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Abstract: Using traditional methods it is possible to prove the Ito formula in a Hilbert space and some Banach spaces with 

special geometrical properties. The class of such Banach spaces is very narrow-they are subclass of reflexive Banach spaces. 

Using the definition of a generalized stochastic integral, early we proved the Ito formula in an arbitrary Banach space for the 

case, when as initial Ito process was the Wiener process. For an arbitrary Banach space and an arbitrary Ito process it is 

impossible to find the sequence of corresponding step functions with the desired convergence. We consider the space of 

generalized random processes, introduce general Ito process there and prove in it the Ito formula. Afterward, from the main Ito 

process in a Banach space we receive the generalized Ito process in the space of generalized random processes and we get the 

Ito formula in this space. Then we check decompasibilility of the members of the received equality and as they turn out Banach 

space valued, we get the Ito formula in an arbitrary Banach space. We implemented this approach when the stochastic integral 

in the Ito process was taken from a Banach space valued non-anticipating random process by the one dimensional Wiener 

process. In this paper we consider the case, when the stochastic integral is taken from an operator- valued non-anticipating 

random process by the Wiener process with values in a Banach space. 

Keywords: Wiener Process in a Banach Space, Covariance Operators, Ito Stochastic Integrals and Ito Processes,  

the Ito Formula, Stochastic Differential Equations in a Banach Space 

 

1. Introduction and Preliminaries 

As in the finite dimensional case, the Ito formula plays an 

important role in the infinite dimensional stochastic analysis. 

For the cases when the Banach spaces have special 

geometrical properties, the Ito formula was proved in [1] and 

[2]. For the Wiener process in an arbitrary separable Banach 

space, the Ito formula was proved in [3]. The Ito formula for 

the case, when the stochastic integral that appears in the Ito 

process is taken from Banach space valued non-anticipating 

process by the one dimensional Wiener process was proved 

in [4]. In this paper we prove the Ito formula for the Ito 

processes when the stochastic integral is taken from the 

operator valued non-anticipating random processes by the 

Wiener processes in a Banach space. The main unsolved 

problem to prove this formula in an arbitrary Banach space is 

to find such a sequence of step functions converging to the 

integrand function that their stochastic integrals converge to 

the stochastic integral from the integrand function. We use 

the concept of the generalized random element; we consider 

the space of generalized random processes and introduce the 

generalized Ito process there. Firstly we prove the Ito 

formula for the generalized random processes. Then from the 

initial Ito process in a Banach space we receive a generalized 

Ito process and write the Ito formula there. Afterward, In the 

obtained equality we check decomposability of the members 

of the equality; we found that all of them are Banach space 

valued. Therefore, we get the Ito formula for the Banach 

space valued random process. Now we give, some definitions 

and preliminary results. 

Let X  be a real separable Banach space, *X - its 

conjugate, Β ( X ) – the Borel σ -algebra of X , ( , ,Ω Β Ρ ) - a 

probability space. The continuous linear operator T : *X → L

2
( ,Ω ,B P) is called a generalized random element (GRE) 

(sometimes it is used the terms: random linear function or 

cylindrical random element). Denote by 
1

M :=L( *X , L
2
( ,Ω

B,P)) the Banach space of GRE with the norm

1 2

*

* 1
: sup

xM L
T Tx≤= . A random element (measurable map) 
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: Xξ Ω →  is said  to have a weak second order, if, for all 

* *
x X∈ , E

2
*

, xξ < ∞ . We can realize the random element 

ξ  as an element of 
1

M : Tξ x * =
*, xξ , but not conversely: 

in infinite dimensional Banach space for all T : *X → L
2

( ,Ω ,B P) , there does not always exists the random element 

: Xξ Ω →
 
such that T x * =

*, xξ  for all 
* *

x X∈ . The 

problem of existence such random element is the well known 

problem of decompasibility of the GRE. Denote by 
2

M  the 

linear normed space of all random elements of the weak 

second order with the norm Tξξ = . Thus, we can assume 

M
2 1

M⊂ . 

Let (W
[0,1])t t∈  be the Wiener process in a Banach space. 

That is 1) W
0

=0 almost surely (a.s.); 2. for all

0 1
0 1

n
t t t≤ < < < ≤⋯ , the random elements in X , 

1i it tW W
+

−  , 1, 2, , 1i n= −⋯  are independent; 3. for all t s>  

t sW W−  is a Gaussian random element with a mean 0  and 

the covariance operator ( )t s R−  , where 
*

:R X X→  is a 

fixed Gaussian covariance; 4. 
[0,1]( )t tW ∈  has continuous 

sample pats. 

Let 
[0,1]( )t tF ∈ -be an increasing family of σ − algebras such 

that a) tW  is tF -measurable for all [0,1]t ∈  ; b) t sW W−  -is 

independent of the σ -algebra sF  for all s t< . 
0

F  contains 

all P-null sets in Β . In this case we say that 
[0,1]( )t tW ∈  is tF  -

adapted. 

