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1. Introduction 

Let �(��) be class of function which is integrable on 

Euclidean space �� . The function � ∈ �(��)  is called 

kernel if 

	 	�(
)�
�
 = 1. 
Let 
 ∈ �� , � > 0, ��(
) = ���� ���� and ���(
) =(�� ∗ �)(
)=� ��(
 − �)�(�)���
 ,        (1.1) 

where �  is locally integrable function such that for all � > 0 the integral on the right-hand side is finite.  

In this work questions on approximation of locally 

summable functions by singular integrals of type (1.1) are 

investigated. Was estimated the rate of approximation in terms 

of various metric characteristics describing the structural 

properties of the given function. 

Note that various aspects of questions on approximation of 

function � by singular integrals of a kind (1.1) have been 

investigated in works of many authors (see, e.g., [1], [2], [3], 

[5], [8], [9], [10], [15], [16] and the literature quoted there). 

2. Some Definitions, Notation and 

Preliminary Facts 

Let �  be a locally integrable on ��   function, i.e. 

� ∈ �� !(��) , "(
, #)  closed ball in ��  with center 
 ∈ �� and radius # > 0, i.e. 

"(
, #) ≔ %& ∈ ��:			|
 − &| ≤ #*, 
�+(�,,) = 1|"(
, #)| 	 �(�)��+(�,,) , 

Ω.�, "(
, #)/ = 1|"(
, #)| 	 0�(�) − �+(�,,)0��+(�,,) , 
where |"(
, #)|  denotes the volume of a ball "(
, #).  

For � ∈ �� !(��)  and 
1 ∈ ��  introduce the following 

notation ([10], [11]):  23(
1; 5) = sup9Ω.�, "(
, #)/:				# ≤ 5: (5 > 0). 
It is obvious that, 23(
1; 5) is monotone increasing on 

interval (0, +∞) due to the argument 5. 

The point 
1 ∈ �� is called �-point of � ∈ �� !(��), if 

there exists a finite limit lim,→1 �+(�@,,) =A3(
1).  The 

collection of all �-points of  � is denoted by B(�). 
The point 
1 ∈ �� is called Lebesgue point (or l-point) of 

function � ∈ �� !(��), if there exists a number C3(
1), such 

that 

lim,→1 1|"(
1, #)| 	 0�(�) − C3(
1)0��+(�@,,)
= 0. 

Set of all l-points of function � is denoted by �(�). It is 
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clear that if 
1 ∈ �(�),  then  
1 ∈ B(�)  and A3(
1) =C3(
1). 
Point 
1 ∈ �� we will name a 2-point of the function � ∈ �� !(��) (see [10]), if lim,→123(
1; #) = 0. Set of all 2-points of function � ∈ �� !(��) is denoted by  D(�). 
Theorem A [10], [12]. If � ∈ �� !(��), then the following 

equality is satisfied:  �(�) = B(�) ∩ D(�). 
For � ∈ �� !(��) and 
1 ∈ B(�)  we also introduce the 

following notation 

F3(
1; 5) = sup1G,HI
1|"(
1, #)| 	 0�(�) − A3(
1)0��+(�@,,)

,		 
5 > 0. 

It easy to see that F3(
1; 5) is monotone increasing on 

interval (0, +∞) due to the argument 5. It is also easy to 

see that the point 
1 ∈ �� is l-point of a function � if and 

only if lim,→1F3(
1; #) = 0.  

Now let’s note some facts which we will use in the future. 

Theorem B [10]. Let � ∈ �(��) be kernel and  K(
) = esssup%|�(&)|:			|&| ≥ |
|*, K ∈ �(��), K1(|
|) =K(
), � ∈ �� !(��),  
1 ∈ �� . If right hand side integrals are 

convergent, then the following inequality holds:  0���(
1) − �+(�@,�)0 ≤ 

≤ N(O, K1) P23(
1; �) + 	 
��QK1(
)23(
1; 4�
)�
S
1

T + 

+	23(
1; �)� P	 
��QK1(
)�
UV�
1 W���

1 + 

T+ � XY(�@;U)U Z� 
��QK1(
)�
S[\] ^ ��S� ^ , � > 0,   (2.1) 

where N(O, K1)	is constant depending only on the function K1 

and dimension O.  

