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Abstract: In this paper, we study the nonlinear elliptic problem involving nearly critical exponent (P.) : —Au =

n+2

Kunz™ in Q:;u >0 in Qand u=0 ondQ where Q is a smooth bounded domain in IR", n=23,K is a
C3positive function and € is a small positive real parameter. We prove that, for £ small, (P,) has no positive solutions

which blow up at one critical point of the function K.
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1. Introduction

Let Q be a smooth bounded domain in R", n > 3. We
consider the following nonlinear elliptic problem

—Au = K uP*e in Q
(Pe) u>0 in Q
u=20 on 0Q

where K is a C3positive function, p +1 =2n/n— 2 is
the critical Sobolev exponent and € is a small positive real
parameter.

Problem(P.) is in some sense related to the limiting
problem(when [ = 0) and the interest to it comes from its
resemblance to the scalar curvature problem in differential
geometry, which consists in finding suitable conditions on a
given function K defined on M such that K is the scalar
curvature for a metric g conformally equivalent to g,
where (M, g) is a n-dimensional Riemannian manifold
without boundary.

Note that the limiting problem has beel.5

n widely studied in various works see for example [1],
[2], [7] and [10].

In another view point, it is interesting to study the
problem (P.) with [J< 0 and (] > 0 and to understand
what happens to the solutions of (P.) (if they exist) as
O-0on

When J € (1 —p,0), the mountain pass lemma proves
the existence of solutions of (P.) (see [3]). Note that,
many works have been devoted to the study of positive
solutions of (P.) with [ < 0. In sharp contrast to this, very
little study has been made concerning the sign-changing
solutions of (P.) with [J <0 and even less for [ >0.

When [ > 0, problem(P.) becomes more delicate since
we loose the Sobolev embedding which is an important
difficulty to overcome.

Concerning the supercritical case, [1 > 0 and K is a
constant, it was proved in [4] that (P.) has no positive
solution which blows up at a single point. This result shows
that the situation is different from the subcritical one.
However, del Pino et al [6] gave an existence result for two
blow up points, provided that € satisfies some
geometrical conditions. In sharp contrast to this, it proved
in [5] for the case K is a constant and [8] for the case K is a
non constant function that, for [J small, (P.) has no
sign-changing solutions which blow up at two points.

In this paper, we consider the case K is a non constant
function and we look to understand the influence of the
function K in the study of the positive solutions of (P.)
which blows up at a single point.

It is well known that problem (P.) has a variational
structure. Setting

Ja) = — B,

(fQK|u|p+1+E)p+1+€

€ HY(Q),u 20,

the positive critical points of J are solutions to (P.) , up to
a multiplicative constant. J satisfies the Palais-Smale
condition in the subcritical case, whereas this condition
fails in the critical case. Such a failure is due to the function

n-2

A

Stan () =C , Co=(mm—-2)7,2>0,aeR" (1)

0 n-2
(1+22|x—al?)" 2

which are the only solutions of
n+2

—Au=unz, u>0in R, with ue LPT(R®) and
Vu e L2(R") and are also the only minimizers of the
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Sobolev inequality on the whole space, that is

2n
S=ul3a ,s.tVuel? uelnz(R") ,u#0} (2)

Ln=2(R™)
We have the following nonexistence result for (P.):
Theorem 1

Let Q be any smooth bounded domain in R", n > 3.
Assume that ay, € Q is a critical point of K satisfying
one of the following conditions:

(i) =3,

.. _ _ c3AK(ap)
(i)yn = 4,and ¢, H(ay, ay) 16K (a0) >0,
(iiiyn = 5,and —AK(ay) > 0.

Then the problem (P.) has no solution u, such that
Ue = Q¢ PO, 5, + ve with |u.|¢ is bounded and

ve =0 in HY (Q) a. » K@)®™/*, a,. € Q ,a, -
a, and A.d(a.,0Q) -+ as € - 0.

