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Abstract: In the present era, fractional calculus plays an important role in various fields. Fractional Calculus is a field of 

mathematic study that grows out of the traditional definitions of the calculus integral and derivative operators in much the 

same way fractional exponents is an outgrowth of exponents with integer value. Based on the wide applications in engineering 

and sciences such as physics, mechanics, chemistry, and biology, research on fractional ordinary or partial differential 

equations and other relative topics is active and extensive around the world. In the past few years, the increase of the subject is 

witnessed by hundreds of research papers, several monographs, and many international conferences.The purpose of present 

paper to solve 1-D fractal heat-conduction problem in a fractal semi-infinite bar has been developed by local fractional 

calculus employing the analytical Manoj Generalized Yang-Fourier transforms method. 
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1. Introduction 

Manoj Generalized Yang-Fourier transforms which is 

obtained by authors by generalization of Yang-Fourier 

transforms is a technique of fractional calculus for solving 

mathematical, physical and engineering problems. The 

fractional calculus is continuously growing in last five 

decades [1-7]. Most of the fractional ordinary differential 

equations have exact analytic solutions, while others required 

either analytical approximations or numerical techniques to 

be applied, among them: fractional Fourier and Laplace 

transforms [8, 41], heat-balance integral method [9-11], 

variation iteration method (VIM) [12-14], decomposition 

method [15, 41], homotopy perturbation method [16, 41] etc. 

The problems in fractal media can be successfully solved 

by local fractional calculus theory with problems for non-

differential functions [25-32]. Local fractional differential 

equations have been applied to model complex systems of 

fractal physical phenomena [30-41] local fractional Fourier 

series method [38], Yang-Fourier transform [39, 40, 41] 

2. Generalized Yang-Fourier Transform 

and Its Properties 

Let us Consider �(�) is local fractional continuous in  

(−∞, ∞) we denote as �(�) ∈ 	
, �(−∞, ∞)  [32, 33, 35]. 

Let �(�) ∈ 	
, �(−∞, ∞)  The Generalized Yang-Fourier 

transform developed by authors is written in the form [30, 31, 

39, 40, 41]: 

�
,���(�)� = ��
�,
,�(�) =
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(�)�
Γ(��
��) � �� 
,��−�
���
���
����(�)(��)
��∞

�∞
 .        (1) 

When we put β equal to zero, it converts in to the Yang-

Fourier transform [41]. 

Then, the local fractional integration is given by [30-32, 

35-37, 41]: 

(�)��
Γ(��
��) � �(!)"

# (��)
�� =
(�)�

Γ(��
��) lim∆(→* ∑ ��!,�,-.��
,-*  (∆!,)
��                             (2) 

where ∆!, = !,�� − !, , ∆! =  /
��∆!�, ∆!0, ∆!,, . . . � and 

�!, , !,���, 1 =  0, . . . , 3 –  1, !*  = a, !.  = b, is a partition of 

the interval [
, 7]. 
If �
,���(�)�  = ��

�,
,�(�) , then its inversion formula 

takes the form [30, 31, 39, 40, 41] 

�(�) = �
,��� 9��
�,
,�(�): =

(�)�
(0;)<=� � �� 
,��−�
���
���
�����

�,
,�(�)(��)
��∞

�∞
,   (3) 

when we put β equal to zero, it converts in to the Yang 

Inverse Fourier transform [41]. 

Some properties are shown as it follows [30, 31]: 

Let �
,���(�)� = ��
�,
,�(�),  and �
,��>(�)� =

��
�,
,�(�),  and let be two constants, �� (?)*. Then we have: 

�
,��@�(�) + �>(�)� = @�
,�B�(�)� + ��
,��>(�)C     (4) 

If lim|E|→F�(�)  =  0, then we have: 

�
,�B�
,�(�)C = �
���
���
,���(�)�           (5) 

In equation (5) the local fractional derivative is defined as: 

�
,�(�*) = GH<=�I(E)
HE<=� JE-EK

= limE→EK
∆<=�[I(E)�I(EK)]

(E�EK)<=�       (6) 

where 

∆
��[�(�) − �(�*)] ≅ Γ(1 + N + �)∆[�(�) − �(�*)], 
As a direct result, repeating this process, when: 

�(0) = �
,�(0) = ⋯ = �(P��)
,(P��)�(0) = 0       (7) 

�
,�B�P
,P�(�)C = �
���
���
,���(�)�            (8) 

3. Heat Conduction in a Fractal  

Semi-Infinite Bar 

If a fractal body is subjected to a boundary perturbation, 

then the heat diffuses in depth modeled by a constitutive 

relation where the rate of fractal heat flux Q(�, R, S, !) is 

proportional to the local fractional gradient of the 

temperature [32,41], namely: 

Q(�, R, S, !) = −T0
�0�∇
��V(�, R, S, !).           (9) 

Here the pre-factor K
2a+ 2β

 is the thermal conductivity of 

the fractal material. Therefore, the fractal heat conduction 

equation without heat generation was suggested in [32] as: 

T0
�0� HW(<=�)X(E,Y,Z,()
HEW(<=�) − [
��@
��

HW(<=�)X(E,Y,Z,()
HEW(<=�) = 0,   (10) 

where [
�� and @
�� are the density and the specific heat of 

material, respectively. 