Note that the function  

_(
) = `�(�aQ)Γ ��aQc � (|
|c + 1)��aQc ,					
 ∈ �� , 
is called the Poisson kernel. If  �(
) ≡ _(
),			
 ∈ ��, then 

it is obvious, that K(
) ≡ _(
),				
 ∈ �� , and 

K1(�) = `�(�aQ)Γ ��aQc � (�c + 1)��aQc , � ∈ e0,TT+∞). 
Let � ∈ �� !(��) and  D3(5) ≔ sup923(
; 	5):		
 ∈ ��	: ,			5 > 0. 
A function D3(5) is called modulus of mean oscillation 

of function � . Note that the function D3(5)  was firstly 

introduced in [14]. If f(5) is positive function which is 

monotone increasing on interval (0, +∞), then "Dgh ="Dgh(��) denotes the set of all functions � ∈ �� !(��), 
for which the condition (see, for example, [6]) 

‖�‖+jkl ≔ sup mD3(5)f(5) :				5 > 0n < +∞ 

satisfied.  

If we consider the class "Dgh as subset in the quotient 

space �� !(��)/%NqOA�rO�A*, then ‖∙‖+jkl  is the norm in "Dgh  and in this norm "Dgh  is Banach space. If f(5) ≡ 1,  then "Dgh  turns to space "Dg,  which was 

firstly introduced in [7].  

We also introduce the class [13] 

tDg = tDg(��) ≔ u� ∈ "Dg:			 limI→a1D3(5) = 0v 
with norm ‖�‖wjk ≔ ‖�‖+jk .  

3. On Approximation in Terms of the 

Characteristics xy(z{; |)  

Theorem 3.1. Let � ∈ �(��) be kernel,  K(
) = esssup%|�(&)|:			|&| ≥ |
|*,   K ∈ �(��),  K1(|
|) = K(
), � ∈ �� !(��), 
1 ∈ �� is l-point of function f. If right hand 

side integrals are convergent, then the following inequality 

holds:  0���(
1) − A3(
1)0 ≤ 

≤ N ∙ ��� � ���QK1 �U��F3(
1; 4�)��S1 ,					� > 0,		  (3.1) 

where c is a positive constant depending only on the 

dimension O.  

Proof. We have  0���(
1) − A3(
1)0 = 

= } 	��(
1 − �)~�(�) − A3(
1)����
 } ≤ 

≤ ��� 	�� Z
1 − �� ^� 0�(�) − A3(
1)0�� ≤�
  

≤ ��� 	K1 Z�
1 − �� �^ 0�(�) − A3(
1)0�� =�
  

= � ��� 	 K1 Z�
1 − �� �^ |�(�) −Tc��G|�@�U|Hc����
S

X��S  

T−A3(
1)0��	 =: ∑ �XSX��S .	        (3.2) 
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We estimate each of the terms 	�X, 2 = 0, ±1, ±2,… . 

Considering that, K1(�) monotone decreasing function on 

interval (0, +∞), we get  

�X = ��� 	 K1 �|
1 − �|� � 0�(�) − A3(
1)0��c��G|�@�U|Hc���� ≤ 

≤ K1(2X) ∙ 1�� 	 0�(�) − A3(
1)0��+(�@,	c����) = 

= K1(2X) ∙ (2XaQ)� ∙ |"(0,1)||"(0,1)| ∙ (2XaQ�)� × 

× 	 0�(�) − A3(
1)0��+(�@,	c����) ≤ 

= K1(2X) ∙ (2XaQ)� ∙ |"(0,1)| ∙ F3(
1; 	2XaQ�). 
Thus, by (3.2) 0���(
1) − A3(
1)0 ≤ |"(0,1)| × 

× ∑ (2XaQ)� ∙ K1(2X) ∙ F3(
1; 	2XaQ�)SX��S .   (3.3) 

On the other hand, we have 

���	 ���QK1 Z��^F3(
1; 4�)��S
1 = 

= � ��� 	 ���QK1 Z��^F3(
1; 4�)��c��
c����

S
X��S ≥ 

≥ � ��� ∙ K1(2X)F3(
1; 4 ∙ 2X�Q�) 	 ���Q��c��
c����

S
X��S = 

= c
�Q�∙V
 ∑ K1(2X)(2XaQ)�F3(
1; 2XaQ�)SX��S .	   (3.4) 

Combining inequalities (3.3) and (3.4) we get inequality 

(3.1) with constant N = |"(0,1)| ∙ �∙V
c
�Q.  