2. Preliminary Results

We need to introduce some notations:
P8, ; is defined as the only function in Hj(Q) such
that APS, ; = Ad, , . Writing

P5a,A = Sa,A _Ha,/l (3)
we have
AGa‘A =0 in Q ; Qa‘,l = 5‘1,,1 on 9 @)

We note that projections P8, ; of &4 ’s on Hg()
are approximate solutions to the limiting problem as
a. € Q and A.d(a., Q) goes to infinity.

Let G be the Green’s function for the Laplace operator
with Dirichlet boundary conditions, that is, for any x € Q .

{—AG(x,.)= Cp 0y in Q
G(x,.)=0o0on 0Q

with &, the Dirac mass at x and ¢,, = (n — 2)|S™™1|
We denote by H the regular part of G, i.e.

H(xy, %) = |xq — lez—n — G(x1, %)
for (x;,%,) EQXQ

The maximum principle provides us with the uniform
estimate

H(x,a)
Oa .2 (x) =G Ag +0< [P
2

>asld(a, Q) -» 4+ (5)
A7 (d(a,dm)"

Corresponding estimates hold for the derivatives of
0, , withrespectto a,A and x .

Note that H(x,x) = 0(d(x,3Q)*™) as d(x,0Q) - 0
[9]. From [9] we also know that

[, [V8q 2 | = 0(Ad(a, 30)*™asid(a,80) —» +e  (6)

Next, we recall that for u, satisfying the assumption of
the theorem, there is a unique way to choose a., A, and
v, such that

Ue = Ue P5a€,A€ t Ve (7)
with

a. €ER, a.- K(ae)(z—nm
a. €Q, A, R, Ad(a.,00) - +o (®)
ve >0 in H§(Q), ve € Eq ;.

and for any (a, 1) €Q XRY,Eq, ) denotes the

subspace of H3(Q) defined by

oP§,

(a,l)

E@ay={w € H}(@)/(w, P84 2 )Hg = (W—a> )
H

04

[

aPs
=(w,—8Y) =0,1<i<n}
aai Hi

0

For the proof of this fact, see [1], [9]. In the following,
we always assume that u,, satisfying the assumption of the
theorem, is written as in (8). In order to simplify the
notations, we set

5aE'AE = 5€,P(Sa6’l€ = P6€ and gae‘/le = 95

Lemma 2
Let u, satisfying the assumption of the theorem 1. Then

@ f |Vu|? - s™/2 (ii) f K uPtite - gn/2
Q Q

as € = o, S, S denoting the Sobolev constant defined by
2.
Proof.

We have
JolVuel? = [ |V(ae P8 + vo)I? = a? [,|V PS> +
Jo|Vve|? since v, € Eqz,

From the fact that §, satisfies —AS, = §¢ in R" and
is a minimizer for S, we deduce that [,V &, |* = S™/2

On the other hand, an explicit computation provides us
with

2 2 1
L|V(Sa'l| —fRJV(Sa'Al +O(W)asld(a,69)

— o0,

Taking account of (6), claim (i) is a consequence of (8).
Claim (ii) follows from the fact that u, solves (P.).

3. Estimating v,

As usual in this type of problems, we first deal with the
v-part of u, in order to show that it is negligible with
respect to the concentration phenomenon.
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Lemma 3

Let u. satisfying the assumption of the theorem. A,
occurring in (7) satisfies

A >1l,as €—-0.

Proof.
According to Lemma 2, we have

J K ulP*e = SM2 +o(1)as €—0 (9)
and

f](uelf’“JrE =fK (ae P8, + v )P €a, PS,
Q Q

+fKuE”+€v€
Q

— a€p+1+efK P5€P+€+1
Q

—f Au, v,

Q

+0(f PSP v +f|vE|P+€P5€)
Q Q

— asp+1+st P5€P+E+1
Q

e(n—2)
+0</1€ 2 fP(YEplvel
Q
€

(n-2)
+ Ae 2 f |v€|p+eP6€1—€ + lvle& >
Q

— asp+1+EfK P5€P+E+1
Q
+0 (/12(”_2)/2|U5|Lp+1

=2)/2
+ 2T | B + vl )
Thus
fy KuP e = qprive [ K PP 40 (2802 4 1)(10)

