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Abstract: In this paper we study about trigonometry in finite field, we know that √2 ∈ ��, the field with p elements, where 

p is a prime number if and only if p = 8k + 1 or p = 8k−1. Let F and K are two field, we say that F is an extension of K, if K ⊆ 

F or there exist a monomorphism f: K → F. recall that  �	
� = 
�� + ��
 + ��
� + ⋯ + ��
�|�� ∈ �, � ≥ 0�, F[x] is the ring 

of polynomial over F. If K ≤� F (means that F is an extension of K) an element u ∈ F is algebraic over K if there exists f(x) ∈ 

K[x] such that f(u)=0. The algebraic closure of K in F is �, is the set of all algebraic elements in F over K. 
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1. Introduction 

In this paper we study about trigonometry in finite field, 

we know that √2 ∈ ��, the field with p elements, where p is 

a prime number if and only if p = 8k + 1 or p = 8k − 1. More 

generally, what can be said about � � + ! � + ⋯ + " � In 

�� where   � ,  �, … ,  �, p are prime numbers. Can we replace 

square root by cube roots. 

In attempting to answer the question, for which p, 

!2 + "  ∈ �� , we are naturally led to use the formula, 

$%&�' = �()*+�,� .  Indeed, if ' = ./,  we have, $%&� ./ = �(√�0  

and so $%& ./ = "�(√�� , we can choose θ, a suitable 16th root 

of unity, such that 
,(,12

� = "�(√�� . The crucial observation is 

that this formula makes sense any algebraic closure ��of �� 

if  ≠ 2. 

Let F and K are two field, we say that F is an extension of 

K if K ⊆ F or there exist a monomorphism  4: � → �. recall 

that �	
� = 
�� + ��
 + ��
� + ⋯ + ��
�|�� ∈ �, � ≥ 0� ,  �	
�  is the ring of polynomial over F. If K ≤� F (means that 

F is an extension of K) an element u ∈ F is algebraic over K 

if there exists 47
8  ∈  �	
�  such that 4798 = 0 . The 

algebraic closure of K in F is �, is the set of all algebraic 

elements in F over K. 

Definition: Let p be a prime number,   ≠ 2  and k an 

integer such that  ∤ ;. Then define the set cos[k] = {c(θ) = ,(,12
�  | θ is a primitive kth root of unity}. 

Note that symbol | is divisor or divides such that a|b means 

a divides b and a ∤ b means a does not divide b. 

Remark: 

(1) Recall that θ is a primitive kth root of unity if '< = 1 

but '� ≠ 1, for all 1 ≤ � ≤ ; − 1. We have two make the 

assumption p ∤ k because if p | k, then there are no primitive 

kth root of unity in ��. 
(2) We can defined sin[k] = {s(θ) = 

,?,12
�� | θ is the kth root 

of unity}, in this set i is a fixed square root of -1. We know 

that s(θ) ∈ ��@ . In particular we have $7'8� + &7'8� = 1  
and θ = c(θ) + is(θ). 

Theorem 1. If K is a field with 9 elements and if �  is a 

finite extension of K, then the mapping λ: � →� defined by A7
8 = 
B  is an automorphism of � which fixes exactly the 

elements of K. 

Proof: It is obviously that λ is onto and one to one. 

Theorem 2. Let θ be a primitive kth root of unity. Then ' + '?�∈ �� if and only if p ≡ ±1(mod k). 

Proof: Assume ' + '?� ∈ ��. If θ ∈ ��, then p ≡ 1(mod 
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k). Since the order of the multiplicative group of �� is p − 1. 

If θ ∉ �� , then the irreducible polynomial of θ over ��  is 7
 − '87
 − '?�8. Hence '� = '?� and so p ≡ −1(mod k). 