Corollary 3.1. Let kernel �(
)  satisfies the conditions of 

Theorem 3.1, � ∈ �� !(��), 
1 ∈ �� is Lebesgue point of 

function f and 

� K1(�)���QF3(
1; 4�)��SQ < +∞       (3.5) 

Then lim�→1 ���(
1) = C3(
1).  

Proof. Let 0 < � ≤ 1. Then we have  

���	 ���QK1 Z��^F3(
1; 4�)��S
1 = 

= ���	 ���Q ∙ &��QK1(&)F3(
1; 4�&)��&S
1 = 

= 	 &��Q ∙ K1(&) ∙ F3(
1; 4�&)�&S
1 = 

= 	 &��Q ∙ K1(&) ∙ F3(
1; 4�&)�&
Q√�
1 + 

+ 	 &��Q ∙ K1(&) ∙ F3(
1; 4�&)�&S
Q√�

≤ 

≤ F3.
1; 4√�/ ∙ 	 &��QK1(&)�&S
1 + 

+� &��QK1(&)F3(
1; 4&)�&S�√] .        (3.6) 

If to consider, that 

+∞ > 	K(
)�
�
 = 	 ���Q 	 K1(|��|)����
�� ��S
1 = 

= |���Q| ∙ 	 K1(�)���Q��S
1 , 

where |���Q| is surface area of unit sphere ���Q, ���  is 

Lebesgue’s measure on the sphere ���Q , then from the 

inequalities (3.1), (3.6) and by condition (3.5) we receive the 

demanded statement.  

Corollary 3.2 [16]. Let kernel �(
)  satisfies the 

conditions of Theorem 3.1 and � ∈ ��(��),  1 ≤ � ≤ ∞, 
1 ∈ �� is Lebesgue point of �. Then  lim�→1���(
1) = C3(
1). 
By theorem 3.1 the following statement for Poisson 

integral is obtained.  

Corollary 3.3. Let _(
)  be Poisson kernel, _�(
) ≔���_ ����,  � > 0,  
 ∈ �� ,  � ∈ �� !(��),  
1 ∈ ��  is 

Lebesgue point of the function � and  

	 F3(
1; �)�c
S
Q �� < +∞. 

Then the following inequality is satisfied: 

0(_� ∗ �)(
1) − C3(
1)0 ≤ N ∙ � 	 F3(
1; �)�c ��S
� ,			� > 0, 

where N > 0  is only depended on O,  and hence lim�→a1(_� ∗ �)(
1) = C3(
1).  

It is easy to see that for the Poisson kernel _(
)  the 

conditions of Corollary 3.2 are satisfied. Therefore, if � ∈ ��(��), 1 ≤ � ≤ ∞ and 
1  is Lebesgue point of the 

function �,  we have the equality  lim�→a1(_� ∗ �)(
1) =
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		C3(
1).  

Theorem 3.2. Let 
1 ∈ �� and 

1) �(
)  is nonnegative kernel such, that �(
) ≡	K1(|
|),			
 ∈ ��, where K1(�) is monotone decreases on e0,TT+∞);  

2) F(5)  is positive monotone increasing function on (0, +∞) and satisfying limI→a1 F(5) = 0, for which there 

is a number N1 > 0  such that F(25) ≤ N1 ∙ F(5),  5 ∈ (0, +∞).  

Then there is a function �1 ∈ �� !(��)  such that,  F3@(
1; 	5) ≍ F(5), 		5 ∈ (0, +∞)1, and  

0���1(
1) − A3@(
1)0 ≥ 

≥ N ∙ ���	 ���QK1 Z��^F3@(
1; 4�)��S
1 ,							� > 0. 

Proof. Let �1(
) = F(|
 − 
1|), 
 ∈ �� . Then  

lim,→a1 1|"(
1, #)| 	 �1(�)��+(�@,,)
= 

= lim,→a1 1|"(
1, #)| 	 F(|� − 
1|)��+(�@,,)
= 0, 

i.e. A3@(
1) = 0. Therefore 

F3@(
1; 	5) = sup1G,HI
1|"(
1, #)| 	 0�1(�) − A3@(
1)0��+(�@,,)

= 

= sup1G,HI
1|"(
1, #)| 	 F(|� − 
1|)��+(�@,,)

= 

= sup1G,HI Q|+(1,,)| � F(|�|)��+(1,,) .          (3.7) 