If 
*

:R X X→  is a covariance operator of the random 

element 
1

W , and 
* *

1

,k k

k

Rx a x a
∞

=

= 〈 〉∑ , ( )k k Na X∈ ⊂ , is a 

representation of the operator R  (see [5], Lemma 3.1.1), 

then there exists the sequence of independent, standard, real 

valued Wiener processes ( ( ))k k Nw t ∈  such that 

1

( )t k k

k

W a w t
∞

=

=∑ and the convergence is a. s. uniformly for t  

in X (see [6 ], Th. 1.4, [7], Th.1.4). We may choose 

( )k k Na X∈ ⊂  and ( ( ))k k Nw t ∈  such that ( ( ))k k Nw t ∈  will be tF -

adapted for all k N∈  (see [7], prop. 2.1). 

Let (T t )
[0,1]t∈  be a family of GRE. We call it a generalized 

random process (GRP). If we have a weak second order 

random process (
[0,1])t tξ ∈ , :t Xξ Ω → , it will be realized as a 

GRP: T
* *,

t tx xξ ξ= . 

Denote by *( )RG X  the linear space of random functions 

*: Xφ Ω →  such that for all x X∈  ( ), xφ ω〈 〉  is measurable 

and 2 ( ) ( ), ( )R R dτ φ φ ω φ ω
Ω

≡ 〈 〉 Ρ < ∞∫ . ( )Rτ φ  is a pseudonorm 

in *( )RG X . 

Definition 1. A function *: [0,1] Xφ × Ω →  is called non-

anticipating with respect to 
[0,1]( )t tF ∈  if the function 

( , ) ( , ),t t xω φ ω→ 〈 〉  from ([0,1] , [0,1] )×Ω Β × Β  into 

( 1 1, ( )R RΒ ) is measurable for all x X∈ , and the function 

( , ),t xω φ ω→ 〈 〉  is tF -measurable for all [0,1]t ∈ . 

By 
*( )

R
TG X  we denote the class of non-anticipating 

random functions 
*: [0,1] Xφ × Ω → , for which 

1

2 ( ) ( ( , ), ( , )R

o

P R t t dtdφ φ ω φ ω
Ω

≡ 〈 〉 Ρ < ∞∫ ∫ . 
*( )RTG X  is a 

linear space and R
P  is a pseudonorm in it. 

If φ ∈ *( )RTG X  is a step-function 

1

1

[ , )

0

( , ) ( ) ( )
i i i

n

t t t

i

t tφ ω φ ω χ
+

−

=

=∑ , 0 1
0 1

n
t t t= < < < =⋯ , 

0, , 1i n= −⋯ , then the stochastic integral of φ  with respect 

to [0,1]( )t tW ∈ , is naturally defined by the equality 

1 1

1

00

( , ) ( ), ( )
i i i

n

t t t t

i

t dW W Wφ ω φ ω
−

+
=

= 〈 − 〉∑∫ . 

The following lemma is true: 

Lemma 1 ([7]). For an arbitrary φ ∈ *( )RTG X  there exists 

a sequence of step-functions *( ) ( )n n N RTG Xφ ∈ ⊂  such that 

RP

nφ φ→  and 

1

0

n tdWφ∫  converges in 
2
( , , )L Ω Β Ρ . 

Definition 2 ([7]). Let φ ∈ *( )RTG X  and 

*( ) ( )n n N RTG Xφ ∈ ⊂  be step-functions such that 
RP

nφ φ→  and 

1

0

n tdWφ∫  converges in 
2
( , , )L Ω Β Ρ . The limit of the sequence 

1

0

n tdWφ∫ is called the stochastic integral of a random function 

φ ∈ *( )RTG X  with respect to the Wiener process 
[0,1]( )t tW ∈  

and is denoted by 

1

0

tdWφ∫ . 

Proposition 1. Let 
1

( )t k k

k

W a w t
∞

=

=∑  be such a 

representation of 
[0,1]( )t tW ∈  that 

[0,1]( ( ))k tw t ∈  is tF -adapted for 

all k N∈ , then 
0

t

tdWφ∫ =
1 0

, ( )

t

k k

k

a dw tφ
∞

=

〈 〉∑∫  a. s. for all 

[0,1].t ∈  

Proof. As 
[0,1]( ( ))k tw t ∈  is tF -adapted for all k N∈ , the real 

valued stochastic integrals 
0

, ( )

t

k ka dw tφ〈 〉∫  exist. The sum 

1 0

, ( )

t

k k

k

a dw tφ
∞

=

〈 〉∑∫  converges in 
2
( , , )L Ω Β Ρ  and 

2

2

1 10

( , ( )) , ,

t

k k k

k k

E a dw t a Rφ φ φ φ
∞ ∞

= =

〈 〉 = 〈 〉 = 〈 〉∑ ∑∫ . Let 

*( ) ( )n n N RTG Xφ ∈ ⊂  be step-functions such that 
RP

nφ φ→  and 



166 Badri Mamporia:  The Ito Formula for the Ito Processes Driven by the Wiener Processes in a Banach Space  

 

1

0

n tdWφ∫  converges in 
2
( , , )L Ω Β Ρ . It is easy to see, that the 

above equality holds for step-functions ,
n

φ  n N∈ . That is 

0

t

n tdWφ∫ =
1 0

, ( )

t

n k k

k

a dw tφ
∞

=

〈 〉∑∫  a. s. for all [0,1].t ∈  

1 0

, ( )

tm

n k k

k

a dw tφ
=

〈 〉∑∫  converges also to 
1 0

, ( )

tm

k k

k

a dw tφ
=

〈 〉∑∫  for 

all fixed m N∈ . Therefore, 
1 0

, ( )

tm

n k k

k

a dw tφ
=

〈 〉∑∫ →

1 0

, ( )

tm

k k

k

a dw tφ
=

〈 〉∑∫ →
1 0

, ( )

t

k k

k

a dw tφ
∞

=

〈 〉∑∫ , when m → ∞  and 

1 0

, ( )

tm

n k k

k

a dw tφ
=

〈 〉∑∫  →
0

t

tdWφ∫  when n → ∞ . 

