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Abstract: In this paper, we study the nonlinear elliptic problem involving nearly critical exponent  ���� �  �∆	 
� 	�
������   ��  Ω  ;  	 � 0   ��   Ω  ���  	 
 0  �� �Ω   where Ω  is a smooth bounded domain in 
nIR , 3≥n , K is a ��positive function and � is a small positive real parameter. We prove that, for ε  small, (Pε) has no positive solutions 

which blow up at one critical point of the function K. 
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1. Introduction 

Let Ω be a smooth bounded domain in �� , �  3.  We 

consider the following nonlinear elliptic problem 

 ����     #�∆	 
 � 	$��         ��  Ω 	 � 0                      ��   Ω	 
 0                     �� �Ω

% 
where K is a ��positive function, & ' 1 
 2�/� � 2 is 

the critical Sobolev exponent and � is a small positive real 

parameter. 

Problem���� is in some sense related to the limiting 

problem(when @ 
 0) and the interest to it comes from its 

resemblance to the scalar curvature problem in differential 

geometry, which consists in finding suitable conditions on a 

given function K defined on M such that K is the scalar 

curvature for a metric +,  conformally equivalent to +, 
where �-, +�  is a n-dimensional Riemannian manifold 

without boundary. 

Note that the limiting problem has bee1.5 

n widely studied in various works see for example [1], 

[2], [7] and [10]. 

In another view point, it is interesting to study the 

problem ���� with @< 0 and @ > 0 and to understand 

what happens to the solutions of ���� (if they exist) as 

@ . 0 !! 
When @ 0 �1 � &, 0�, the mountain pass lemma proves 

the existence of solutions of ���� (see [3]). Note that, 

many works have been devoted to the study of positive 

solutions of ���� with @ < 0. In sharp contrast to this, very 

little study has been made concerning the sign-changing 

solutions of ���� with @ < 0 and even less for @ > 0. 

When @ > 0, problem���� becomes more delicate since 

we loose the Sobolev embedding which is an important 

difficulty to overcome. 

Concerning the supercritical case, @ > 0 and K is a 

constant, it was proved in [4] that ���� has no positive 

solution which blows up at a single point. This result shows 

that the situation is different from the subcritical one. 

However, del Pino et al [6] gave an existence result for two 

blow up points, provided that Ω  satisfies some 

geometrical conditions. In sharp contrast to this, it proved 

in [5] for the case K is a constant and [8] for the case K is a 

non constant function that, for @  small,  ���� has no 

sign-changing solutions which blow up at two points. 

In this paper, we consider the case K is a non constant 

function and we look to understand the influence of the 

function K in the study of the positive solutions of ���� 

which blows up at a single point.  

It is well known that problem ���� has a variational 

structure. Setting 1�	� 
  2 |45|� 
Ω62 7|5|8
9
: 

Ω
; �8
9
:, u � <=>(Ω� , 	 ? 0 ,  

the positive critical points of J are solutions to ���� , up to 

a multiplicative constant. J satisfies the Palais-Smale 

condition in the subcritical case, whereas this condition 

fails in the critical case. Such a failure is due to the function 

@�A,B��C� 
 �=  B�����>�B�|DEA|������   , �= 
 ���� � 2�����F  , G � 0 , � 0 ��   (1) 

which are the only solutions of �∆	 
 	�
����  ,   	 � 0 ��  ��,   with u �  H $�>����  and 4	 � H I����  and are also the only minimizers of the 
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Sobolev inequality on the whole space, that is 

 J 
  |	|K ���������EI  , L. M 4	 � H I , 	 � H ���������  , 	 N 0O    (2) 

We have the following nonexistence result for ����: 

Theorem 1 

Let Ω  be any smooth bounded domain in ��, �  3. 

Assume that �= 0 Ω is a critical point of �  satisfying 

one of the following conditions: 

(i)� 
 3, 
(ii)� 
 4, ���  R> <��=, �=� � ST∆ 7�AU�>V7�AU�  � 0, 
(iii)�  5, ���   � ∆ ���=� � 0. 

