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1. Introduction 

Controllability is a mathematical problem, which consists in 

determining the targets to which one can drive the state of some 

dynamical system, by means of a control parameter present in 

the equation. Many physical systems such as quantum systems, 

fluid mechanical systems, wave propagation, diffusion 

phenomena, etc. are represented by an infinite number of 

degrees of freedom, and their evolution follows some partial 

differential equation. Finding active controls in order to 

properly influence the dynamics of these systems generate 

highly involved problems. The control theory for PDEs, and 

among this theory, controllability problems, is a mathematical 

description of such situations. Any dynamical system 

represented by a PDE, and on which an external influence can 

be described, can be the object of a study from this point of view. 

In 1978, D.L. Russell [1] made a rather complete survey of the 

most relevant results that were available in the literature at that 

time. In that paper, the author described a number of different 

tools that were developed to address controllability problems, 

often inspired and related to other subjects concerning partial 

differential equations: multipliers, moment problems, 

nonharmonic Fourier series, etc. 

Various types of controllability of linear abstract dynamical 

systems defined in a Banach or Hilbert spaces have been 

recently extensively explored by several authors (see 

e.g.[2]-[18]). More recently, J.-L. Lions introduced the so 

called Hilbert Uniqueness Method (H.U.M.; see [19]). 

In this work, we will focus our attention on some special 

aspects of controllability problems for parabolic system 

involving Laplace operator. In order to explain the results we 

have in mind, it is convenient to consider the abstract form: 

Let V  and H  be two real Hilbert spaces such that V  

is a dense subspace of .H  Identifying the dual of H  with 

,H  we may consider ,V H V ′⊂ ⊂  where the embedding is 

dense in the following space. Let ( )A t ( ]0, [t T∈ ) be a 

family of continuous operators associated with a bilinear 

forms ( ;.,.)tπ  defined on V V×  which are satisfied 

Gårding’s inequality 

2 2

0 1 0 1
( ; , ) , 0, > 0, for , [0, ].

H V
t y y c y c y c c y V t Tπ + ≥ ≥ ∈ ∈                         (1) 

Then, from [20] and [21], for given 0
,f y  and B  be a 

bounded linear operator the following abstract systems: 

0

( ) ( ) ( ) = , ]0, [,

(0) =

d
y t A t y t f Bu t T

dt

y y

+ + ∈ 



     (2) 

have a unique solution, we denote it by ( ; ) .y t u Y∈  

We also given an observation equation  

( ) = ( ), ( : ),z u Cy u C L Y∈ H H  being a Hilbert space. 

Definition 1. The system whose state is defined by (2)is said 

to be controllable if the observation ( )z u  generates a dense 

(affine) subspace of the space of observations .H  

In the above setting, the equation (2) is typically a partial 

differential equation, where the influence of u  can take 

multiple different forms: typically, u  can be an additional 
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(force) term in the right-hand side of the equation, localized in 

a part of the domain; it can also appear in the boundary 

conditions; but other situations can clearly be envisaged (we 

will describe some of them). 

A typical application of a parabolic equation is the heat; 

0

= in = ]0, [,

( ,0) = ( ) in ,

( , ) = 0 on = ]0, [,

y
y u Q T

t

y x y x

y x t T
ν

∂ ∆ + Ω× ∂


Ω 
∂
Σ Γ×

∂ 

        (3) 

where 
N

RΩ ⊂  is a bounded open domain with smooth 

boundary ,Γ
ν
∂

∂
 is the normal derivative at Γ  and 0

( )y x  

is a given function in 
2
( ).L Ω  

The results in [20] partly overlap with results in [22] and 

they were shown that the system (3) (with 
2
( )u L Q∈  ) is 

controllable. 

In our papers [23]-[27], the above results have been  

extended, the controllability questions related to the time 

optimal control problem of n n×  co-operative parabolic or 

hyperbolic systems with distributed or boundary controls was 

considered. 