Now consider the linear bounded operator 
* *: ( ),RX G Xφ →  for all fixed 

* *
x X∈ , * *:x Xφ Ω → . 

Denote by * *

1 ( , ( ))G

RM L X G X≡  the space of such operators 

with the property: 
2

( )Rτ φ ≡ *

* *

1
sup , .

x
E R x xφ φ

≤
〈 〉 < ∞  

( )
R

τ φ is a pseudonorm in 
1

GM . Consider now the family 

of linear bounded operators ( )
[0,1]t t

T ∈ , * *
: ( )t RT X G X→ , 

such that for all 
* *

x X∈ , the random process *

tT x  is non -

anticipating and 
2

[0,1]
(( ) )

R t t
Tτ ∈ ≡

*

1

* *

1
0

sup ,t tx
RT x T x dtd

≤
Ω

〈 〉 Ρ < ∞∫ ∫ . Denote by 
1

GTM  the space 

of such family of operators. 

Afterward, we will consider the family ( )
[0,1]t t

T ∈ , 

* *
: ( )t RT X G X→  with the property 

11
sup sup

xx• ≤≤

1

2

0

,tT x x dtd•

Ω

〈 〉 Ρ < ∞∫ ∫ . 

Proposition 2. If the family of linear bounded operators 

( )
[0,1]t t

T ∈ , * *
: ( )t RT X G X→  are such that 

11
sup sup

xx• ≤≤

1

2

0

,tT x x dtd•

Ω

〈 〉 Ρ < ∞∫ ∫ , then 
*

1

* *

1
0

sup ,t tx
RT x T x dtd

≤
Ω

〈 〉 Ρ < ∞∫ ∫ , 

that is ( )
[0,1]t t

T ∈ ∈
1

GTM . 

Proof. . As 
*

:R X X→  is a Gaussian covariance operator, 

by the Kwapien-Szymanski’s theorem (see [5] p. 262, [8]) 

there exist the sequences ( )k k Nx X∈ ⊂  and * *
( )k k nx X∈ ⊂

such that *

,,k j k jx x δ〈 〉 = , *

k kRx x= , 1,2,k = ⋯ , for all 

* *
x X∈ , 

* *

1

,k k

k

Rx x x x
∞

=

= 〈 〉∑  and 
2

1

k

k

x
∞

=

< ∞∑ . Then 

*

1

* *

1
0

sup ,t tx
RT x T x dtd

≤
Ω

〈 〉 Ρ =∫ ∫ * *

21 1

* 2 * 2

1 1
1 10 0

sup , sup ,k
k t k tx x

kk k

x
x T x dtd x T x dtd

x

∞ ∞

≤ ≤
= =Ω Ω

〈 〉 Ρ = 〈 〉 Ρ∑ ∑∫ ∫ ∫ ∫ ≤

*

1
2 * 2

1 1
1 0

sup sup , .k tx x
k

x T x x dtd
∞

≤ ≤
= Ω

〈 〉 Ρ < ∞∑ ∫ ∫  

We can naturally define the stochastic integral from 

( )
[0,1]t t

T ∈ ∈
1

G
TM which is the GRE, defined by the equality 

( )
1

* *

[0,1]

0

t t tt
I T x T x dW

∈
= ∫ . Accordingly, we have the 

isometrical operator :I

 

1

G
TM → 1M , 

( )
1

* *

[0,1]

0

t t tt
I T x T x dW

∈
= ∫  . 

Lemma 2. For an arbitrary separable-valued 

1: [0,1]
G

Mφ →  there exists a sequence of step-functions 

1( )
G

n n N TMφ ∈ ⊂ such that 
R

n

τ

φ φ→  in 
1

G
TM  and 

1

0

n tdWφ∫  

converges in 1M . 

Proof. Analogous to the case of proposition 2, consider the 

sequences ( )k k Nx X∈ ⊂  and * *
( )k k nx X∈ ⊂ such that 

*

,,k j k jx x δ〈 〉 = , *

k kRx x= , 1,2,k = ⋯ , for all 
* *

x X∈ , 

* *

1

,k k

k

Rx x x x
∞

=

= 〈 〉∑  and 
2

1

k

k

x
∞

=

< ∞∑ . Let φ ∈
1

G
TM and 

denote by 
*

1

( )
n

n

k

f t x
=

=∑ * *
( ) , k kt x x xφ〈 〉 , 1, 2,n = ⋯ . the 

functions from 
1

GTM . 