Then the problem ����   has no solution   	� such that 	� 
 X� �@A: ,B: ' Y� with |	�|�    is bounded and Y� . 0   ��  <=> ( Ω�  X� . ��� ��IE�� Z⁄  , �� 0  Ω   , �� . �=  and G����� , �Ω� . '∞      �L   � . 0. 
2. Preliminary Results 

We need to introduce some notations: �@A  ,B    is defined as the only function in <=>(Ω�   such 

that ∆�@A  ,B   
 ∆@A  ,B   . Writing �@A  ,B   
  @A  ,B   � \A  ,B                        (3) 

we have  

∆\A  ,B   
 0  in Ω ; \A  ,B   
 @A  ,B    on �Ω    (4) 

We note that projections �@A  ,B    of @A  ,B   ’s on <=> (Ω� 

are approximate solutions to the limiting problem as �� 0  Ω and G����� , �Ω� goes to infinity. 

Let ^ be the Green’s function for the Laplace operator 

with Dirichlet boundary conditions, that is, for any C 0 Ω . 

_�∆^�C, . � 
  R� @D �� Ω ^�C, . � 
 0  ��     �Ω % 
with  @D the Dirac mass at C and R� 
 �� � 2�|J�E>| 

We denote by < the regular part of ^ , i.e . <�C>, CI� 
  |C> �  CI|IE� �  ^�C>, CI� 

for �C>, CI� 0 Ω ` Ω 

The maximum principle provides us with the uniform 

estimate 

\A  ,B   �C� 
 �=  a�D,A�B���� ' b c >B�
�� �d�A,eΩ���f �LG���, �Ω� . '∞  (5) 

Corresponding estimates hold for the derivatives of \A  ,B    with respect to � , G and C . 

Note that <�C, C� 
 b���C, �Ω�IE�� as ��C, �Ω� . 0 

[9]. From [9] we also know that 

2 h4\A  ,B   hIi 
 b�G���, �Ω�IE��asG���, �Ω� . '∞    (6) 

Next, we recall that for 	� satisfying the assumption of 

the theorem, there is a unique way to choose �� , G�  and Y�    such that  	� 
 X� �@A: ,B: ' Y�         (7) 

with 

 k X� 0 � ,    X� . ��X���IE�� Z⁄�� 0 Ω , G� 0 ��l  , G�����  , ∂Ω� . '∞Y� . 0       ��    <=>�Ω�, Y� 0  nA: ,B: 
%     (8) 

and for any �� , G � 0 Ω ` ��l  , n�A ,B �  denotes the 

subspace of <=>�Ω� defined by 

n�A ,B � 
 o p 0 <=>�Ω� 6w, �@�A  ,B�   ;aU9r 
 cp, ��@�A  ,B�   �G faU9 


 cp, ��@�A  ,B�   ��s faU9

 0  , 1 t � t �  O 

For the proof of this fact, see [1], [9]. In the following, 

we always assume that 	�, satisfying the assumption of the 

theorem, is written as in (8). In order to simplify the 

notations, we set  @A: ,B: 
 @�, �@A: ,B: 
 �@� and \A: ,B: 
 \� 

Lemma 2 

Let 	� satisfying the assumption of the theorem 1. Then 

���  u |4	�|I  . J� I⁄ 
Ω      ;     ����   u � 	�$�>��  . J� I⁄ 

Ω   
as � . �, J, S denoting the Sobolev constant defined by 

(2). 

Proof. 

We have  2 |4	�|I 
  2 |4�X�  �@� '  Y��|I 
Ω

 
Ω


 X�I 2 |4 �@� |I ' 
Ω2 |4Y�|I  

Ω
 since Y� 0 nA: ,B:  

From the fact that @� satisfies �∆@� 
 @�v   ��  �� and 

is a minimizer for   J, we deduce that 2 |4 @� |I 
 J� I⁄   ��  

On the other hand, an explicit computation provides us 

with 

u h4@A  ,B   hI 
 u h4@A  ,B   hI ' b w 1�G���, �Ω���x �L G���, �Ω� 
��

 
Ω . '∞. 
Taking account of (6), claim (i) is a consequence of (8). 