In this paper, we will consider various time-optimal control 

problems for the following n n×  Neumann co-operative 

linear parabolic system (here and everywhere below the 

vectors are denoted by bold letters and the index 

= 1, 2,...,i n ): 

,0

= ( ( )y) ( , ) in ,

( ,0) = ( ) in ,

( , ) = ( , ), on

i

i i

i i

i i

y
A t u x t Q

t

y x y x

y x t v x t
ν

∂ + ∂


Ω 
∂
Σ

∂ 

       (4) 

where ,0 ,iy  is a given functions, i
u  represents either a 

distributed control or a given function defined in ,Q
i

v  

represents either a Neumann boundary control or a given 

function defined in Σ  and ( )A t  ( ]0, [t T∈ ) are a family 

of n n×  continuous matrix operators, 

1 12 1 1

21 2 2 2

1 2

( ) =

n

n

n n n n

a a a y

a a a y
A t y

a a a y

∆ +  
  ∆ +  
  
  

∆ +  

⋮ ⋮ ⋮ ⋮ ⋮
 

with co-operative coefficient functions ,i ija a  satisfying the 

following conditions: 

, are positive  functions in ( ),

( , ) ( , ) ( , ).

i ij

ij i j

a a L Q

a x t a x t a x t

∞ 


≤ 
      (5) 

A classical controllability problems consists in steering an 

initial vector state 1 2( (0), (0),..., (0))
T

ny y y  for system (4), 

with a distributed control 1 2u = ( , ,..., )
T

nu u u  belonging to 

2
( ( ))

n
L Q  or with a Dirichlet boundary control 

1 2v = ( , ,..., ) ,
T

nv v v  belonging to 
2

( ( ))
n

L Σ  so that u
( )R T  

or v
( )R T  generates a dense (affine) subspace of .H  where 

2

u

2

v

( ) = {y( ;u) : u ( ( )) },

( ) = {y( ; v) : v ( ( )) }

n

n

R T T L Q

R T T L

∈
∈ Σ

 

2. Solutions of Neumann Co-Operative 

Parabolic Systems 

This section is devoted to the analysis of the existence and 

uniqueness of solutions of system (4). We distinguish three 

classes of solutions: strong, weak and ultra weak solutions 

defined by transposition. 

Let ( ),H Ωℓ  be the usual Sobolev space (see [28]) of 

order ℓ  which consists of all 
2
( )Lϕ ∈ Ω  whose 

distributional derivatives 
2
( ), | | ,

q
D L qϕ ∈ Ω ≤ ℓ  with the 

scalar product 

2
( ) ( )

| |

< , > = < , > ,q q

H L
q

y D y Dϕ ϕ
Ω Ω

≤
∑ℓ

ℓ

1 1= { ,..., }, | |= ... ,N Nq q q q q q+ +

1
1= ... , = .

qqq N
N i

i

D D D D
x

∂
∂

 

Definition 2. 

1. A real function y = y( , )x t  defined in Q  is said to be a 

weak solution for system (4) if 

2 2 1
y ([0, ]; ( ( )) ) (0, ; ( ( )) )

n n
C T L L T H∈ Ω ∩ Ω  

and 

*

,0= ( ,0)i i i i i i i i
Q Q
y A dxdt y x dx u dxdt v d dt

t

ϕ ϕ ϕ ϕ ϕ
Ω Σ

∂ − + + + Γ ∂ 
∫ ∫ ∫ ∫  

for all 
1 2 2 1([0, ];( ( )) ) (0, ; ( ( )) ), ( , ) = 0, = 0n n i

iC T L L T H x T
ϕϕ ϕ
ν Σ

∂
∈ Ω ∩ Ω

∂
 

2. We say that the function y  is a strong solution of (4) if 
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1 2 2 1 1 2
y ([0, ]; ( ( )) ) (0, ;( ( )) ( ( )) ) (0, ;( ( )) )

n n n n
C T H L T H H H T L∈ Ω ∩ Ω ∩ Ω ∩ Ω  

and the three conditions in (4) are satisfied almost everywhere 

in their corresponding domains. 