From here we get that, F3@(
1; 	5) ≤ F(5), 5 ∈ (0, +∞). 
By (3.7) also obtained that,  

F3@(
1; 	5) ≥ 1|"(0, 5)| 	 F(|�|)��+(1,I) ≥ 

≥ 1|"(0, 5)| 	 F(|�|)��
+(1,I)∖+Z1,Ic^

≥
 

≥ F Z52^ ∙ 1|"(0,1)| ∙ 5� ∙ |"(0,1)| ∙ �5� − �Z52^�
�� = 

= F Z52^ ∙ 2� − 12� ≥ 

≥ 1N1 ∙ F(5) ∙ 2� − 12� = NQ ∙ F(5),								5 > 0. 
Further we have  

                                                             
1 i.e.	∃NQ, Nc > 0			∀5 ∈ (0,+∞): NQ ∙ F3@(
1; 	5) ≤ F(5) ≤ Nc ∙ F3@(
1; 	5).  

0���1(
1) − A3@(
1)0 = ��� 	K1 �|
1 − �|� � �1(�)���
 = 

= ��� 	K1 �|
1 − �|� �F(|� − 
1|)���
 = 

= ��� 	K1 �|�|� �F(|�|)���
 = 

= ���	 ���Q P 	 K1 �|��|� �F(|��|)����
�� W��S
1 = 

= |���Q| ∙ ���	 K1 Z��^ ∙ ���QF(�)��
S
1 ≥ 

≥ 1N1c ∙ |���Q| ∙ ���	 K1 Z��^ ∙ ���QF(4�)��
S
1 ≥ 

≥ 1N1c ∙ |���Q| ∙ ���	 K1 Z��^ ∙ ���QF3@(
1; 	4�)��S
1 ,		 
� > 0.				 

This theorem shows unimprovability of estimations (3.1) 

in a certain class of kernels. 

4. Approximation in Terms of the Mean 

Oscillation 

Theorem 4.1. Let the kernel �(
) satisfies conditions of 

the theorem B, � ∈ �� !(��), 
1  is Lebesgue point of � 

and let satisfies the following conditions also:  

1) � ���QK1(�)23(
1; 4�)��SQ < +∞, 
2) � �QU � 
��QK1(
)�
U1 �23(
1; 4�)��Q1 < +∞, 
3) � �QU � 
��QK1(
)�
SU �23(
1; 4�)��SQ < +∞. 
Then lim�→a1 ���(
1) = C3(
1). 
Proof. Since 
1 ∈ ��  is Lebesgue point of function �, 

then by the Theorem A the equality limI→a123(
1; 	5) = 0 

is satisfied and the finite limit A3(
1) ≔ lim�→a1 �+(�@,�) =C3(
1) exists. 

Let’s show that, if the conditions 1), 2) and 3) are satisfied, 

then all terms on the right hand side of inequality (2.1) 

approaches to zero as � → +0.  We can assume that 0 < � ≤ 1. Then we get 

	 ���QK1(�)23(
1; 4��)��S
1 = 



 Pure and Applied Mathematics Journal 2014; 3(6): 113-120 117 

 

= 	 ���QK1(�)23(
1; 4��)��
Q√�
1 + 

+ 	 ���QK1(�)23(
1; 4��)��S
Q√�

≤ 

≤ 23.
1; 4√�/	 ���QK1(�)��S
1 + 

+� ���QK1(�)23(
1; 4�)��S�√] ;	    (4.1) 

	23(
1; �)� P	 
��QK1(
)�
UV�
1 W���

1 = 

= 	23(
1; 4�&)4�& �	 
��QK1(
)�
�
1 �4��&

QV
1 = 

= 	�1&	 
��QK1(
)�
�
1 �23(
1; 4�&)�&

QV
1 ≤ 

≤ 	 �1&	 
��QK1(
)�
�
1 �23(
1; 4&)�&XY(�@;	�)

1 + 

+23(
1; 	�) � �Q� � 
��QK1(
)�
�1 � �&�\XY(�@;	�) ,    (4.2) 

where �  is positive number such that 0 < � ≤ 1  and 23(
1; 	�) ≤ QV ;  