Claim (ii) follows from the fact that  	� solves ����.  

3. Estimating yz 

As usual in this type of problems, we first deal with the 

v-part of u, in order to show that it is negligible with 

respect to the concentration phenomenon. 
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Lemma 3 

Let 	�  satisfying the assumption of the theorem. G� 

occurring in (7) satisfies  G��  . 1 , �L    � . 0  . 
Proof. 

According to Lemma 2, we have    2 � 	�$�>�� 
 J� I⁄ Ω ' ��1� �L    � . 0  (9) 

and 

u � 	�$�>�� 
 
Ω

u � �X� �@� ' Y��$��X�  �@� 
Ω

' u � 	�$��Y� 
Ω

 


 X�$�>�� u �  �@�$���> 
Ω

� u ∆ 	� Y�   
Ω

' b cu �@�$��|Y�| 
Ω

' u |Y�|$���@�  
Ω

f 


 X�$�>�� u �  �@�$���> 
Ω

' b cG����EI�I u �@�$|Y�| 
Ω

' G����EI�I u |Y�|$���@�>E� ' |Y�|aU9   
Ω

f 


 X�$�>�� u �  �@�$���> 
Ω

' b {G����EI� I⁄ |Y�|K8
9 
' G����EI� I⁄ |Y�|K8
9 $�� ' |Y�|aU9 | 

Thus  

2  �	�$�>�� 
 X�$�>�� 2 �  �@�$���> Ω ' � {G����EI� I⁄ ' 1| Ω (10) 

We observe that  2 �  �@�$�>�� 
 2 �  �@� � \��$���> 
Ω

 
Ω


 2 �  @�$�>�� ' 
Ωb62   @�$��\� 

Ω
;     

          
  �=$���> ����� 2 { B:>�B:�|DEA:|�|�8
9
:������� ' }
           b ~|\�|K∞ 2  { B:>�B:�|DEA:|�|�8
9
:������� 

Ω
'  B::�������B:d: ��� 

 where � 
 ���� , ���  .Using Proposition 1 of [9], we 

obtain 

u �  �@�$�>�� 
Ω


 G����EI�I ����� ~�=$���> u  �C�1 ' |C|I��$�>�����EI�I
 

��
� �=$���> u  �C�1 ' |C|I��$�>�����EI�I

 
�� �⁄ f

' b � G����EI�I�G���  ��EI� 


 G����EI� I⁄ ������=$���> u  �C�1 ' |C|I��$�>�����EI� I⁄ 
��

' b � G����EI�I�G���  ��EI� 

We note that  

�=$���> 2  dD�>�|D|���8
9
:������ �⁄ �� 
 �=$�> 2  dD�>�|D|��� ' ��
b��� 
 J� I⁄ ' b���. 

Therefore    

2 �  �@�$�>�� 
 G����EI� I⁄ ������ Ω J� I⁄ ' b��� ' ��1� (11) 

so (10) and (11) provide us with 

2  �	�$�>�� 
 X�$�>�� Ω G����EI� I⁄ ������J� I⁄ ' ��1�� '��1�      (12) 

Combination of (9) and (12) proves the lemma.   

Next, we recall the following estimate [10] :  

Remark 4 

@���C� � �=�G����EI� I⁄ 
 b�� log�1 ' G�I|C � ��|I��    ��   Ω. 

We are now able to study the  Y� -part of 	� .    

Lemma 5 

Let   	�   satisfying the assumption of the theorem.  Y�   

occurring in (7) satisfies                    |Y�|aU9�Ω�

t � ' �
���
��
�� 4�����G� ' 1�G� �� ��EI       ��     � � 64�����G� ' log �G� �� ��G� �� �Z       ��     � 
 64�����G� ' 1�G� �� ����I� I⁄       ��     � � 6

% 
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with C independent of  �  .   

Proof. 

