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Abstract: In this paper we built a stability region around the origin for the Liénard equation (4) to ensure stability and 

boundedness of solutions of this equation, without making use of the classical Second Method of Lyapunov. We compare 

our result with some others proposed by different authors.  
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1. Introduction 

 

The term “stability” originates in Mechanic to 

characterize the equilibrium of a rigid body. So, the 

equilibrium is called stable if the body returns to its original 

position, having been “disturbed” by being moved slightly 

from its position of rest. If the body after a slight 

displacement tends toward a new position its equilibrium is 

called unstable.  

The Second Method of Lyapunov has been established as 

the most general method to study the stability of 

equilibrium positions of systems described by differential, 

differences or functional equations (or systems). This 

method was found in classical memory of Alexander 

Mijaílovich Lyapunov
1

, published in Russian in 1892, 

translated into French in 1907 (reprinted 40 years later
2
) 

                                                             
1
 Born on June 6, 1857 in Yaroslavl, Russia and died on November 3, 1918 in 

Odessa, Russia. 
2
 Lyapunov (1949). 

and in English many years later
3
. In this work a key role is 

played by the calls Lyapunov functions (functions of 

energy from the physical point of view).  

Lyapunov’s second method also determines the criteria 

for asymptotic stability. In addition to giving us these 

criteria, it gives us the way of estimating region of 

asymptotic stability. Asymptotic stability is one of the 

major areas of the qualitative theory of dynamical systems 

and is of paramount importance in many applications of the 

theory in almost all fields where dynamical effects play a 

great role.  

In the analysis of region of asymptotic stability 

properties of invariant objects, it is very useful to employ 

what is now called Lyapunov’s second method.  It is an 

important method to determine region of asymptotic 

stability. This method relies on the observation that 

asymptotic stability is very well linked to the existence of a 

Lyapunov’s function, that is, a proper, nonnegative function, 

vanishing only on an invariant region and decreasing along 

those trajectories of the system not evolving in the invariant 

region. Lyapunov proved that the existence of a Lyapunov’s 

function guarantees asymptotic stability and, for linear 

time-invariant systems, also showed the converse statement 

that asymptotic stability implies the existence of a 

Lyapunov’s function in the region of stability.  

An excellent source for the study of this method (also 

called direct method because this method allows us to 

determine the stability and asymptotic stability of a system 

without explicitly integrating the nonlinear differential 

                                                             
3
 Lyapunov (1962) and Lyapunov (1992), in this last is included a biography by 

Smirnov and an extensive bibliography of Lyapunov's work. 
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equation) is the renamed text Yoshizawa of the sixty
4
. In 

the qualitative study of a nonlinear system, whether 

autonomous 

x’=F(x); x∈Rn,                            (1) 

or non-autonomous 

x’= F(x,t); x∈Rn,                        (2) 

suppose that F(t,x) is continuous in (t,x) on IxD, where D is 

a connected open set in R
n
, I denote the interval 0≤t<∞ and 

R
n
 denote the Euclidean n-space with the norm x . In the 

qualitative theory some of the most studied qualitative 

properties are stability, asymptotic stability and the 

boundedness (also called continuability)
5
: 

The solution x=x*(t) of (2) is stable in the Lyapunov 

sense, if for any ε>0 and any t0∈I, there exists δ(t0,∈)>0 

such that if  

δ<− )()(* 00 txtx then )()(* txtx − <ε, ∀t≥t0. 

The solution x=x*(t) of (2) is asymptotically stable in the 

Lyapunov sense, if x*(t) and if there exists a δ0(t0)>0 such 

that if  

)()()(* 0000 ttxtx δ<−  then 0)()(* →− txtx  as t→∞. 

Remark1. In many physical situations, the origin may not 

be asymptotic stable for all possible initial value (t0,x0) but 

only for initial value contained in some region around the 

origin, such a region is called the region of asymptotic 

stability and the value of δ allows to define a neighborhood 

of x*(t0), commonly called base attraction. If this 

neighborhood coincides with the whole space, then it is 

said to be asymptotically stable in the global sense.  

A solution x=x*(t) of (2) is bounded, if there exists a β>0 

such that  β<)(* tx  for all t≥t0, where β may depend on 

each solution. In other words if and only if for all T>t0 we 

have ∞<
−→

)(lim tx
Tt

. 

One way to ensure that these properties are fulfilled for 

all solutions of the system, is to propose a bounded region 

Ω around equilibrium point in which remain all those 

solutions beginning on Ω, ie, if x(t0)∈Ω, then x(t)∈Ω, for 

all t>t0. Throughout the work, and for convenience, we take 

t0=0. 

In this paper we consider the Liénard equation:  

x’’+f(x)x’+g(x)=0; x∈R, t≥0                 (3) 

where f is a continuous function, g is a derivable function 

and the following assumptions are fulfilled: 

a) f(x)>0, if  x≠0, 

b) xg(x)>0, if  x≠0. 