3. We say that the function y  is an ultra solution of (4) or 

solution by transposition if 

1 2 2
y ([0, ]; ( ( )) ) (0, ;( ( )) )

n n
C T H L T L

−∈ Ω ∩ Ω  

and 

2

,0=< , ( ,0) > ( )i i i i i i i
Q
y f dxdt y x v d dt f L Qϕ ϕ

Σ
+ Γ ∀ ∈∫ ∫  

where ϕ  is the unique solution of the adjoint system 

( )*
( ) = in ,

( , ) = 0 in ,

= 0. on

i

ii

i

i

A t f Q
t

x T

ϕ ϕ

ϕ
ϕ
ν

∂ − − ∂


Ω 
∂
Σ

∂ 

 

and < .,. >  denotes the duality paring between 
1
( )H

− Ω  

and 
1
( ).H Ω  

For 
1

1 2 1 2y= ( , ,..., ) , = ( , ,..., ) ( ( ))
T T n

n ny y y Hϕ ϕ ϕ ϕ ∈ Ω  

and ]0, [t T∈ , let us define a family of continuous bilinear 

forms 

1 1
( ;.,.): ( ( )) ( ( )) by

n n
t H Hπ Ω × Ω → ℜ  

( )( )

( )

=1 , =1

=1 , =1

2 ( )
=1

( ; y, ) = ( , ) ( , )

= ( , ) ( , )

= < ( ( )y) , > .

n n

i i i i i ij j i

i i j

n n

i i i i ij j i

i i j

n

i L
i

t y a x t y dx a x t y dx

y a x t y dx a x t y dx

A t

π ϕ ϕ ϕ ϕ

ϕ ϕ

ϕ

Ω Ω

Ω Ω

Ω

∇ ∇ − −  

−∆ − −  

−

∑ ∑∫ ∫

∑ ∑∫ ∫

∑

                    (6) 

Lemma 1. If Ω  is a regular bounded domain in ,
N

R  

with boundary ,Γ  and if m  is positive on Ω  and smooth 

enough (in particular ( )m L
∞∈ Ω ) then the eigenvalue 

problem: 

= ( ) in ,

= 0 on

y m x y

y

λ−∆ Ω 
Γ 

 

possesses an infinite sequence of positive eigenvalues: 

1 2
0 < ( ) < ( ) ( ) ; ( ) , as .

k k
m m m m kλ λ λ λ≤ → ∞ → ∞… …  

Moreover 1
( )mλ is simple, its associate eigenfunction m

e  

is positive, and 1
( )mλ is characterized by: 

22

1( )m my dx y dxλ
Ω Ω

≤ ∇∫ ∫            (7) 

Proof. See[29]. 

Now, let 

1
( ) 1, = 1,2,......, .

i
a n i nλ ≥ −            (8) 

Lemma 2. If (5) and (8) hold then, the bilinear form (6) 

satisfy the Gårding inequality  

( ) ( )
2 2

0 1 0 12 1( ) ( )

( ; y, y) y y , , > 0.n n
L H

t c c c cπ
Ω Ω

+ ≥    (9) 

Proof. In fact 

2 2

=1 , =1

2 2

=1 >

( ; y, y) = ( , ) ( , )

( , ) 2 ( , ) ( , ) .

n n

i i i ij i j

i i j

n n

i i i i j i j

i i j

t y a x t y dx a x t y y dx

y a x t y dx a x t a x t y y dx

π
Ω Ω

Ω Ω

 ∇ − −
 

 ≥ ∇ − −
 

∑ ∑∫ ∫

∑ ∑∫ ∫
 

By Cauchy Schwarz inequality and (7),we obtain 

( ) ( )

2 2

=1 =11

11
22 22

> 1 1

2 21

=1 =11

1
( ; y, y) 1

( )

1
2

( ) ( )

( ) 1
.

( )

n n

i i i

i ii

n

i j

i j i j

n n
i

i i i

i ii

t y dx a y dx
a

y dx y dx
a a

a n
y dx a y dx

a

π
λ

λ λ

λ
λ

Ω Ω

Ω Ω Ω

Ω Ω

 
≥ − ∇ − 

 

 
 − ∇ ∇
 
 

 − +
≥ ∇ − 

 

∑ ∑∫ ∫

∑∫ ∫ ∫

∑ ∑∫ ∫
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Finally, from (8) we have (9). 

