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Abstract: We research the power of the propositional proof system R(lin) (Resolution over Linear Equations) described 

by Ran Raz and Iddo Tzameret. R (lin) is the generalization of R (Resolution System) and it is known that many tautologies, 

which require the exponential lower bounds of proof complexities in R, have polynomially bounded proofs in R (lin). We 

show that there are the sequences of unsatisfiable collections of disjuncts of linear equations, which require exponential 

lower bounds in R (lin). After adding the renaming rule, mentioned collections have polynomially bounded refutations. 
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1. Introduction 

The classical propositional calculus has an underserved 

reputation among logicians as being essentially trivial, but 

very natural problem of propositional proof complexity 

presents some of the most intriguing problems in modern 

logic. 

One of the starting points of propositional proof 

complexity is the paper of Cook and Reckhow [5], where 

they formalized propositional proof systems as polynomial-

time computable functions, which have as their range the 

set of all propositional tautologies. In the paper Cook and 

Reckhow also observed a fundamental connection between 

lengths of proofs and the separation of complexity classes: 

they showed that there exists a propositional proof system, 

which has polynomial-size proofs for all tautologies (a 

polynomially bounded proof system, which is called super 

system), iff the class NP is closed under complementation. 

From this observation the so called Cook-Reckhow 

programme was derived, which serves as one of the major 

motivations for propositional proof complexity: to separate 

NP from coNP (and hence P from NP) it suffices to show 

super-polynomial lower bounds to the size of proofs in all 

propositional proof systems. 

Although the first super-polynomial lower bound to the 

lengths of proofs had already been shown by Tseitin in the 

late 60’s for the resolution [9], and therefore the resolution 

system is not a super system, but resolution system is one 

of the most frequently used systems for automated theorem 

proving. The main attractive feature of the resolution 

method is its single inference rule. Due to the popularity of 

resolution, it is natural to consider extensions of resolution 

that can overcome its inefficiency in providing proofs of 

counting arguments. Now there are many proof systems, 

which are generalizations of Resolution: Res(k) 

(Resolution with bounded conjunction) introduced in [6], 

SR (Resolution with substitution) introduced in [4], R(lin) 

(Resolution over Linear Equations) introduced in [8] etc. 

Our paper investigates some additional properties of 

R(lin) for which in [8] is proved, that many of the “hard” 

provable in R outstanding examples of propositional 

tautologies (contradictions) have polynomially bounded 

proofs in R(lin). 

It is known that some of valid statements (tautologies) 

can be presented in various forms: varieties of disjunctive 

normal form (DNF), conjunctive normal form (CNF), 

systems of linear unequations, collections of disjuncts of 

linear equations etc. 

We show that there are the sequence of tautologies, two 

presentations of negation of which (one as the systems of 

disjuncts of linear equations, based on CNF and the other 

also as the unsatisfiable collections of disjuncts of linear 

equations) are “hard” refutable in R(lin). We introduce the 

proof system R(lin)+renaming and show, that the second 
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contradictionary collections have polynomially bounded 

refutations in it. 

The paper is organized as follows: after preliminaries, 

given in Section 2, in Section 3 we investigate the 

refutations of mentioned “bad” collections in R(lin), and in 

Section 4 we introduce the proof system R(lin)+renaming 

and give the polynomially upper bound for the second 

collections of disjuncts of linear equations. Conclusion is 

given in Section 5. 

Note that the proof systems considered in this paper 

intend to prove the unsatisfiability over 0,1 values of 

collections of disjunctions of linear equations. In other 

words, proofs in such proof systems intend to refute the 

collections of clauses, which is to validate their negation, 

therefore we shall sometimes speak about refutations and 

proofs interchangeably. 

2. Preliminaries 

We will use the current concept of the unit Boolean cube 

(En), a propositional formula, a tautology, a proof system 

for Classical Propositional Logic (CPL) and proof 

complexity. 

By |φ| we denote the size of a formula φ (or some its 

presentation), defined as the number of all variable entries. 

It is obvious that the full length of a formula, which is 

understood to be the number of all symbols or the number 

of all entries of logical signs, is bounded by some linear 

function in |φ|. 
A tautology φ is called minimal if φ is not an instance of 

a shorter tautology. 

We use the following proof systems. 

2.1. Resolution System 

Let us describe the resolution refutation system (R) 

following [8]. A clause is a disjunction of literals (variables 

or negated variables). A conjunctive normal form (CNF) 

formula is a conjunction of clauses. 

Resolution is complete and sound proof system for 

unsatisfiable CNF formulas. Let C and D be two clauses 

containing neither x� norx�� . The resolution rule allows one 

to derive C � D from C � x� and D � x��. . 
The weakening rule allows deriving the clause C � D 

from the clause C for any two clauses C, D. 