Conversely, let p ≡ ±1(mod k). If p ≡ 1(mod k) then, since 

the multiplicative group of ��  is cyclic of order p − 1, �� 

contains a primitive kth root of unity. Therefore �� contains 

all primitive kth root of unity and so θ ∈ ��. Hence ' + '?� ∈ ��. If p ≡ −1(mod k) then '� = '?� whence 7' + '?�8� =' + '?�, so ' + '?� ∈ ��. 

Corollary 3. If p ≠ 2 and θ is a primitive kth root of unity, 

then c(θ) ∈ �� if and only if p ≡ ±1(mod k). 

Remark: we observe that since membership of c(θ) in �� 

depends only on p and k We have that either cos[k] ⊂ �� or 

cos[k] ∩ �� = Ø. 

Lemma 4. Let θ be a primitive kth root of unity in E the 

algebraic closure of the rationales Q. Let R = Z[θ], the 

subring of E generated by the integers Z and θ, and let P be a 

prime ideal of R containing of FG, where (p, k) = 1, where (,) 

denote the highest common factor. Let S be the valuation ring 

of Q(θ) containing the ring A = {
H?�| 
, H ∈  F, H ∉ I }, 

and let M be the maximal ideal of S. Then '= θ + M is a 

primitive kth root of unity in the field of 
JK. 

Proof. The formal derivative ;
<?� of 
< − 1 is relatively 

prime to 
< − 1 and so 
< − 1 has no repeated roots in 
JK. On 

the other hand,  
< − 1 =∏ (
 − '�)<?��M�  and so, over  JK: 
< − 1 =∏ (
 − '�) <?��M�  It follows that ' is a primitive root 

of unity in 
JK. 

Remark. For the basic properties of valuation rings the 

reader can consults. In particular, it is worth recalling that 

each valuation ring is integrally closed in its quotient field K, 

and so, if ;� − � = 0, k ∈ K, then k ∈ A. Moreover, each 

valuation ring is a local ring which means that for each a ∈ 

A/M, a−1 ∈ A/M as well. Expression obtained for the real 

and imaginary parts of the roots of unity over complex 

number are meaningful in A/M. 

2. Some Properties 

Corollary 5. Let (q, 10) = 1. Then 

N2 + �2 + ⋯ + !2 + √O12P ∈  �Q  ⇔  S ≡  ±1(V%W 2� . 5)  

were n is the number of 2’s occurring under the root signs 

(excluding the 2 in the denominator!). 

Proof. Define Y� = √Z?�� , �� = "2[\P√OP , and for each n ≥ 2: Y� = "2 + ��?� , �� = "2 − ��?� . Let ]�M^@P ,    W�M_@P ,   . 

Now ]� + `W� is a primitive 5th root of unity viewed as an 

element of the complex number. Thus ]� + `W�  is a 5th 

primitive root of unity in �� provided p ≠ 5. Moreover, it is 

easy to check that (]� + `W�)� = ]�?� ± `W�?�  and so ' = ]� + `W� is a primitive 2�?�. 5  root of 1. 

Remark. If in corollary 5 we take n = 0, q = p, we obtain a 

special case of the quadratic reciprocity law, namely: 
√Z?��  ∈ �Q ⇔ p ≡ ±1(mod 5) or √5 ∈ �� ⇔ p ≡ ±1(mod 5). 

Corrollary 6. Assume (2, q) = 1. Then !2 + "2 + ⋯ + √2 ∈ �Q  ⇔ q ≡ ±1(mod 2�(�) where n is 

the number of 2’s occurring under root signs. 

Proof. Let �� = 0, ]� = 2   and for each n ≥ 2 Let �� ="2 + ]�?� , ]� = "2 − ��?� where at each stage we make a 

specific choice of square root. 

As before letting Y�M_@P ,    a�Mb@P ,    and we have Y� + `a� is a 

primitive 2�(� root of unity. 

Corollary 7: Let (6, q) = 1. Then !2 + "2 + ⋯ + √3 ∈ �Q  ⇔ q ≡ ±1(mod 2�(�. 3), where n is the number of 2’s 

under the square root signs. 