1 1

* * * 2 * 2

1 1
1 1 10 0

sup ( , ), sup ,
n

j j k kx x
k j k n

x x x x x dtd x x dtdφ φ φ• •

∞ ∞

≤ ≤
= = = +Ω Ω

〈 − 〈 〉 〉 Ρ = 〈 〉 Ρ ≤∑ ∑ ∑∫ ∫ ∫ ∫
2

1
1

supk x
k n

x •

∞

≤
= +
∑

1

2

0

, k

k

x
x dtd

x
φ •

Ω

〈 〉 Ρ ≤∫ ∫

2

1
1

supk x
k n

x •

∞

≤
= +
∑

1

2

1

0

sup , 0
x

x x dtdφ •
≤

Ω

〈 〉 Ρ →∫ ∫ . 

For any fixed k , consider now the GRP 

[0,1]( ( )) ( ) ,k t kt t x xϕ φ •
∈ ≡ 〈 〉 , 

2( ) : ( , , )k t X Lϕ • → Ω Β Ρ , so we 

have the map 1: [0,1]k Mϕ → , 
1

1
2

0

k M
dtϕ < ∞∫  and kϕ  is 

separable-valued, therefore, by the lemma 1 from [9], there 

exists the sequence of non-anticipating step functions 

kmϕ :[0,1] 1M→  such that 

1

21

0

( ) ( ) 0k km

M

t t dtϕ ϕ− →∫ . 
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Afterward for 
*

1

( )
n

n

k

f t x
=

=∑ * *( ) , k kt x x xφ〈 〉 , the sequence 

1

( )
n

nm km k

k

f t xϕ •

=

≡∑  is such that 2 ( ) 0R nm nf fτ − → , when 

m → ∞ . Therefore, we may choose a sequence of step-

functions 
1( ) G

n n N TMφ ∈ ⊂ such that 
R

n

τ

φ φ→ . It is easy to see, 

that 
1

0

n tdWφ∫  converges in 
1

M  to the 
1

0

tdWφ∫ . 

If we have 
1 1

( , ) :[0,1] ( , )F t L M Mω × Ω →  non-

anticipating operator valued random process and non-

anticipating ( )
[0,1]t t

T ∈ ∈
1

GTM , then we can define the 

generalized stochastic integral *

2: ( , , )I X L→ Ω Β Ρ , 

1 1

* * *

10 0

( , ) ( , ) , ( )t t t k m

m

Ix F t T x dW F t T x x dw tω ω
∞

=

= ≡ 〈 〉∑∫ ∫ , 

as *

2( ), : ( , , )tT x X L〈 ⋅ 〉 → Ω Β Ρ  is a generalized random 

process. Here we use the representation of the Wiener 

process in a Banach space by the sum of one dimensional, 

independent, non-anticipating Wiener processes, and ( )
k k N

x ∈  

is such that 
* *

1

,
k k

k

Rx x x x
∞

=

= 〈 〉∑ is the representation of the 

covariance operator of 
1

W . Let now X be a separable Banach 

space and ( , )L X X
 
be the space of bounded linear operators 

from X  to X . We will consider the random processes 

: ( , )
t

L X Xξ Ω →
 
such that 

1

2

0

( ) ,t x x dtdξ ω •

Ω

〈 〉 Ρ < ∞∫ ∫  for all 

x X∈ and x X
• •∈ . 

Proposition 2. If the random process : ( , )
t

L X Xξ Ω →
 
is 

such, that 

1

2

0

( ) ,t x x dtdξ ω •

Ω

〈 〉 Ρ < ∞∫ ∫  for all x X∈ and 

x X
• •∈ , then 

1

2

1
0

sup ( ) , ( )t tx
R x x dtdξ ω ξ ω•

• • • •
≤

Ω

〈 〉 Ρ < ∞∫ ∫ , 

where the operator ( )tξ ω• is conjugate of the operator ( )
t

ξ ω . 

Proof. Firstly we prove that 
1

* 2

11
0

sup sup ( ) , .txx
x x dtdξ ω• ≤≤

Ω

〈 〉 Ρ < ∞∫ ∫  Consider the family 

of linear operators 
2: ([0,1] , [0,1] , ),xT X L λ• → × Ω Β × Β × Ρ  

( ) ,x tT x x xξ ω• •= 〈 〉 , ( ) { : 1}x B X x x∈ ≡ ≤ . From the closed 

graph theorem it follows that 
x

T  is a continuous operator for 

all fixed x X∈ . That is { , ( )}
x

T x B X∈  is a collection of 

continuous linear operators from X •  to 
2
([0,1], )L Ω . For all 

fix x X
• •∈ , if we consider the linear operator 

2
: ([0,1], )S X L→ Ω , ( ) ,tSx x xξ ω •= 〈 〉 , by the closed graph 

theorem, we can proof boundedness of the operator S . That 

is, for all fixed x X
• •∈ , 

2

( )sup ( )x B X xT x
•

∈ = 2

1
sup ( )

x
S x≤

=
1

2

1

0

sup ( ) ,tx
x x dtdξ ω •

≤
Ω

〈 〉 Ρ < ∞∫ ∫ . Then, by the uniform 

boundedness principle, 
1

* 2

11
0

sup sup ( ) , .txx
x x dtdξ ω• ≤≤

Ω

〈 〉 Ρ < ∞∫ ∫ . 