Under the above lemma ( Lemma 2) and using the results of 

Lions [20] and Lions and Magenes [21] we can prove the 

following theorems: 

Theorem 1. Assume that (5) and (8) hold. Then, problem (4) 

1. has a unique weak solution if 
1 1

,
2 1 2 4(0, ; ( )), ( )i iu L T H v H

− −
−∈ Ω ∈ Σ  and 

2

,0 ( ).iy L∈ Ω  

Moreover, the mapping y( ;u)t t→  is continuous from 
2

[0, ] ( ( )) .
n

T L→ Ω  

2. has a unique strong solution if 
1 1

,
2 2 2 4(0, ; ( )), ( )i iu L T L v H∈ Ω ∈ Σ  and 

1

,0 ( ).iy H∈ Ω  

Moreover, the mapping y( ;u)t t→  is continuous from 
1

[0, ] ( ( )) .
n

T H→ Ω  

3. has a unique ultra solution if 
2 2 2 2
(0, ; ( )), (0, ; ( ))i iu L T L v L T L∈ Ω ∈ Γ  and 

1

,0 ( ).iy H −∈ Ω  

Moreover, the mapping y( ;u)t t→  is continuous from 
1

[0, ] ( ( )) .
n

T H
−→ Ω  

where the sobolev space 
,

( ), , 0
r s

H Q r s ≥  (see [21])is 

defined by 

( ), 0 0( ) = 0, ; ( ) (0, ; ( ))r s r sH Q H T H H T HΩ Ω∩  

(0, ; )
s

H T X  denotes the sobolev space of order s  of 

functions defined on [0, ]T  and taking values in .X  

Based on the above theorem, we may consider the 

following problems: 

1. distributed control (
2

u ( ( )) )
n

L Q∈ ) problem with 

observation in 
2

([0, ]; ( ( )) )
n

C T L Ω  

2. distributed control (
2

u ( ( )) )
n

L Q∈ ) problem with 

observation in 
1

([0, ]; ( ( )) )
n

C T H Ω  

3. boundary control (
2

v ( ( )) )
n

L∈ Σ ) problem with 

observation in 
2

([0, ]; ( ( )) )
n

C T L Ω  

4. boundary control (
2

v ( ( )) )
n

L∈ Σ ) problem with 

observation in 
1

([0, ];( ( )) )
n

C T H
− Ω  

3. Controllability with Deferent 

Observations 

In this section, we take the deferent cases of observations: 

3.1. Distributed Control with Observation in 
2

([0, ]; ( ( )) )
n

C T L Ω  

Let y( ;u)t  denote to the unique weak solution of (4), at 

time t  corresponding to a given control 
2

u ( ( ))
n

L Q∈  and a 

given functions ,
i

v ,0 ,iy  satisfying the hypothesis of 

Theorem 1, a). Occasionally, we write y( , ;u)x t  when the 

explicit dependence on x  is required. 

Let the observations be given by 

2
( ; ) ( )iy T u L∈ Ω                (10) 

Theorem 2. Assume that (5) and (8) hold, then the system (4) 

with control 
2

( ( ))
n

u L Q∈  and observation (10) is 

controllable. 

Proof. let us first remark that by translation we may always 

reduce the problem of controllability to the case were the 

system (4) with ,0 = = 0.i iy v  We can show quit easily that 

(4) is controllable in 
2

( ( ))
n

L Ω  if and only if the set of 

reachable states u
( )R T  at any finite time > 0T  is dense in 

2
( ( )) .

n
L Ω  By the Hahn-Banach theorem, this will be the case 

if 

2( ;u) = 0, ( ),
i i i
y T dx Lψ ψ

Ω
∈ Ω∫        (11) 

for all 
2

u ( ( )) ,
n

L Q∈  implies that = 0, = 1, 2,..., .
i

i nψ  

We introduce 1 2= ( , ,..., )
T

nξ ξ ξ ξ  as the solution of the 

following system 

( )*

2

( ) = 0 in ,

( ) = ( ) in ,

= 0. on .

i

i

i i

i

A t Q
t

T L

ξ ξ

ξ ψ

ξ
ν

∂ − − ∂


∈ Ω Ω 
∂
Σ

∂ 

        (12) 

The existence of a unique solution for system (12) can be 

proved using Theorem1,a), with an obvious change of 

variables. 