We observe that
Jo K PSFHE = [ K (8 — 0 )P = [LK 8741 +
o(J, 6.77¢6c)

= P K(ao) fi (

(p+1+€)(n-2)
Ae 2
1+A2|x—ae|? T

(p+1+€)(n—2) en-2)
e A2

- € €
1+2Z%|x—ac|? (Aede)™

0 10cl:- J, (

where B = B(a.,d.) .Using Proposition 1 of [9], we

obtain

f K P56p+1+e
Q

en-2) pte+1l dx
— 2
—/15 K(as) CO fn (p+1+€)(n—-2)
R @+ 1x1?) 2

_ Cp+e+1 dx
0 n (p+1+€)(n-2)
G

e(n-2)
A 2
o —&———
O\ Ged

dx

_ ,e(n-2)/2 ptet+l
= /15 K(ae)CO - (1 + |x|2)(p+1+6)(n—2)/2

e(n-2)
A 2
+0| ———
(Aede )2
We note that
p+e+1l dx _ ~p+l dx
CO f]RH (1+|x|2)(p+1+e)(n—2)/2 - CO f}R'ﬂ (1+]x[2)"

0(e) =S™%+0(e).

Therefore

Jo K PSPPI = 260D 2K (0 ) (572 + 0(e) + 0(1) (11)

so (10) and (11) provide us with

fg Ku€p+1+s — asp+1+s Ag(n—Z)/ZK(ae)(Sn/z +o(D) +
o)  (12)
Combination of (9) and (12) proves the lemma.

Next, we recall the following estimate [10] :

Remark 4

§5(x) — CEASD/2 = 0(elog(1 + A2|x — ac|?)) in Q.

We are now able to study the v, -part of u, .

Lemma 5

Let u. satisfying the assumption of the theorem. v,

occurring in (7) satisfies

Vel ug o
VK (ae) 1 .
( PN + dy2 if n<é6
VK(ae)  log(A.de) .
< =
_C+CI PN + d) if n=6
LVK(as) 1 .
A + dy) 72 if n>6
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with C independent of €

Proof.
Multiplying (P.) by v, and integrating on Q , we
obtain
0 =J- Vu, . Vv, —fKu?Jre v,
Q Q
Thus

0= f Vo, |2 —fK[(ae Ps,)Pe
Q Q

+(p + €)(ac PSP €0,

+0(82 7 V2 Xpyei<s, + 1ve IPT)] ve -
Using the assumption that |u, |€ is bounded, we find
0 = Qe(ve, 1) — fe(we) + 0 (Ivel™ P+ + v P2t)  (13)
with
Qw,v) = luelly = (0 +€) [ Klae Pare v2
and
fo) = [ KeacPoree v

We observe that

Q:(w,v) = |ve|1216 _pr(ae P§)P-1te 2
Q
2
+0 (elvel2;)
Q
+0(6.74%00) v + o (Ivl3)

= luel2y = pal K @@ICEAL " [ 6702
Q

+0 (f (5;"“6
Q
- C5AL 6. l2) ) + o (Ivly)
Using Remark 4, we find

Qe(v,v) = Qo(v,v) + o (JvlZ;)  with

-1
Qv = Ivlzy - [ 67702
Q

According to [1], @y is coercive, that is, there exists some
constant ¢ >0 independent of €, for [ small enough,
such that

Qo(v,v) = C|U|,2,3 Vv EEq ) (14)

We also observe that

f.(v) = aé’ﬂf K (657”6 + 0(657]_“696))17
o

= al** [cg,ﬁ("‘z)/z f K& v
Q

+0 (efl(log(l + A2|x — a.|?) 62|v|
Q

+ f 6ep‘lee|v|)]
Q

The last equality follows from Remark 4. Therefore we can
write,

with B = B(a,,d.)