The fractal heat-conduction equation with a volumetric 

heat generation >(�, R, S, !) can be described as [32, 41]: 

T0
�0�∇0
�0�V(�, R, S, !) +
>(�, R, S, !)[
��@
��

\(<=�)X(E,Y,Z,()
\((<=�)                                    (11) 

The 1-D fractal heat-conduction equation [32, 41] reads as: 

T0
�0� \W(<=�)X(E,()
\EW(<=�) − [
��@
��

\(<=�)X(E,()
\((<=�) = 0, 0 < � < ∞,

! > 0                                   (12a) 

with initial and boundary conditions are: 

\(<=�)X(*,()
\((<=�) = �� 
��!
�� , V(0, !) = 0           (12b) 

The dimensionless forms of (12a, b) are [35, 41]: 

\W(<=�)X(E,()
\EW(<=�) = \(<=�)X(E,()

\E(<=�) = 0                 (13a) 

\(<=�)X(*,()
\E(<=�) = �� 
��!
�� , V(0, !) = 0.         (13b) 

Based on equation (12a), the local fractional model for 1-D 

fractal heat-conduction in a fractal semi-infinite bar with a 

source term >(�, !) is: 

T0
�0� \W(<=�)X(E,()
\EW(<=�) − [
��@
��

\(<=�)X(E,()
\((<=�) = >(�, !),

−∞ < � < ∞, ! > 0                     (14a) 

with 

V(�, 0) = �(�), −∞ < � < ∞.            (14b) 

The dimensionless form of the model (14a, b) is: 

\W(<=�)X(E,()
\EW(<=�) = \(<=�)X(E,()

\((<=�) = 0, −∞ < � < ∞, ! > 0  (15a) 

V(�, 0) = �(�), −∞ < � < ∞.               (15b) 

4. Solutions by the Generalized  

Yang-Fourier Transform Method 

Let us consider that �
,��V(�, !)� = V�
�,
,�(�, !) is the 

Generalized Yang-Fourier transform of T(x, t), regarded as a 

non-differentiable function of x. Applying the Yang-Fourier 

transform to the first term of equation (15a), we obtain: 

�
,� _\W(<=�)X(E,()
\EW(<=�) ` = ��0(
��)�0(
��)�V�

�,
,�(�, !) =
�0(
��)V�

�,
,�(�, !).                  (16a) 

On the other hand, by changing the order of the local 
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fractional differentiation and integration in the second term 

of equation (15a), we get: 

�
,� _ \W(<=�)
\(W(<=�) V(�, !)` = \(<=�)

\((<=�) V�
�,
,�(�, !).        (16b) 

For the initial value condition, the Yang-Fourier transform 

provides: 

�
,��V(�, 0)� = V�
�,
,�(�, 0) = �
,���(�)� = ��

�,
,�(�).   (16c) 

Thus we get from equation. (16a, b, c): 

\(<=�)
\((<=�) V�

�,
,�(�, !) + �0(
��)V�
�,
,�(�, !) =

0,  V�
�,
,�(�, 0) = ��

�,
,�(�).                                               (17) 

This is an initial value problem of a local fractional 

differential equation with t as independent variable and w as 

a parameter. 

V(�, !) = ��
�,
,�(�)�� 
,��−�0(
��)!
���.       (18a) 

Consequently, using inversion formula, equation (3), we 

obtain: 

V(�, !) = (�)�
(0;)<=� � �� 
,���
���
���
�����

�,
,�(�)�� 
,��−�0(
��)!
���(��)
��∞

�∞
                             (18b) 

a�
�,
,�(�) = �

(0;)<=� �� 
,��−�0(
��)!
���.      (18c) 

From [30, 32] we obtain, 

�
�� b�� 
�� c− �W(<=�)
dW(<=�)ef =

d(<=�);
<=�

W
Γ(��
��) ���
,� c− dW(<=�)�W(<=�)

g(<=�) e.                              (19a) 

Let  	0(
��) 4
��⁄ = !
��. Then we get: 

�
�� b�� 
�� c− �W(<=�)
g<=� (<=�ef =

g<=�(
<=�

W ;
<=�

W
Γ(��
��) ��
,��−�0(
��)!
��� =

(?)�
g<=�(

<=�
W ;

<=�
W

Γ(��
��) (2k)
��a�
�,
,�(�)                            (19b) 

Thus, a�
�,
,�(�) have the inverse 

(�)�
(0;)<=� � �� 
,���
���
���
���a�

�,
,�(�)(��)
�� =∞

�∞

= Γ(��
��)
g<=�(

<=�
W ;

<=�
W

(�)��
(0;)<=� �� 
�� c− �W(<=�)

g<=� (<=�e.                  (19c) 

Hence, we get: 

V(�, !) = (a�)(�) =
(?)�

Γ(��
��)
g<=�(<=�

W ;<=�
W

� �(l)��
,� c− (E�m)W(<=�)
g<=�(<=� e (�l)
�� .∞

�∞
       (20) 

Special case: 

If we take � = 0  then the results of generalized Yang 

Fourier Transforms convert in Yang Fourier Transforms 

results [41]. 

5. Conclusions 

The communication, presented an analytical solution of 1-

D heat conduction in fractal semi-infinite bar by the 

Generalized Yang-Fourier transform of non-differentiable 

functions.  Some important interesting applications can be 

seen in ([42]-[46]). 
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