Let now the sequences ( )k k Nx X∈ ⊂  and * *
( )k k nx X∈ ⊂ be 

such that *

,,k j k jx x δ〈 〉 = , *

k kRx x= , 1,2,k = ⋯ , for all 

* *
x X∈ , 

* *

1

,k k

k

Rx x x x
∞

=

= 〈 〉∑  and 
2

1

k

k

x
∞

=

< ∞∑ . Then we 

have 

1

2

1
0

sup ( ) ,tx
R x x dtdξ ω ξ•

• • • •
≤

Ω

〈 〉 Ρ =∫ ∫
1

2

1
10

sup ( ) ,t kx
k

x x dtdξ ω•

∞
• •

≤
=Ω

〈 〉 Ρ =∑∫ ∫
21 1

2 2 2

11 1
1 10 0

sup ( ) , sup sup ( ) ,k

k t k txx x
k kk

x
x x dtd x x x dtd

x
ξ ω ξ ω• •

∞ ∞
• • •

≤≤ ≤
= =Ω Ω

〈 〉 Ρ ≤ 〈 〉 Ρ < ∞∑ ∑∫∫ ∫ ∫
. 

Definition 3. The random process : ( , )t L X Xξ Ω →  is 

non-anticipating with respect to the family of the σ -algebra 

[0,1]( )t tF ∈  if, for all x X∈ , ( ) : [0,1]t x Xξ ω ×Ω →
 
is 

measurable and, for all [0,1]t ∈ , the random element 

:t x Xξ Ω →  is tF -measurable. 

Definition 4. We say that the non-anticipating random 

process ( )
[0,1]t t

ξ ∈ , : ( , )t L X Xξ Ω →  belongs to the class 

( ( , ))RTG L X X  if 

2
( )τ ξ ≡ *

1

* * * *

1
0

sup ( ) , ( )t tx
R x x dtd

ω

ξ ω ξ ω
≤

〈 〉 Ρ < ∞∫ ∫ , 

where ( )tξ ω∗  is the linear operator, conjugate to the operator

( )tξ ω . ( ( , ))RTG L X X  is a linear space with the pseudonorm 

( ).τ ξ  

Let ξ ∈ ( ( , ))RTG L X X  and x X
∗ ∗∈ . Then 

*
: [0,1]x Xξ ∗ ∗ × Ω →  is non-anticipating and 

1

* * * *

0

( ) , ( )t tR x x dtd
ω

ξ ω ξ ω〈 〉 Ρ < ∞∫ ∫ . We can define the 

stochastic integral 

1

0

( )t tx dWξ ω∗ ∗∫ , which is the random 

variable with a mean 0 and variance 
1

* * * *

0

( ) , ( )t tR x x dtd
ω

ξ ω ξ ω〈 〉 Ρ∫ ∫ . Therefore, we can consider 
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the GRE 
2: ( , , )I X Lξ

∗ → Ω Β Ρ , I xξ
∗ =

1

0

( ) .t tx dWξ ω∗ ∗∫
 

Definition 5. The generalized random element I xξ
∗ =

1

0

( )t tx dWξ ω∗ ∗∫  is called the generalized stochastic integral 

from the random process ξ ∈ ( ( , ))
R

TG L X X . If there exists 

the random element : Xη Ω →  such that , xη ∗〈 〉 = I xξ
∗ =

1

0

( )t tx dWξ ω∗ ∗∫  for all x X
∗ ∗∈ , then we say that there exists 

the stochastic integral from the operator-valued non-

anticipating random process ( )
[0,1]t t

ξ ∈ , : ( , )
t

L X Xξ Ω →  by 

the Wiener process in a Banach space X  and then we write 
1

0

( )t tdWη ξ ω= ∫ . 

2. The Ito Formula 

We will prove the Ito formula for the generalized Ito 

processes and, as a consequence, we receive the Ito formula 

for the Banach space valued Ito processes, where the 

stochastic integral is taken from the operator-valued random 

process by the Wiener processes in a Banach space. 

Definition 4. A non-anticipating GRP is called the 

Generalized Ito process, if there exist non-anticipating GRP 

[0,1]( ( ))ta t ∈ , *

2( ) : ( , , )a t X L→ Ω Β Ρ ,
1

1
2

0

( ) ,
M

a t dt < ∞∫  and 

non-anticipating 
[0,1]( ( ))tB t ∈ 1

GTM∈ , 

*

1

* *

1
0

sup ( ) , ( )
x

RB t x B t x dtd
≤

Ω

〈 〉 Ρ < ∞∫ ∫  , such that, for all 

* *
x X∈ , 

T * * * *

0

0 0

( ) ( )

t t

t sx T x a s x ds B s x dW= + +∫ ∫  a.s. 