Proof. Let �� = √3 , ]� = 2  and for each n ≥ 2 Let �� = "2 + ]�?� , ]� = "2 − ��?� . Then with the same 

notation as above we have Y� + `a�  is a primitive 2�(�. 3  
root of unity. 

Remark. If n = 0 and q = p above we have √3 ∈ �� ⇔ p ≡ 

±1(mod 12) which is again a particular case of the quadratic 

reciprocity Law. 

Corollary 8: Let (q, 34) = 1. Then 

� = −1 + √17 + "34 − 2√172
+ �17 + 3√17 − !34 − √17 − 2!34 + 2√17∈  �Q  ⇔  q ≡  ±1(mod 17). 

The Formula in corollary 8 is quite complicated and one is 

naturally interested to know whether already some 

subformula of this formula is an element of �Q. Suppose that 

q ≡ ±1(mod 17), then √17   ∈  �Q. 

Indeed set λ = ' + '�j + '0 + '�k + 'B + '/ + '�Z + '� 

where θ is a primitive 17
th

 root of unity in �Q . Since q ≡ 

±1(mod 17) we see AQ  = λ and λ ∈ �Q. On the other hand one 

checks easily that (2A + 1)� = 17 , hence √17   ∈  �Q . We 

climb that also A� + 4 is a square in �Q . To show this 

consider α = ' + '�j + '0 + '�k  and β = 'B + '/ + '�Z +'�. Then α + β = λ. Moreover we have lm = ∑ '��j�M� = -1. 

Thus l − l?� = A. Since q ≡ ±1(mod 17) we see that both α, 

β ∈ �Q . Hence √A� + 4  ∈  �Q  too. Since A = √�o?��  or 

A = ?(√�o(�)�  we see that !2(17 − √17)   ∈  �Q  or 

!2(17 + √17)   ∈  �Q. Since !2(17 − √17) . !2(17 + √17)   =±8√17   ∈  �Q . we see that both element !2(17 − √17)  ��W   !2(17 + √17)    belong to  �Q . 

Combining corollary 8 with the considerations above we 

obtain. 
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Corollary 9: Suppose that (q, 34) = 1, Then "34 − 2√17 

and !17 + 3√17 − "34 − 2√17 − 2"34 + 2√17  both 

belong to �Q if q ≡ ±1(mod 17). 

Remark. One could use the formula given in the table at 

the end of this note to deduce corollary 9, more easily. 

Indeed, for example, from $� and $0  in �Q we deduce that $� + $0 = ?�(√�o("k0?�√�o0  ∈  �Q , similarly $� + $/ =?�(√�o?"k0?�√�o0  ∈  �Q . From this follows that √17  and "34 − 2√17  ∈  �Q.  

Theorem 10: Suppose (34, q) = 1, Then !2(17 + √17)  ∈ �Q if and only if q ≡ ±1, ±4(mod 17). 

Proof. if A = !2(17 + √17)  ∈  �Q  then also √17  ∈  �Q 

and q ≡ ±1, ±4, ±2, ±8(mod 17). Indeed √17  ∈  �Q  if either S =  q  and √17  ∈  �Q  or S =  q  with r even. In the first 

case p ≡ ±1, ±4, ±2, ±8(mod 17) and therefore   q ≡ ±1, ±4, 

±2, ±8( mod 17), too. On the other hand p, when r is even, is 

congruent to one of the elements ±1, ±4, ±2, ±8. On the other 

hand, in the notation as above, we have l = ' + '?� + '0 +'?0  ∈  �Q if and only if !2(17 + √17)  ∈  �Q. If q ≡ ±1 or 

q ≡ ±4 we see that lQ =  α and α ∈  �Q . Hence q ≡ ±1, 

±4(mod 17). So !2(17 + √17)  ∈  �Q. 