Multiplying ����   by Y�   and integrating on   Ω  , we 

obtain 0 
 u 4	� . 4Y�  � u �	�$��  Y�   
Ω

 
Ω

 

Thus  

0 
 u |4Y� |I � u ���X� �@��$�� 
Ω

 
Ω ' �& ' ���X� �@��$E>��Y�' b�@�$EI��Y�I�|�:|��: ' |Y� |$���� Y�  . 

Using the assumption that  |	� |� is bounded, we find 

0 
 ���Y� , Y�� � ���Y�� ' b {|Y�|aU9�����,$�>� ' |Y�|aU9$�>|   (13) 

with  

���Y, Y� 
 |Y�|aU9I � �& ' �� u ��X� �@��$E>��  YI 

and   

���Y� 
 u ��X�  �@��$��  Y  .  
We observe that  

���Y, Y� 
 |Y�|aU9I � & u ��X�  �@��$E>�� 
Ω

 YI
' b {�|Y�|aU9I | 


 |Y�|aU9I � &X�$E>������� u {@�$E>�� 
Ω

' b6@�$E>��\�;| YI ' � {|Y|aU9I | 


 |Y�|aU9I � &X�$E>��������=�G����EI� I⁄ u @�$E> 
Ω

YI
' b cu {@�$E>�� 

Ω� �=�G����EI� I⁄ @�$E>|Y|I; x ' � {|Y|aU9I | 

Using Remark 4, we find 

���Y, Y� 
 �=�Y, Y� ' � {|Y|aU9I |      with 

�=�Y, Y� 
 |Y|aU9I � u @�$E> 
Ω

YI. 
According to [1], �= is coercive, that is, there exists some 

constant c >0  independent of  �, for @ small enough, 

such that 

�=�Y, Y�  R|Y|aU9I           � Y 0 n�A:,B:�.         (14) 

We also observe that  

���Y� 
  X�$�� u � {@�$�� ' b6@�$E>��\�;| Y 
Ω

 


  X�$�� ��=�G����EI� I⁄ u �@�$Y  
Ω

' b c� u � log�1 ' G�I|C � ��|I� 
Ω

@�I|Y|
' u @�$E>\�|Y| 

Ω

x� 

The last equality follows from Remark 4. Therefore we can 

write,  

with   � 
 ���� , ��� 

���Y� 
  b c�|Y|aU9 ' u @�$E>\�|Y�| ' u @�$|Y| 
����

 
� f 

���Y� 
  b �
�c� ' |4�����|G�I f |Y|aU9 

' |Y|aU9 |\�|K ∞ cu @�
����EZ 

� f��II�

' |Y�|aU9 cu @�I��EI 
���� f��II� � 

We notice that 

u @�I� ��EI�⁄ 
���� 
 b w 1�G�����x 

and     

cu @�
����EZ 

� f���I� I�⁄ t �
���
�
��� ����EV� I⁄G�I        ��     � � 6log�G����G�I        ��     � 
 61G���EI� I⁄        ��     � � 6

% 

 Using (5), we obtain |���Y�| t     � |Y|aU9  

'�
���
�� {|47�A:�|B: ' >�B: d: ����| |Y|aU9       ��     � � 6{|47�A:�|B: ' � ¡ �B: d: ��B: d: �F | |Y|aU9       ��     � 
 6{|47�A:�|B: ' >�B: d: ���
�� �⁄ | |Y|aU9       ��     � � 6     %(15) 

Combining (13), (14) and (15), we obtain the desired 

estimate.   
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4. Proof of Theorem  

Let us start by proving the following crucial result : 

Proposition 6 

Let  	�   satisfying the assumption of the theorem. Then, 

¢X�R> a�A:,A:�B:��� � X� ST�� £7�A:�7�A:�B:� ' X�RIɛ¢ t R {�I ' >B:T '
|Y|aU9I | ' k� ¡ �B: d: ��B: d: ��   ��  4�>�B: d: ��     �� 
 3� %   (16) 

where ��, G�  and  �� 
 ���  , �Ω� are given in (7) and  R>, RI, R� are positive constants defined by 

R> 
 R=����� 2  dD�>�|D|����
�� �⁄    ��   ,  

RI 
 �EII R=����� 2 log�1 ' |C|I� |D|�E>�>�|D|���
9 �C   ��  

and               R� 
 R=����� 2  |D|��>�|D|���   �� �C . 
Proof. 