	 23(
1; �)� �	 
��QK1(
)�
S
UV� ���S

� = 

= 	 23(
1; 4�&)4�& �	 
��QK1(
)�
S
� � 4��&S

QV
= 

= 	 �1&	 
��QK1(
)�
S
� �23(
1; 4�&)�&S

QV
≤ 

≤
�� 
�¡	 �1&	 
��QK1(
)�
S

� � �&
Q√�
QV ¢�£

�¤ ∙ 23.
1; 4√�/ + 

+ 	 �1&	 
��QK1(
)�
S
� �23(
1; 4&)�&S

Q√�
≤ 

≤ 23.
1; 4√�/23(
1; 1) 	 �1&	 
��QK1(
)�
S
� �23(
1; 4&)�&S

QV
+ 

+� �Q� � 
��QK1(
)�
S� �23(
1; 4&)�&S�√] .    (4.3) 

By considering that in the case of satisfying conditions of 

the theorem the following integral  

	 
��QK1(
)�
S
1 	 

converges, from inequality  (4.1), (4.2) and (4.3) the 

required assertion is obtained. 

Corollary 4.1. Let the kernel �(
) satisfies conditions of 

the theorem B, � ∈ "Dg, 
1 is Lebesgue point of function �, the condition 2) is satisfied and  

	 P1� 	 
��QK1(
)�
S
U W��S

Q < +∞. 
Then lim�→a1 ���(
1) = C3(
1).  

Corollary 4.2. Let � ∈ �� !(��), 
1 is Lebesgue point of 

function � and let the following condition is satisfied:  ∃¥ > 0	 A¦�%(1 + |�|)�a§|�(�)|:			� ∈ ��* < +∞,		  (4.4) 

� ��Q�§ ∙ 23(
1; �)��SQ < +∞.       (4.5) 

Then lim�→a1 ���(
1) = C3(
1).  

Proof. By the condition (4.4) follows that,  

∃¨ > 0									∀� ≥ 0:								K1(�) ≤ ¨ ∙ 1(1 + �)�a§ . 
Now let’s show that conditions of theorem 4.1 are satisfied. 

We have that  

	 ���QK1(�)23(
1; 4�)��S
Q ≤ 

≤ ¨ ∙ 	 ���Q ∙ 1(1 + �)�a§ ∙ 23(
1; 4�)��S
Q ≤ 

≤ Q̈ ∙ 	 23(
1; �)�Qa§ ��S
Q < +∞,													 Q̈ = NqOA�; 

	P1� 	
��QK1(
)�
U
1 W23(
1; 4�)��Q

1 ≤ 
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≤ ¨ ∙ 	P1� 	 
��Q�
(1 + 
)�a§
U
1 W23(
1; 4�)��Q

1 ≤ 

≤ ¨ ∙ 	P1� 	
��Q�
U
1 W23(
1; 4�)��Q

1 = 

= Ö ∙ 	 ���Q ∙ 23(
1; 4�)��Q
1 < +∞; 

	 P1� 	 
��QK1(
)�
S
U W23(
1; 4�)��S

Q ≤ 

≤ ¨ ∙ 	 P1� 	 
��Q
�a§ �

S
U W23(
1; 4�)��S

Q = 

= ¨ ∙ 	 P1� 	 
�§�Q�
S
U W23(
1; 4�)��S

Q ≤ 

≤ ¨c ∙ 	 23(
1; �)�Qa§ ��S
Q < +∞,					¨c = NqOA�. 

Thus, all conditions of the theorem 4.1 are satisfied and 

because of this lim�→a1 ���(
1) = C3(
1).  

Note that, particularly, any function � ∈ "Dg  satisfy 

condition (4.5) for all points 
1 ∈ ��. The kernel �(
) , 

which satisfies conditions (4.4) is called kernel of Fejer type.  

Theorem 4.2. Let kernel �(
)  satisfies conditions of 

theorem B and � ∈ �� !(��). Then for a finite value of right 

hand side we have the following inequality  ‖� − ���‖+jk ≤ 

≤ ¨ ∙ PD3(�) + 	 
��QK1(
)D3(4�
)�
S
1 +T 

+	D3(�)� ©
ª«	 
��QK1(
)�


UV�
1 ¬

­®���
1 + 

T+ � jY(U)U Z� 
��QK1(
)�
S[\] ^ ��S� ^ ,				� > 0,    (4.6) 

where the constant ¨ > 0 depends only on O and K1.  