Multiply the first equation in (12) by ( ;u)
i

y t  and using 

Green formula, we obtain the following identity: 

( )

( )

*

0

0 = ( ) ( ;u)

= ( ;u)| ( ;u) ( ) ( ;u)

= ( ;u) .

i

i
iQ

T

i i i i iQ

i i i i
Q

A t y t dxdt
t

y t dx y t A t y t dxdt
t

y T dx u dxdt

ξ ξ

ξ ξ

ψ ξ

Ω

Ω

∂ − − ∂ 

∂ − + + ∂ 

− +

∫

∫ ∫

∫ ∫

 

and so, if (11) holds, then 

2= 0 ( )i i i
Q

u dxdt u L Qξ ∀ ∈∫  

hence = 0,iξ  and hence = 0.iψ  

3.2. Distributed Control with Observation in 
1

([0, ]; ( ( )) )
n

C T H Ω  

In this section, let y( ;u)t  denote to the unique strong 

solution of (4), at time t  corresponding to a given control 
2

u ( ( ))
n

L Q∈  and a given functions iv ,0 ,iy  satisfying the 
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hypothesis of Theorem 1,b). Let the observation be given by 

1
( ; ) ( )iy T u H∈ Ω              (13) 

Theorem 3. Assume that (5) and (8) hold, then the system (4) 

with control 
2

( ( ))
n

u L Q∈  and observation (13) is 

controllable. 

Proof. We can reduce the problem of controllability to the 

case were the system (4) with ,0 = = 0.i iy v  Here 

1
y( ;u) ( ( )) .

n
T H∈ Ω  To show the system is controllable let 

1
( )i Hψ −∈ Ω  such that 

2
< , ( ;u) >= 0 u ( ( )) .

n

i iy T L Qψ ∀ ∈  

We introduce 1 2= ( , ,..., )
T

nξ ξ ξ ξ  as the solution of the 

following system 

( )*

1

( ) = 0 in ,

( ) = ( ) in ,

= 0. on .

i

i

i i

i

A t Q
t

T H

ξ ξ

ξ ψ

ξ
ν

−

∂ − − ∂


∈ Ω Ω 
∂
Σ

∂ 

         (14) 

since 
1
( )i Hψ −∈ Ω  ( it is sufficient to apply Theorem 1,c), 

after reversing sense of time) then there exist a unique ultra 

weak solution ξ  for (14) and 

=< , ( ;u) >= 0i i i i
Q

u dxdt y Tξ ψ∫  

then = 0,
i

ξ  and hence = 0.
i

ψ  

3.3. Boundary Control with Observation in 
2

([0, ]; ( ( )) )
n

C T L Ω  

Let y( ; v)t  denote to the unique weak solution of (4), at 

time t  corresponding to a given control 
2

v ( ( ))
n

L∈ Σ  and a 

given functions ,
i

u ,0 ,iy  satisfying the hypothesis of 

Theorem 1,a). Let the observation be given by 

2
( ; ) ( )iy T v L∈ Ω               (15) 

Theorem 4. Assume that (5) and (8) hold, then the system (4) 

with control 
2

( ( ))
n

v L∈ Σ  and observation (15) is 

controllable. 

Proof. Here 
2

y( ; v) ( ( )) .
n

T L∈ Ω  To show the system is 

controllable let 
2
( )i Lψ ∈ Ω  such that 

2( ;v) = 0 v ( ( )) .n

i i
y T dx Lψ

Ω
∀ ∈ Σ∫  

We introduce 1 2= ( , ,..., )
T

nξ ξ ξ ξ  as the solution of the 

following system 

( )*

2

( ) = 0 in ,

( ) = ( ) in ,

= 0. on .

i

i

i i

i

A t Q
t

T L

ξ ξ

ξ ψ

ξ
ν

∂ − − ∂


∈ Ω Ω 
∂
Σ

∂ 

       (16) 

The existence of a unique solution for system (18) can be 

proved using Theorem1,a), with an obvious change of 

variables. 