f) = 0<e|v|,,1+ f 57710, v | + f 6J|v|>
° Jp R™M\B

VK (a,
i) = ol (e+ 5 o,

n+2

8n 2n
2_
+ V]33 16 - (f sr 4)
B

n+2

2n \72n
+ |ve|H(} (J- 52_2>
R™\B
We notice that

1
52n/(n—2) — 0( )
fmn\g ‘ (Aede)n

and
d(n_6)/2
£ = if n>6
gn \ (n+2)/2n €
log(A.d
(fagz—‘*) <8l e
B A2
1 .
W lf n<6
€

Using (5), we obtain
SIS Clvl,

( (el 1

)lle(} if n<é6

Ae (Aed)™ 2
[VK(age)| |, log (Aede) .,
+cl ( i (Aea;:)lleé if n=6 (15
vk
(ae)l 1 ;
k( A +(A€a€)(n+2>/2)|v|H6 if n>6

Combining (13), (14) and (15), we obtain the desired

estimate.
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4. Proof of Theorem
Let us start by proving the following crucial result :

Proposition 6

Let u, satisfying the assumption of the theorem. Then,
aecy H;‘ff % _q, %Ifgg% + asczs| <c (62 + é +

llegl (26;1;) n> 4)
i) +1 75 (16)

Gaae M=)

where a., A, and d. = (a.,0Q) are given in (7) and
€1, €y, C3 are positive constants defined by

2n

_ -2 dx
€1 =06 R™ (1+]x[2)(n+2)/2 4
n-2 Z 1
Cy = T 10g(1 + |X|2) de
2n
P |x|?
and c3 = C0 2 R™ m
Proof.
Multiplying  (P.) by A, 6;6 and integrating on Q,
we obtain
dPs dPé
oz—fAuA—f—fKup” 2
o € € al o € € a/’{
dPé,
=f V(asP6€+v€)V< 6 ) fK(aeP(S
a daA
dPé,
E) € aA
dPé,
f 8P —— 7 L K[(a.P8.)P*e

+ (p + e)(a PS5 )P~ ey
+0(8277 vl

aPs,
€ 92

+ |ve[P*e (17)

We estimate each term of the right hand side in (17). First,

we have

p P
f(S)leaA f5’1€az f‘sefaz

whence

PS5,
€’€e aA

~ f 501, 20 98, f 96,
R" € 6/1 Rn\g € aA € aA

572, 2% 00,
o\B €or

=0 ((zeclze)n) - Ae% (@) fB 8¢

+0</1€f6§|x
B

€

7l

- a€| sup 2 7
with B= (a[ , doy) According to [9], we have
n—2 Co
E EY) (as) = T A(n 2)/2 H(ae: as)
0 ( ! )
;tgn+2)/2dé1
and
D2 00, _0 ( 1 )
su =0|—7—
i 2 qn

Therefore, estimating the integrals we obtain

oP6. n-2 H(a.a.)
fﬂ‘sgle oA 2 T ez
log(2ed,)
0(—) 18
Ged)" 1%

Secondly, we compute

aPs
f K(PS)PTeN, —=
Q

= f K[8F2% —(p+ e)sr 0,
o

PS5,
€7 a2

+0(028F72 ¢ + gP*c

a6,
K§F* A, —
fB €91

a6
_f K5sp+e/166_/{_ (P
B
a5,

+ 6) L K(SEp_l-H?@eAE ﬁ

+0 fQ 0626617—1+s + fﬂ 6£p—1+s

eal 8e +

e(n-2)
L) (19)

(Aede)™
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and we have to estimate each term of the right hand side of (19), (20), (21) and additional integral estimates of the