                                                             
4
 Yoshizawa (1966). 

5
 Yoshizawa (1966), p.27, p.28 and p.36. 

Let F(x)= ∫
x

duuf

0

)(  and y=x’+F(x), then (3) can written as 

a system:  





−=
−=

)('

)('

xgy

xFyx
                            (4) 

This system has the origin as a single equilibrium point, 

so the properties will be referred to the trivial solution 

x(t)=y(t)=0.  

In our work we will need the following basic results
6
. 

Theorem A. Let Ω be a bounded neighborhood of the 

origin and let Ωc
 be its complement. Assume that W(x) is a 

scalar function with continuous first partials in Ωc
 and 

satisfying: 

1. W(x)>0, ∀x∈Ωc
, 

2. W´(x)≤0, ∀x∈Ωc
, 

3. W(x)→∞ as x→∞. 

Then each solution of (1) is bounded for all t≥0. 

Theorem B. Let V(x) be a scalar function with 

continuous first parcials satisfying: 

1. V(x)>0, ∀x≠0, 

2. V´(x)≤0, ∀x, 

3. V(x)→∞ as x→∞. 

If V´ is not identically zero along any solution other than 

the origin, then the system (1) is completely stable
7
. 

The main difficulty in using Theorem B often is that one 

can construct a Lyapunov function satisfying the three 

requirements. Hence it is much easier to study the 

boundedness of the solutions as a separate problem, from 

which arises the need to build appropriate regions where 

we can ensure the boundedness.  

Building the stability region of a given equation is 

another way to study the problem of convergence, as t 

tends to infinity, of all solutions of this equation. This 

problem is of a paramount relevance in the qualitative 

theory. 

The purpose of this note is to construct a new stability 

region for equation (3), using a different approach of earlier 

results and without making uses of common conditions. 

First we summarize know results, we present by illustration 

the proof of first, and later we present our results. 

2. Preliminary Results 

While there are some previous results in the fifties, the 

first result of this nature was obtained by LaSalle in 1960, 

when he showed that all solutions of (4) are stable and 

bounded using an appropriate bounded region. 

2.1. Region 1
8
 

Theorem 1. Under assumptions a) and b) if we have 

                                                             
6
 Cf. Theorems 4 and 5 of LaSalle (1960). 

7
 Continuable for us. 

8
  LaSalle (1960). 
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)(xF = ∫
x

duuf

0

)( →+∞ as x →∞, 

then, all solutions of  (2) are stable and bounded. 

Proof. Let (x(t),y(t)) be a solution of (4), and let l and a 

positive real numbers such that (x(0), y(0)) Ω, where Ω is 

the region: 

( )






 <+∧<+=∈= axFylxGyyxVRyxΩ

222 )()(
2

1
),(/),(

 

Where V(x,y) is the Lyapunov Function 

)(
2

y)V(x,
2

xG
y += with 

∫=
x

dssgxG

0

)()(
. However, since it may 

not be true that G(x)→∞ as x→∞, we can conclude only 

that every solution bounded for all t≥0 approaches the 

origin as t→∞. Thus, to establish complete stability, we 

need to show that all solutions are bounded for t≥0. To do 

this, we consider the region Ω (see figure of the Region 1). 

 

Region 1 

For any l and a, Ω is a bounded region
9
. Let (x(t),y(t) be 

any solution, and select l and a so large that the solution 

starts in Ω. Then the solution cannot leave Ω without 

crossing the boundary of Ω. It must cross either V=l or 

y+F(x)=a, or y+F(x)=-a. We can select a suficiently large 

that the part of y+F(x)=a which is the boundary of Ω 

correspond to x>0 and the part of y+F(x)=-a corresponds to 

x<0.  

The derivative of V(x,y) along the system (4) is: 

V’(4)=yy’+g(x)x’= 

–yg(x)+g(x)(y-F(x))=–g(x)F(x)≤0, ∀(x, y)∈R2,               (5) 

From (5) we have that a solution starting inside Ω cannot 

cross V=l.  

Now in the rest of boundary of Ω we have 

( ) ( )( )

( ) ( )( )
( ) ( )( )( )

2
( ) 2 ( ) ' ( ) '

2 ( ) ( ) ( ) ( )

2 ( ) ( ) ( ) ( ) ( )

2 ( ) 0

d
y F x y F x y f x x

d t

y F x g x f x y F x

g x y F x f x y F x y F x

a g x

+ = + +

= + − + −

= − + + − +

= − <

 

                                                             
9
 Cf. Miller and Michel (1982). 

Because ( ))()( xFyxg + >0. Hence, (x(t),y(t)) cannot 

leave Ω, and every solution is bounded for t≥0. Thus, under 

somewhat different conditions we have again shown that 

Liénard’s equation is completely stable. 