Proof. From inequality (2.1) we have  ¯��� − �+(∙	;	�)¯+jk ≤ 2¯��� − �+(∙	;	�)¯°±(�
) ≤ 

≤ ¨ PD3(�) + 	 
��QK1(
)D3(4�
)�
S
1 +T 

+	D3(�)� ©
ª«	 
��QK1(
)�


UV�
1 ¬

­®���
1 + 

T+ � jY(U)U Z� 
��QK1(
)�
S[\] ^ ��S� ^ ,				� > 0.	   (4.7) 

It is known that (see [6])  ¯� − �+(∙	;	�)¯+jk ≤ ¨ ∙ D3(�),									� > 0,	  (4.8) 

where ¨ > 0 is independent of � and �. From inequalities 

(4.7) and (4.8) the inequality (4.6) turns out.   

Corollary 4.3. Let kernel �(
)  satisfies conditions of 

theorem B, � ∈ tDg  and also satisfies the following 

conditions:  

1
0
) � �QU � 
��QK1(
)�
U1 �D3(4�)��Q1 < +∞, 

2
0
) � �QU � 
��QK1(
)�
SU � ��SQ < +∞. 

Then lim�→a1‖��� − �‖+jk = 0.  

Proof. It is enough to check up that under our assumptions 

all terms on the right hand side of the inequality (4.6) 

approaches to zero, with � → +0.  If � ∈ tDg,  then lim�→a1D3(�) = 0. In addition, if 0 < � ≤ 1, then  

	 
��QK1(
)D3(4�
)�
S
1 ≤ D3.4√�/	 
��QK1(
)�
S

1 + 

+‖�‖+jk ∙ 	 
��QK1(
)�
S
Q√�

; 

	D3(�)� ©
ª«	 
��QK1(
)�


UV�
1 ¬

­®���
1 = 

= 	P1&	
��QK1(
)�
�
1 WD3(4�&)�&

QV
1 ≤ 

≤ 	 P1&	
��QK1(
)�
�
1 WD3(4&)�&jY(�)

1 + 

+D3(�) 	 P1&	
��QK1(
)�
�
1 W�&

QV
jY(�)

, 
where � is positive number such that � ≤ 1 and D3(�) ≤QV ;  
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	 D3(�)� ²	 
��QK1(
)�
S
UV�

³��S
� = 

= 	 P1&	 
��QK1(
)�
S
� WD3(4�&)�&S

QV
≤ 

≤
©
ª«	 P1&	 
��QK1(
)�
S

� W�&
Q√�
QV ¬

­® ∙ D3.4√�/ + 

+ 	 P1&	 
��QK1(
)�
S
� WD3(4&)�&S

Q√�
≤ 

≤ 1D3(1) ∙ D3.4√�/ ∙ 	 P1&	 
��QK1(
)�
S
� WD3(4&)�&S

QV
+ 

+ 	 P1&	 
��QK1(
)�
S
� WD3(4&)�&S

Q√�
. 

It is easy to check that if conditions 1
0
) and 2

0
) are satisfied, 

then the integral � 
��QK1(
)�
∞1  converges. Therefore the 

obtained relations show the validity of the required statement 

by virtue of inequality (4.6). 

Note that, if �(
) is Poisson kernel and � ∈ "Dg, then 

the conditions 1
0
) and 2

0
) are satisfied. Thus, if � ∈ tDg and � is Poisson kernel, then lim�→a1‖��� − �‖+jk = 0. It is 

known that, if � ∈ "Dg(�), � is Poisson kernel (for O = 1) 

and lim�→a1‖��� − �‖+jk = 0, then � ∈ tDg (see [4]).  

Corollary 4.4. Let kernel �(
)  satisfies condition (4.4), � ∈ �� !(��) and  

� jY(U)U��´ ��SQ < +∞.	          (4.9) 

Then the following inequality is true  ‖� − ���‖+jk ≤ 

≤ ¨ ∙ �§ � jY(U)U��´ ��S� ,			� > 0,	   (4.10) 

where the constant ¨ > 0 is independent of � and �.  