Multiplying   ����   by G� ev�: eB     and integrating on Ω , 
we obtain 

0 
 � u ∆	�  G� ��@� �G � u �	� $�� G� ��@� �G   
Ω

  
Ω

 


 u 4�X��@� ' Y��4 wG� ��@� �G x � u ��X��@�  
Ω

 
Ω

' Y��$�� G� ��@� �G   
 


 X� u @�$G� ��@� �G   � u ���X��@� �$�� 
Ω

 
Ω ' �& ' ���X��@� �$E>��Y' b6@�$EI�� |Y�|I

' |Y�|$��;� G� ��@� �G   .                       �17� 

 We estimate each term of the right hand side in (17). First, 

we have 

u @�$G� ��@� �G  
 u @�$G� �@� �G � u @�$G� �\� �G       
Ω

             
Ω

      
Ω

 

 whence   

u @�$G� ��@� �G   
Ω
 u @�$G� �@� �G � u @�$G� �@� �G � u @�$G� �\� �G       

�              
���Ω

 
��

� u @�$G� �\� �G       
Ω��                   


 b w 1�G� �� ��x � G� �\� �G ��� � u @�$   
�

' b cG� u @�$ |C 
�� �� |I sup� § D̈I �\� �G §f       

with   B 
 �a@
  , d@

 )  .  According to [9], we have 

G� �\� �G ��� � 
 � � � 22  R=G���EI� I⁄  <��� , �� �
' b « 1G����I� I⁄ ���¬ 

and    

sup� § D̈I �\� �G § 
 b c 1G�� I⁄ ���f 

Therefore, estimating the integrals we obtain 

u @�$G� ��@� �G  
  � � 22 R>  <��� , �� �G��EI 
Ω ' b wlog�G� �� ��G� �� �� x                 �18� 

Secondly, we compute 

u ���@� �$��G� ��@� �G     
Ω 
 u � �@� $�� � �& ' ��@� $E>��\�  

Ω

' b6\�I@� $EI�� ' \�$��;� G� ��@� �G      

 u �@� $��G� �@� �G 

�
� u �@� $��G� �\� �G � 

� �&
' �� u �@� $E>��\� G� �@� �G 

�  

' b ~2 \� I@� $E>�� ' Ω 2 @� $E>��\�  ¢G� e®: eB ¢ ' Ω 2 \� $�� @� ' Ω
B::�������B: d: ��f      (19) 
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and we have to estimate each term of the right hand side of 

(18). Using the fact that  G� e�: eB 
 �EII {>EB: �|DEA: |�>�B: �|DEA: |�| @�   , 

we derive that 

u �@� $��G� �@� �G 
�


 � � 22 G����EI�� ���� �R=$�>�� u  1�1 ' |C|I������EI��
1 � |C|I1 ' |C|I �C 

��

' b � G����EI���G� �� ���     

 G�:������  cRI���� �� � X� ST�� £7�A:�B:� ' b {�I ' >B:T|f '

b ~B::�������B: d: ���      (20) 

For the other terms in (19), we write 

u �@� $��G� �\� �G 
 ���� �G� �\� �G ��� � u @� $��   
�

 
�

' b «u @� $��  |C � �� |IG���EI� I⁄ ���  
� ¬  


 � � 22 ���� �R=$�>�� <��� , �� �G���EI� I⁄ u w G� 1 ' G�I|C � �� |Ix�$�����EI� I⁄   
�

' b «G����EI� I⁄ log�G� �� ��G� �� �� ¬  

 � � 22 R>���� � <��� , �� �G��EI G����EI� I⁄

' b «G����EI� I⁄ log�G� �� ��G� �� �� ¬   .       �21� 

and  

u �@� $E>��\� G� �@� �G 
�


 \� ��� ����� � u @� $E>��G� �@� �G   
�

' b «u @� $��  |C � �� |IG���EI� I⁄ ���  
� ¬  

Using (5), we obtain 

2 �@� $E>��\� G� e�: eB �  
 �EII ���� �R> a�A: ,A: �B:��� G����EI� I⁄ '
b wB::����� �⁄ � ¡�B: d: ��B: d: �� x   .       �22� 