Lemma 3. Let the generalized Ito process 

* * * *

0

0 0

( ) ( )

t t

t sT x T x a s x ds B s x dW= + +∫ ∫  be such that 

1
: [0,1]a M→  and 

1: [0,1] GB M→  are separable-valued, 

then there exist the sequences of non-anticipating step 

functions ( )
n n N

a ∈  and ( )
n n N

B ∈  such that 

1

1
2

0

( ) ( ) 0n M
a t a t dt− →∫ , 

1

1
2

0

( ) ( ) 0Gn M
B t B t dt− →∫  and 

1

2
( ) 0n

t t M
T T− →  uniformly for t , where 

T ( ) * * * *

0

0 0

( ) ( )

t t

n

t n n sx T x a s x ds B s x dW= + +∫ ∫  . 

Proof. The existence of the sequences of non-anticipating 

step functions ( )n n Na ∈ is proved in [ 3 ] ( lemma 1) and 

existence of the sequence of non-anticipating step functions 

( )n n NB ∈  follows from the lemma 2. Uniformness of the 

convergence for t  of 
1

2
( ) 0n

t t M
T T− →  follows from the 

inequality 

1

2
( )n

t t M
T T− ≤

1

2
( )

1 1 0n

M
T T− →

. 

Theorem 1(Formula Ito). Let T

* * * *

0

0 0

( ) ( )

t t

t sx T x a s x ds B s x dW= + +∫ ∫  be a generalized Ito 

process, where a  and B  are separable-valued non-

anticipating GRP such that 
1

1
2

0

( )
M

a t dt < ∞∫ , 

1

1
2

0

( ) G
M

B t dt < ∞∫ . Let f :[0,1] 1 1M M× →  be a continuous 

function such that the derivatives 1 1: [0,1]tf M M′ × → , 

1 1 1: [0,1] ( , )Tf M L M M′ × →  and 
, 1: [0,1]T Tf M L′′ × →

( 1 1 1, ( , )M L M M are continuous. Then 

0

0 0

( , ) (0, ) ( , ) ( , ) ( )

t t

t t s T sf t T f T f s T ds f s T a s ds′ ′= + + +∫ ∫

1
,2

10

( " ( , ) ( ) ( ) )

t

T T s k k

k

f s T B s a B s a ds
∞

=
∑∫ + 

0

( , ) ( ) ( )

t

T sf s T B s dW s′∫ . 

Proof. As in the finite dimensional case, we show that it is 

enough to prove this theorem for the step functions a and B : 

let ( )n n Na ∈  and ( )n n NB ∈  be the sequences of step functions 

such that 
1

1
2

0

( ) ( )n M
a t a t dt−∫ 0→  and 

1

1
2

0

( ) ( ) Gn M
B t B t dt− →∫ 0, then , 

1

2
( ) 0n

t t M
T T− →  

uniformly for t, where 

( ) * * * *

0

0 0

( ) ( )

t t

n

t n n sT x T x a s x ds B s x dW= + +∫ ∫ . 

Let the Ito formula be true for the step functions: 

( ) ( ) ( )

0

0 0

( , ) (0, ) ( , ) ( , ) ( )

t t

n n n

t t s T s nf t T f T f s T ds f s T a s ds′ ′= + + +∫ ∫

( )1
,2

10

( " ( , ) ( ) ( ) )

t

n

T T s k k

k

f s T B s a B s a ds
∞

=
∑∫ + 

( )

0

( , ) ( ) ( )

t

n

T sf s T B s dW s′∫ .. 

As 
( )( , )n

t s
f s T′

 are continuous functions on [0,1] 

converging to the continuous function ( , )
t s

f s T′
, then they are 

bounded. Thereby, by the Lebesgue theorem, we have the 
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convergence ( )

0

( , )

t

n

t sf s T ds′∫ →
0

( , )

t

t sf s T ds′∫ . Furthermore, 
we have 

1

( ) ( )

0 0

( , ) ( ) ( , ) ( , )

t

n n

T s n T s s T sf s T a s f s T a ds f s T′ ′ ′− ≤∫ ∫ ( ) ( )na s a s ds− ++

1

( )

0

( ) ( , ) ( , )n

T s T sa s f s T f s T ds′ ′−∫ ≤ C

1

1

0

( ) ( )na s a s ds−∫ ++(

1
2

0

( )a s ds∫ )
1

2  (

1 2
( )

0

( , ) ( , ) )n

T s T sf s T f s T ds′ ′−∫
1

2 0→ ; 

In principle, we can similarly prove 

( )1
,2

10

( " ( , ) ( ) ( ) )

t

n

T T s k k

k

f s T B s a B s a ds
∞

=
∑∫ →  1

,2
10

( " ( , ) ( ) ( ) )

t

T T s k k

k

f s T B s a B s a ds
∞

=
∑∫  

and 

( )

0

( , ) ( ) ( )

t

n

T sf s T B s dW s′∫  →  
0

( , ) ( ) ( )

t

T sf s T B s dW s′∫ . 