Remark 2. If we consider (3) under an external force 

x´´+f(x)x´+g(x)=p(t) with p a continuous function and of 

class L
1
[0,+∞), this result still valid and the proof is 

practically the same
10

. It's funny, comparing the similarity 

of the paper of LaSalle and Hasan and Zhu, and dates of 

both, how in the second job is not mentioned first, 

suggesting a lack thereof. 

2.2. Region 2
11

 

Theorem 2. Under condition b) we suppose that 

∃a>0/ 0<x<a⇒xF(x)>0. 

Then all solution of (4) are stable and bounded. 

Remark 3. It is clear that the above condition is more 

general than a). 

In the proof we consider the same Lyapunov’s function 

)(
2

1
),( 2 xGyyxV += . And we take Ω as the infinite band: 

{ }axaRyx ≤≤−∈=Ω /),( 2 . 

In this region we have: 

V’(4)(x,y)=yy’+g(x)x’=–yg(x)+g(x)(y-F(x))=–g (x)F(x)≤0. 

So we have V’(4)(x,y)≤0 in any subset of Ω. Let Cλ be the 

region definite by { }λλ ≤∈= ),(/),( 2 yxVRyxC , with λ is a 

positive real number such that Cλ⊂Ω. It is clear that the 

better value of λ is the lowest value between G(a) and G(–a). 

Again we have the no positivity of V’(4)(x,y) we 

guarantee the boundedness and stability of solutions 

starting in Cλ (Region 2 in the figure bellow). 

 

Region 2 

2.3. Our Region
12

 

While the construction of the stability region can be at 

                                                             
10

 See Hasan and Zhu (2007). 
11

 Cf. Yadeta (2013). 
12

 A preliminary version of this result was presented at the Annual Meeting of 

the UMA last year. See Lugo, Nápoles and Noya (2013). 
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times by the Second Method of Lyapunov, we shall 

disregard it in the results presented below. 

We next give a stability region allowing us to obtain 

sufficient conditions for the boundedness and stability of 

solutions of the system (4), and consequently for the 

equation (3). 

Theorem 3. If in addition to conditions a) and b) we have 

f∈Fλ,g(R)={f∈C(R)/f(x)–λg(x)>0 if x>0; f(x)+λg(x)>0 if 

x<0}, 

then all solutions of (4) are stable and bounded. 

Proof. Let (x(t),y(t)) be a solution of (4) with initial 

value(x(0),y(0))=(x0,y0), and we take the region: 







 +−≤≤≤∈=

k

1
)x(Gky;x/R)y,x( 2G

k βαΩ . 

Where k is a positive real number satisfying the equation 

k
xGky

1
)( 00 +−=  ; and α and β are the solutions of equation 

2k

1
)x(G =  (note that proposed equation to find the value of 

k is equivalent to asking that the solution “start” on the 

boundary of the region).  

Calculating the slopes of the boundary we have:  

'

)(
)(

x

xg

xd

yd
xkg −==− , from here we have that 

k
x

1
'=   if y>0, 

'

)(
)(

x

xg

xd

yd
xkg −== , where 

k
x

1
' −=   if y<0. 

 

Our Region 

So, if we have 
k

x
1

'=   if y>0 and 
k

x
1

' −=   if y<0, the 

trajectories that begin at the boundary of this region, “fall” 

into the same, which ensures the stability and continuability 

of the solution considered (see Our Region in the previous 

figure).  

3. Final Remarks 

� Region 1 has 4 points of intersection in the given 

boundary, and those points can not speak of derived.  

� The Region 2 does not have that problem, but as the 

value of a is fixed in advance, the proposed region 

Cλ can not cover all solutions of the equation. 

� Region 3 has the advantage that it was not needed 

to define a Lyapunov function (so, in certain sense 

is a converse theorem), and also includes any 

solution to the equation, since this region is 

constructed when the initial condition. The 

disadvantage is that it has 2 points of intersection 

between the given edges where no one can speak of 

derived.  

� As an attempt to overcome the above mentioned, 

Guidorizzi constructed a family Lyapunov 

functions
13

 which we extended
14

 to non-

autonomous Liénard equation 

x´´+f(x)x´+a(t)g(x)=0 taking as a Lyapunov 

function for the family 

)(),(
)(

1
),,( xGyxW

ta
yxtV += αα . 

With ∫=
x

dssgxG

0

)()(  and ∫
−

+
=

)(

0
1

),(

xFy

s

sds
yxW

αα  which 

allowed us to define Ωα as the following sets: 

Ωα≡R
2
 if α≡0, 

Ωα={(x,y): y>F(x)-α-1
} if α>0, 

Ωα={(x,y): y<F(x)-α-1
} if α<0. 

• The result obtained in the Theorem 3 is consistent 

with some previous  results of the second author 
15

. 
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