(19), (20), (21) and additional integral estimates of the 

same type provide us with the expansion 

u ���@� �$��G� ��@� �G 
Ω 
    � � 22 G����EI� I⁄ �RI���� ��

' 2R>���� � <��� , �� �G��EI � R� ∆���� �G�I ¯
' b wR� ' 1G�� ' log�G� �� ��G� �� ��' 1�G� �� �I       ���   � 
 3� x  .         �23� 

We note that 

u ���@� �$E>��Y� G� ��@� �G     
Ω 
 u � {@� $E>�� 

Ω

' b6\� $E>�� ' @� $EI��\� ;| Y� G� ��@� �G     

 u �@� $E>��Y� G� �@� �G     

Ω

� u �@� $E>��Y� G� �\� �G     
Ω

� b cu @� $E>��|Y� | 
Ω

\� f 


 u ��@� �$E>��Y� G� �@� �G     
Ω

� b ~G����EI�|Y�|aU9 �G� ��I���EI� I⁄ cu @� ����EZ 
Ω

f���I� I⁄ �
' b «G����EI�|Y�|aU9 cu @� I� ��EI�⁄ 

Ω

f���I� �I��⁄ ¬ 

Using (15) we find 

2 ���@� �$E>��Y� G� ev�: eB    
 Ω 2 �@� $E>�� Y� G� e�: eB ' Ω
b �B::������ |�:|°U9 

�B: d: ���
��� � ' b cG�:������ |Y�|aU9 � >�B: d: ���� ���  � �
6�  '    � ¡�B: d: ��B: d: �F ���  � 
 6� ' >

�B: d: ���
��� ��� � � 6�¯f       

(24) 

We also have, using Remark 4 
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u ��@� �$E>��Y� G� �@� �G 
Ω


 G����EI�I R=� u �@� $E> Y� G� �@� �G     
Ω' u � c@� $E>�� 

Ω

� R=�G����EI�I @� $E>| Y� �@� �G

 b c� u � log�1 

Ω' G� I|C � �� |I�@� $|Y� |    x 

whence 

2 ��@� �$E>��Y� G� e�: eB    
 Ω b {�|Y�|aU9 | 
b���.                                (25) 

Noticing that in addition G� ev�: eB 
 b�@� � and 

u @� $E>�� |Y� |I   
 
Ω

b {G����EI� I⁄ |Y�|aU9I |.                    �26� 

u |Y� |$��@�    
 
δ�|�: | b {G����EI� I⁄ |Y�|aU9$�>|.                 �27� 

(18), (23), (24),(25), (26), (27) and Lemmas 3 and 5 prove 

Proposition 6. 

We are know able to prove the theorem. 

Proof of Theorem 1 

Arguing by contradiction, let us suppose that ����  has a 

solution 	�  as stated in the theorem. From Proposition 6, 

we have 

X�R> a�A: ,A: �B:��� � X� ST�� ∆7�A: �7�A: �B:� ' X�RI� 
 � ~� ' >B:� '
                                    k >�B: d: ���� ��� �  4�>B: d:       ��� � 
 4� %�  (28) 

Notice that  <��� , �� �~���EI  if �� . 0 as � . 0  and  <��� , �� �  R � 0  as � . 0  if  �� ² 0 as  � . 0  . 

For   � 
 3 , it follows from (28) that 

R> <��� , �� �G� ' RI� 
 � w� ' 1G� x 

which is a contradiction. 

For   � 
 4  it follows from (28) that 

R> <��� , �� �G�I � R�16 ∆���� ����� �G�I ' RI� 
 b w� ' 1G�I ' 1�G� �� �Ix 

which is a contradiction with assumption ����   of the 

theorem. 

For   �  5   , it follows from (28) that 

� R��I ∆���� ����� �G�I ' RI� 
 b w� ' 1G�I x 

also leads to a contradiction with assumption �iii�  . 
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