Therefore, it is enough to prove the Ito lemma for the step 

functions and, by additivity of integrals, we need to prove it 

when 
0t t

T T at BW= + + , where a  and B  are the elements of 

1
M  and 

1

GM  correspondingly. For simplicity, we can 

assume that 
0

0T = . Then the function 

( , ) ( , )
t t

u t BW f t at BW= +  has the same smoothness as f and 

so, it is enough to prove the Ito formula for function 

( , )
t

u t BW . Let [2 ],nl t=  
( 1)

2 2n n

k k
W W W −∆ = − , 

1

2
n

∆ = , 

1, 2,n = … . Then, by the Taylor’s formula, we have 

1

2 2

1
( , ) (0,0) ( , ) ( , )

2 2n n

t k kn n
k l

k k
u t BW u u BW u BW −

≤

−− = −∑ +

2

( , ) ( , )
2 n

t ln

l
u t BW u BW− =

1

1

0 2

1 1
( , )

2 2 2n

t kn n n
k l

k s
u BW ds−

≤

−′ + ⋅∑∫ +

1

2

1
( , )

2 n

T kn
k l

k
u BW B W−

≤

−′ ∆∑ ++
1

1

0 2

1
(1 ) ( , )

2 n

TT kn
k l

k
s u BW sB W B WB Wds−

≤

−′′− + ∆ ∆ ∆∑∫ +

2

( , ) ( , )
2 n

t ln

l
u t BW u BW− =

1

2

1 1
( , )

2 2n

t kn n
k l

k
u BW −

≤

−′ ⋅∑ +
1

1 1

0 2 2

1 1 1
[ ( , ) ( , )]

2 2 2 2n n

t k t kn n n n
k l

k s k
u BW u BW ds− −

≤

− −′ ′+ − ⋅∑∫ +
1

2

1
( , )

2 n

T kn
k l

k
u BW B W−

≤

−′ ∆ +∑

1

2

1 1
( , )]

2 2 n

TT kn
k l

k
u BW B W B W−

≤

−′′ ⋅ ∆ ∆∑ +
1

1 1

0 2 2

1 1
(1 )[ ( , ) ( , )]

2 2n n

TT k TT kn n
k l

k k
s u BW sB W u BW B WB Wds− −

≤

− −′′ ′′− + ∆ − ∆ ∆∑∫ +

2

( , ) ( , )
2 n

t ln

l
u t BW u BW− =

1 1

2 2

1 1 1
( , ) ( , )

2 2 2n n

t k T kn n n
k l k l

k k
u BW u BW B W− −

≤ ≤

− −′ ′⋅ + ∆∑ ∑ +

1

1 2

1 1 1
" ( , )

2 2 2 n

TT k m m n n n nn n
k l m

k
u BW Bx Bx A B C δ

∞

−
≤ =

− + + + +∑ ∑ ,  

where 

n
A =

1

1 1

0 2 2

1 1 1
[ ( , ) ( , )]

2 2 2 2n n

t k t kn n n n
k l

k s k
u BW u BW ds− −

≤

− −′ ′+ − ⋅∑∫ , 

n
B =

1

1 1

0 2 2

1 1 1
(1 ) ( , ) ( , )

22 2n n

TT k TT kn n
k l

k k
s u BW sB W B WB Wds u BW B WB W− −

≤

− −′′ ′′− + ∆ ∆ ∆ − ∆ ∆∑∫ , 

1

2

1 1
" ( , )

2 2 n

n TT kn
k l

k
C u BW B WB W−

≤

−= ∆ ∆ −∑  
1

1 2

1 1 1
" ( , )

2 2 2 n

TT k m mn n
k l m

k
u BW Bx Bx

∞

−
≤ =

−
∑ ∑ , 

n
δ =

2

( , ) ( , )
2 n

t ln

l
u t BW u BW−  

and ( )
k k N

x X∈ ⊂ is such, that there exists * *( )k k nx X∈ ⊂ , *

,,k j k jx x δ〈 〉 = , *

k kRx x= , 1,2,k = ⋯ , for all 
* *

x X∈ , 

* *

1

,k k

k

Rx x x x
∞

=

= 〈 〉∑  and 
2

1

k

k

x
∞

=

< ∞∑ . 
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Using the technique developed in [ 3], (theorem 1) it is not difficult to prove, that 
1

0n M
A → , * 0,nB x →

 
* 0nC x →  and 

* 0n xδ → for all 
* *

x X∈ in 
2
( , , )L Ω Β Ρ . Therefore, we have 

* *( , ) (0,0)tu t BW x u x= + *

0

' ( , )

t

t su s BW x ds∫ + *

10

' ( , ) , ( )

t

T s m m

m

u s BW Bx x dw s
∞

=

〈 〉∑∫ + *

1 0

1
" ( , ) ,

2

t

TT s m m

m

u s BW Bx Bx x ds
∞

=

〈 〉∑∫  

for all 
* *

x X∈ . That is, we have the equality in 
1

M : 

( , ) (0,0)
t

u t BW u= +
0

' ( , )

t

t su s BW ds∫ +
0

' ( , ) ( )

t

T su s B BdW s∫ +
1 0

1
" ( , )

2

t

TT s m m

m

u s BW Bx Bx ds
∞

=
∑∫ . 