Multiply the first equation in (18) by ( ; v)
i

y t  and using 

Green’s formula, we obtain the following identity: 

( )

( )

*

0

0 = ( ) ( ; v)

= ( ; v)| ( ; v) ( ) ( ; v)

= ( ; v), .

i

iiQ

T i

i i i i iiQ

i i i

A t y t dxdt
t

y
y t dx y t A t y t dxdt d

t

y T dx y d

ξ ξ

ξ ξ ξ
ν

ξψ
ν

Ω Σ

Ω Σ

∂ − − ∂ 

∂∂ − + + + Σ ∂ ∂ 

∂− Σ
∂

∫

∫ ∫ ∫

∫ ∫

 

implies 

= 0;
i

v dξ
Σ

Σ∫  

hence ξ  on .Σ  The Cauchy data of ξ  on Σ  being zero, 

we conclude ( see [30]) = 0ξ  and hence = 0.ψ  

3.4. Boundary Control with Observation in 
1

([0, ];( ( )) )
n

C T H
− Ω  

Let y( ; v)t  denote to the unique ultra weak solution of (4), 

at time t  corresponding to a given control 
2

v ( ( ))
n

L∈ Σ  

and a given functions ,
i

u ,0 ,iy  satisfying the hypothesis of 

Theorem 1,c). Let the observation be given by 

1
( ; ) ( )iy T v H

−∈ Ω                (17) 

Theorem 5. Assume that (5) and (8) hold, then the system (4) 

with control 
2

( ( ))
n

v L∈ Σ  and observation (17) is 

controllable. 

Proof. Here 
1

y( ; v) ( ( )) .
n

T H
−∈ Ω  To show the system is 

controllable let 
1
( )i Hψ ∈ Ω  such that 

2
< ( ; v), >= 0 v ( ( )) .

n

i iy T Lψ ∀ ∈ Σ  

We introduce 1 2= ( , ,..., )
T

nξ ξ ξ ξ  as the solution of the 
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following system 

( )*

1

( ) = 0 in ,

( ) = ( ) in ,

= 0. on .

i

i

i i

i

A t Q
t

T H

ξ ξ

ξ ψ

ξ
ν

∂ − − ∂


∈ Ω Ω 
∂
Σ

∂ 

        (18) 

Since 
1
( ),i Hψ ∈ Ω  then according to Theorem 1,b), 

system (18) admits an unique strong solution .ξ  ( after 

reversing sense of time) 

Multiply the first equation in (18) by ( ; v)
i

y t  and using 

Green’s formula, we obtain the following identity: 

( )

( )

*

0

0 = ( ) ( ; v)

= ( ; v)| ( ; v) ( ) ( ; v)

= < ( ; v), > .

i

iiQ

T i

i i i i iiQ

i i i

A t y t dxdt
t

y
y t dx y t A t y t dxdt d

t

y T y d

ξ ξ

ξ ξ ξ
ν

ξψ
ν

Ω Σ

Σ

∂ − − ∂ 

∂∂ − + + + Σ ∂ ∂ 

∂− + Σ
∂

∫

∫ ∫ ∫

∫

 

implies 

= 0;iy d
ξ
νΣ

∂ Σ
∂∫  

hence = 0
ξ
ν

∂
∂

 on .Σ  The Cauchy data of ξ  on Σ  being 

zero, we conclude ( see [30]) = 0ξ  and hence = 0.ψ  

4. Conclusion 

In this study, we have proved the controllability to a special 

co-operative parabolic systems with Neumann conditions, 

with deferent cases of observations. Most of the results we 

described in this paper apply, without any change on the 

results, to more general parabolic systems involving the 

following second order operator : 

2

0

, =1 =1

( ,.) = ( ,.) ( ,.) ( ,.)
n n

ij j

i j ji j j

L x b x b x b x
x x x

∂ ∂+ +
∂ ∂ ∂∑ ∑  

with sufficiently smooth coefficients (in particular, 

0 0, , ( ), , > 0ij j jb b b L Q b b∞∈ ) and under the 

Legendre-Hadamard ellipticity condition 

, =1 =1

( , ) ,
n n

i j i

i j i

x t Qη η σ η≥ ∀ ∈∑ ∑  

for all i
η ∈ℜ  and some constant > 0.σ  

In this case, we replace the first eigenvalue of the Laplace 

operator by the first eigenvalue of the operator L  (see [29]). 
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