

important problem in mathematics and the science but the 

native approach of solving characteristic polynomial is 

inefficient for large dimensional matrices. Rather, using the 

elegant QR methods provides an effective answer. The QR 

method is one of the most wildly used methods which used 

to find all eigenvalues of square matrix. Therefore, we are 

intended to determine all eigenvalues of real square matrix 

by using QR factorization method. Suppose a square matrix 

A is given. Now, let A = Q0R0 be QR factorization of A, and 

then create A1 = R0Q0. Let A1 = Q1R1 be QR factorization of 

A and create A2 = R1Q1. Continue this process again in the 

same fashion. For � ≥ 1, (��	ℎ �� = �). Once Am has been 

created such that, Am= QmRm, and Am+1 = RmQm. Thus, the 

sequence {Am} will usually converges to something from 

which the eigenvalues can be computed easily. Moreover, A2 

is similar to A and Am+1 is similar to Am and so on. Hence Am 

and Am+1 have the same eigenvalues by definition of 

similarity of matrices. This process will be stopped when the 

entries below the main diagonal of current matrix Am are 

sufficiently small, or if it appears that convergence will not 

happen. This implies that, QR factorization sequence process 

can fail to converge or the convergence can be also extremely 

slow and hence expensive. If it converges to certain matrix, 

then the diagonal entries of this current matrix are tends to 

eigenvalues of matrix A, if not, it can be modified in order to 

improve convergence/ to accelerate the rate of convergence 

dramatically by using shifting methods. 
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