Now let us return to the function f and remember that ( , ) ( , )
t t

f t at BW u t BW+ = , then 

( , ) ( , ) ( , )
t t t t T t

u t BW f t at BW f t at BW a′ ′ ′= + + + . Therefore, we have 

0

10 0 0

1
( , ) (0, ) ( , ) ( , ) ( ) ( , ) ( ) ( )

2

t t t

t t s T s TT s m m

m

f t T f T f s T ds f s T a s ds f s T B s x B s x ds
∞

=

′ ′ ′′= + + + +∑∫ ∫ ∫
0

( , ) ( )

t

T s sf s T B s dW′+∫ , 

where ( )
k k N

x X∈ ⊂ is such, that there exists * *( )k k nx X∈ ⊂ , 

*

,,k j k jx x δ〈 〉 = , *

k kRx x= , 1,2,k = ⋯ , for all 

* *
x X∈ , 

* *

1

,k k

k

Rx x x x
∞

=

= 〈 〉∑  and 
2

1

k

k

x
∞

=

< ∞∑ . 

Let the generalized Ito process T

* * * *

0

0 0

( ) ( )

t t

t sx T x a s x ds B s x dW= + +∫ ∫  be such that there 

exists the X-valued random process 
[0,1]( )t tξ ∈  with property

* *,t tx T xξ = for all 
* *

x X∈  and 

0

0 0

( , ) ( , )

t t

t ta t dt B t dWξ ξ ω ω= + +∫ ∫ , where : [0,1]a X× Ω → , 

: [0,1] ( , )B L X X× Ω → are ( , )t ω -measurable, F t -adapted 

and 
1

2

0

( , )

t

M
a t dPdtω

Ω

< ∞∫ ∫ , B ∈ ( ( , ))RTG L X X . Let also 

f :[0,1] X X× → , be such that f :[0,1] 2 2M M× → , ,tf ′  Tf ′  

and TTf ′′  are continuous by the norm of 1M  ( X ⊂
2M 1M⊂ ). 

Then, taking into consideration that the step functions for 

2tT M∈  we can take X -valued, we have 

* * *

0

0

( , ), (0, ), ( , ) ,

t

t t sf t x f x f s ds xξ ξ ξ′= + +∫ *

0

( , ) ( ) ,

t

T sf s a s ds xξ′∫ + *

10

1
( , ) ( ) ( ) , ,

2

t

TT s m m

m

f s B s x B s x x dsξ
∞

=

′′〈 〉∑∫ + 

* *

0

( ( , ) ( ))

t

T s sf s B s x dWξ′∫ . 

The first five members of the aforementioned equality are 

functionals from the X -valued processes. Therefore, the 

stochastic integral 

1

0

( , ) ( )T s sf s B s dWξ′∫  as the X -valued 

random process exists. Consequently, we have received the 

Ito formula for the Banach space-valued Ito process. 

Theorem 2. Let 
0

0 0

( , ) ( , )

t t

t sa s ds B s dWξ ξ ω ω= + +∫ ∫ , where 

: [0,1]a X× Ω → , : [0,1] ( , )B L X X× Ω →  be ( , )t ω  

measurable, F t -adapted and 
1

2

0

( , )

t

M
a t dPdtω

Ω

< ∞∫ ∫ , B ∈

( ( , ))RTG L X X . Let f :[0,1] X X× →  be such that f :[0,1]

2 2M M× → , ,tf ′  Tf ′  and TTf ′′  are, continuous then 

0

0 0

( , ) (0, ) ( , ) ( , ) ( )

t t

t t s T sf t f f s ds f s a s dsξ ξ ξ ξ′ ′= + + +∫ ∫  
10

1
( , ) ( , ) ( , ) ,

2

t

TT s m m

m

f s B s x B s x dsξ ω ω
∞

=

′′∑∫
0

( , ) ( , )

t

T s sf s B s dWξ ω′+∫ . 

We have chosen ( )n n Nx ∈  such that 
* *

1

,k k

k

Rx x x x
∞

=

= 〈 〉∑ , 

* *
x X∈ , and 

2

1

k

k

x
∞

=

< ∞∑ . Analogously of proposition 3 

from [3], we can prove, that the expression 

10

1
( , ) ( , ) ( , )

2

t

TT s m m

m

f s B s x B s x dsξ ω ω
∞

=

′′∑∫  is the same for all 

( )n n Nx ∈  such that 
* *

1

,k k

k

Rx x x x
∞

=

= 〈 〉∑  
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3. Conclusion 

The theory of stochastic differential equations in Banach 

space is develops in three directions. The first direction is the 

case, when the stochastic integral of the equation is taken 

from Banach space valued non-anticipating random function 

by the real-valued Wiener process; the second direction is the 

case, when the stochastic integral of the equation is taken 

from operator-valued non-anticipating random function by 

the Wiener process in a Banach space; the third direction is 

the case, when the stochastic integral of the equation is taken 

from operator-valued (from Hilbert space to Banach space) 

non-anticipating random function by the canonical 

generalized Wiener process in Hilbert space. Analogous to 

the finite dimensional case, the Ito formula is one of the main 

tools in stochastic analysis in Banach space. In this paper we 

consider the second case and prove the Ito Formula in this 

case. Existence and uniqueness of solutions is considered in 

[12] for this case. As we mentioned above the first case is 

considered in [4] and the third case, when the Banach space 

has special geometry are considered in [1] and [2] . in [10] is 

considered the case, when the function f  maps from Banach 

space to real line. 
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