We want to prove that !2(17 + √17)  ∈  �Q then q ≡ ±1, 

±4(mod 17). It is enough to exclude possibilities q ≡ ±2, 

±8(mod 17). Suppose that q ≡ ±2, ±8(mod 17), Then l = lQ = '/ + 'B + '� + '�Z = −l?� . Thus ' = l +
m = r ?�(√�o�?(�(√�o)�

 iff s √17 = 1√17 = −1 that this is contradiction. 

Corollary 11: Assume (34, q) = 1. If =  q , then "17 + √17  ∈  �Q  if and only if q ≡ ±1(mod 8) and q ≡ ±1, 

±4(mod 17) or q ≡ ±3(mod 8) and q ≡ ±2, ±8(mod 17). 

Therefore the inclusion "17 + √17  ∈  �Q  depends only 

on q(mod 136). we now focus attention on s(θ) = 
,?,12��  

where θ is a primitive kth root of unity in �Q. Note that if  = 2, ,?,12��  =
,(,12�  which has been dealt with is lemma 4 

from now on we assume 2 ∤ q. 

Definition: Let sin[k] = {s(θ)|θ is a primitive kth root of 

unity}, we shall abbreviate s(θ) to s. The reader should 

beware that ‘ is ’ is not necessarily the third person singular 

of the present tense of the verb to be! 

Theorem 12: Let θ be a primitive kth root of unity. Then 

s(θ) ∈  �Q  iff one of the following holds: 

(i) q ≡ ±1(mod [4, k]) where [,] denote the least common 

multiple. 

(ii) k has the form 8m + 4 and q ≡ 4m + 1(mod k) 

(iii) k has the form 8m + 4 and q ≡ 4m + 3(mod k) 

Proof. Assume s = s(θ) ∈  �Q . Then q ≡ 1(mod k) and set c 

= c(θ) so that θ = c + is. For case (i), Let ' ∈  �Q. Then q ≡ 

1(mod k) and by corollary 3: $ ∈  �Q∗ . Therefore is ∈  �Q and 

so  ∈  �Q. Hence q ≡ 1(mod 4) and thus q ≡ 1(mod [4, k]). 

Case(ii), Let ' ∉  �Q  and $ ∈  �Q. Then `& ∉  �Q too, and 

thus  ` ∉  �Q . Therefore q ≡ −1(mod 4). On the other hand S ≢ 1(V%W ;)  Since ' ∉  �Q  and so q ≡ −1(mod k), with $ ∈  �Q, implies that  q ≡ −1(mod [4, k]). 

Case (iii), ' ∉  �Q , $ ∈  �Q  and is belong to  �Q . In this 

case ` ∈  �Q and so q ≡ 1(mod 4). Now $� = 1 − &� whence 'Q = ±$ . But $ ∉  �Q  and so $Q = −$  Therefore 'Q =($ + `&)Q = −$ + `& . Hence 'Q(� = −1 and so '�(Q(�) = 1. 

Therefore 2q ≡ −2(mod k). So S ≢ ±1(V%W ;) and thus k is 

even and  S ≡ −1(V%W <�) . Therefore q ≡ 1(mod 4), S ≡ −1(V%W <�) and S ≢ ±1(V%W ;). It is easily seen that 

these three condition are equivalent to k = 8m + 4 and q ≡ 4m 

+ 1(mod k) for some m. 

Corollary 13: For any k, either sin[k] ⊂  �Q or sin[k] ∩ �Q 

= ∅. 

Proof. As s(θ) ∈  �Q depends only on q and k and not 

particular primitive root chosen. Finally, we determine how 

many distinct values of c(θ) and s(θ) there are as θ varies 

over the primitive kth root of unity 

3. Conclusion 

We conclude that in the field of real numbers trigonometric 

ratios are defined as defined in finite fields. As well as 

relations between trigonometric ratios hold in the field of real 

numbers, finite fields are also established under the 

circumstances. 
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