2 (1-22|x—a.|? same type provide us with the expansion
(18). Using the fact that - 2 5¢ = "2 (1252~ 5, pep P
daPé,
we derive that R K(P§
06, n—2
f K& p+fle 7 = —2 Ai(n—Z)/Z CZK(aE)E
B
H(ac,ac.)  AK(a,)
_n- ;(nn Z)K( p+1+ef 1 1—|x|? dx +2eK(ad) -z e Az ]
2 e RN = T P 1, log(Acd)
@+ [x?) +0 <
(Aede)
e TR o) 23
n _— =
vol2e Gy =) @Y
(Aede)
cn-2) c AK(a ) 1
— n _ 3 €
= A (CZK(ae)E €nz +0 ( )> ' We note that
e(n-2)
= dPé§
A " KPS )P v ——
O\ Geaom (20) fg (PO vede 5
] ) =f K((Sep 1+e
For the other terms in (19), we write o)
a6 a6 9Ps
ptey “7€ _ € pte - -2 €
| K8 Ty = Ko g @) | a. 4067 +5,7770,)) v2, 20k
|x —a.|? 1)
o (L 5" W - f KO vede 5o
€ € Q
Tl K p+1+E H(ae: ae) ( Ae )(ZH'E)(TI—Z)/Z p-1+€ 665
2 (@ /'[E_n 2)/2 B 1 +/1§|x— ael2 _LK6€ velea
‘o (Ai“’“”“ log(2.d.) -0 ( [ a1+ etwe ee>
(Aede)™ “
a6
- [ K@ va S
n-—2 H(a., a _ Q
= clK(aE)—( e ac) Ai(n 2)/2
2 n-2 /16(” 2)|v€ (n+2)/2
e(n-2)/2 -0 5 _4_
40 (’15 v 6110§T(l/1€de)> Coen (A.d2)(n= 2)/2( n )
(Shad 2

(n+2)/(2n)
and +0 (Ai(n_Z)lvslH(} (f 562n/(n—2)) >
Q

fz(ap“eezg
B

€ a1 Using (15) we find
26, _ apae 95 |
= 0@ K (o) | 877G J KO ud 20 = [ koI v Lot
e(n-2)
|x —a |2 ﬂ.e 2 |1]6|H €(n-2)
p+e € 0 2
+0 <fB Se D2y 0 o )(n;Z) +0| 1, |v6| i )n ———(if n<
€ € (el
Using (5), we obtain
) s 6) + lzi('}i')ij)(lfn—6)+%(ifn>6)>
- Qe 2z
f K5 *€p Aeﬁ == 222 g (a)c, ;l . Ae(n /2 4 (Aede) 2 o)
(Ai(n_Z)/z IOg(AEd€)> (2 2)
(Aede)™ We also have, using Remark 4
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a5,
oy

e(n-2)

=2, 2

f K(8.)P~ v A
Q

a5,
oy

& f K8 ' v.A
Q

+ f K (56’"“5
Q

e(n-2)
—cf, ?

a5,
EY

577 v,

= 0(6-[1( log(1
Q
+A21x — a D82 v, )

whence

_ 35,
LK@ v 2 =0 (elvelyy ) =

0(e). (25)

aPs,
a1

Noticing that in addition A, =0(8,) and

[l =0 (R 1wl (26)
Q

[ s =0 (0 ). @7)
3<|vel

(18), (23), (24),(25), (26), (27) and Lemmas 3 and 5 prove
Proposition 6.

We are know able to prove the theorem.
Proof of Theorem 1

Arguing by contradiction, let us suppose that (P.) has a

solution u. as stated in the theorem. From Proposition 6,

we have
H(agae) c3 AK(ag) 1
a.cq /126_26 - En—zK(aE);g +a.ce =0 € +E+
1 . >
gz fnzd
1 ' (28)
T (ifn=4)
Notice that H(a,,a.)~d? % if d.—>0 as e >0 and

H(ac,a.)=2c>0a e—>0 if d.»0 as
For n =3 ,itfollows from (28) that
c H(aEl aE)

e—>0

1
+cze=o(e+/1—s>

which is a contradiction.
For n =4 it follows from (28) that

H(a. a c; AK(a 1 1
c1 (/12 E)_TZK(a(e)EA)% +ce = 0(E+E+m)
which is a contradiction with assumption (ii) of the
theorem.
For n=5 ,itfollows from (28) that

c3 AK(a,) B ( 1)
nzK(ae)/1§+C2€_0 €+/1E

also leads to a contradiction with assumption (iii) .
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