Proof. Estimate terms on the right hand side of inequality 

(4.6). We have  

	 
��QK1(
)D3(4�
)�
S
1 = 

= 	
��QK1(
)D3(4�
)�

QV
1 +	 
��QK1(
)D3(4�
)�
S

QV
≤ 

≤ сQ ∙ 	 
��Q ∙ D3(4�
)�

QV
1 + 

+сc ∙ 	 
��Q ∙ 1
�a§ ∙ D3(4�
)�
S
QV

≤ 

≤ N¶ ∙ PD3(�) + �§	 D3(
)
Qa§ �
S
� W ≤ NV ∙ �§	 D3(�)�Qa§ ��S

� ; 

	D3(�)� ©
ª«	 
��QK1(
)�


UV�
1 ¬

­®���
1 ≤ N· ∙ 	D3(�)� Z��^� ��

�
1 = 

= N· ∙ 1��	D3(�)���Q���
1 ≤ 

≤ N¸ ∙ D3(�) ≤ N¹ ∙ �§	 D3(�)�Qa§ ��S
� ; 

	 D3(�)� ²	 
��QK1(
)�
S
UV�

³��S
� ≤ 

≤ Nº ∙ 	 D3(�)� ²	 
��Q ∙ 1
�a§ �

S
UV�

³��S
� ≤ 

≤ N» ∙ �§	 D3(�)�Qa§ ��S
� , 

where N¼ 			(½ = 1,2, … ,9)  are positive constants, not 

depending on �  and �.  By obtained inequalities from 

inequality (4.6) we get estimation (4.10).  

Corollary 4.5. Let kernel �(
)  satisfies condition (4.4), � ∈ "Dgh , 
�§	 f(�)�Qa§ ��

S
� = g.f(�)/,								� > 0. 

Then the following relation is true  ‖� − ���‖+jk = g.f(�)/,								� > 0. 
 



120  Rahim M. Rzaev et al.:   Approximation of Functions by Singular Integrals 

 

 

References 

[1] Butzer P.L., Nessel R.J. Fourier analysis and approximation. 
Vol.1: One-Dimensional Theory. New York and London, 1971. 

[2] Calderon A.P., Zygmund A. On the existence of certain 
singular integrals. Acta. Math., 1952, v.88, pp.85-139. 

[3] Gadzhiev N.M., Rzaev R.M. On the order of locally summable 
functions approximation by singular integrals. Funct. Approx. 
Comment. Math., 1992, v.20, pp.35-40. 

[4] Garnett J.B. Bounded analytic functions. Academic Press Inc., 
New York, 1981. 

[5] Golubov B.I. On asymptotics of multiple singular integrals for 
differentiable functions. Matem. Zametki, 1981, v.30, No5, 
pp.749-762 (Russian). 

[6] Janson S. On functions with conditions on the mean oscillation. 
Ark. math., 1976, v.14, No2, pp. 189-196. 

[7] John F., Nirenberg L. On functions of bounded mean oscillation. 
Comm. Pure Appl. Math., 1961, v.14, pp.415-426. 

[8] Kerman R.A. Pointwise convergent approximate identities of 
dilated radially decreasing kernels. Proc. Amer. Math. Soc., 
1987, v.101, No1, pp.41-44. 

[9] Rzaev R.M. On approximation of essentially continuous 
functions by singular integrals. Izv. Vuzov. Matematika, 1989, 
No3, pp.57-62 (Russian). 

[10] Rzaev R.M. On approximation of locally summable functions 
by singular integrals in terms of mean oscillation and some 
applications. Preprint Inst. Phys. Natl. Acad. Sci. Azerb., 1992, 
№1, p.1-43 (Russian). 

[11] Rzaev R.M. A multidimensional singular integral operator in 
the spaces defined by conditions on the k -th order mean 
oscillation. Dokady Mathematics, 1997, v.56, No2, 
pp.747-749. 

[12] Rzaev R.M., Aliyeva L.R. On local properties of functions and 
singular integrals in terms of the mean oscillation. Cent. Eur. J. 
Math., 2008, v.6, No4, p.595-609. 

[13] Sarason D. Functions of vanishing mean oscillation. Trans. 
Amer. Math. Soc., 1975, v.207, pp. 391-405. 

[14] Spanne S. Some function spaces defined using the mean 
oscillation over cubes. Ann. Scuola Norm. Sup. Pisa, 1965, 
v.19, No4, pp.593-608. 

[15] Stein E.M., Singular integrals and differentiability properties of 
functions. Princeton University Press. Princeton, New J., 1970. 

[16] Stein E.M., Weiss G. Introduction to Fourier Analysis on 
Euclidean spaces. Princeton University Press. Princeton, New 
J., 1971. 

 