Definition 1 (Resolution) A  resolution proof of the 

clause D from a CNF formula K is a sequence of clauses 

D1, D2, Dl such that: 

1. Each clause Dj is either a clause of K or can be 

obtained from two previous clauses in the sequence using 

the resolution rule or weakening rule. 

2. The last clause Dl = D. 

A resolution refutation of a CNF formula K is a 

resolution proof of the empty clause from K (the empty 

clause stands for FALSE, that is no value satisfies to the 

empty clause). 

2.2. Resolution over Linear Equations 

Let us describe R(lin) system following [8]. R(lin) is an 

extension of well-known resolution, which operates with 

disjunction of linear equations with integer coefficients. A 

disjunction of linear equations is of the following form 


��
���� � … � ��
���� �  ��
��� � 

� 
��
���� � � �  ��
���� �  ��
���, 
where t ≥ 0 and the coefficients ��
��

 are integers (for all 0 ≤ 

i ≤ n 1 ≤ j ≤ t). We discard duplicate linear equations from 

a disjunction of linear equations. Any CNF formula can be 

translated into a collection of disjunctions of linear 

equations directly: every clause � ��� ��  � � ���� ��  (where 

I and J are sets of indices of variables) involved in the CNF 

is translated into the disjunction � 
�� � 1�� ��  � � 
�� �� ��0�. For a clause D we denote by "#  its translation into a 

disjunction of linear equations. It is easy to verify that any 

Boolean assignment of the variables x1, …, xn satisfies a 

clause D iff it satisfies "#. 

As we wish to deal with Boolean values, we augment the 

system with axioms, called Boolean axioms:  

(xi = 0) � (xi = 1) for all i � $n&. 
Axioms are not fixed: for any formula φ we obtain ¬φ, 

and then we obtain R (lin) translation of CNF of ¬φ. We 

also add Boolean axioms for each variable of φ. 

Definition 2 (R (lin)). Let K =  '(�, … , ()*  be a 

collection of disjunctions of linear equations. An R(lin)-

proof from K of a disjunction of linear equations D is a 

finite sequence D1, …, Dl of disjunctions of linear equations 

such that Dl = D and for every + � $,&, either Di = Kj for 

some - � $m&, or Di is a Boolean axiom (xh = 0) � (xh = 1) 

for some / �  $n& , or Di was deduced by one of the 

following R(lin)-inference rules, using Dj,Dk  for some j, k 

< i. 

Resolution. Let A,B  be two disjunctions of linear 

equations (possibly the empty disjunctions) and let L1, L2 

be two linear equations. From A � L1 and B � L2 it is 

derived A � B � (L1 + L2) (+resolution) or A � B � (L1 - L2) 

(-resolution). 

Weakening. From a disjunction of linear equations A 

derive A � L, where L is an arbitrary linear equation. 

Simplification. From A � (0 = k) derive A, where A is a 

disjunction of linear equations and k ≠ 0. 

An R(lin) refutation of a collection of disjunctions of 

linear equations K is a proof of the empty disjunction from 

K. Raz and Tzameret showed that R(lin) is a sound and 

complete Cook-Reckhow refutation system for 

unsatisfiable CNF formulas (translated into unsatisfiable 

collection of disjunctions of linear equations). 

Really, if we use the “- resolution” rule and 

“simplification” rule (instead of resolution rule) to two 

disjunctions of linear equations, which are above described 
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translations from clauses of literals C � �� and D � �0�  , then 

we obtain the R(lin)-proof. 

2.3. Proof Complexity, Polynomial Simulation  

In the theory of proof complexity two main 

characteristics of the proof are: t – complexity, defined as 

the number of proof steps, and ℓ– complexity, defined as 

total number of proof symbols. Let Φ be a proof system 

and φ be a tautology. We denote by 12Φ(ℓ2Φ ) the minimal 

possible value of t – complexity (ℓ– complexity) for all 

proofs of tautology φ in Φ. 

Let Φ1 and Φ2 be two different proof systems. Following 

[5] we recall 

Definition 3 Φ2 p-t-simulates (p-ℓ-simulates) Φ1, if there 

exists a polynomial p () such that for each formula φ, 

derivable both in Φ1 and Φ2  12Φ3  ≤ p (12Φ4) (ℓ2Φ3  ≤ p(ℓ2Φ4)). 

Definition 4 the systems Φ1 and Φ2 are p-t- equivalent 

(p-ℓ-equivalent) iff Φ1 p-t-simulates (p-ℓ-simulates) Φ2 and 

Φ2 p-t-simulates (p-ℓ-simulates) Φ1. 

Definition 5 the system Φ2 has exponential ℓ-speed-up (t-

speed-up) over the system Φ1, if Φ2 p- ℓ -simulates (p-t-

simulates) Φ1, and there exists a sequence of such formulas 

φn, that ℓ 1

n

Φ
ϕ  > 267ℓ89:3 ; 

 (t 1

n

Φ
ϕ  >267�89:3;

).
 

It is known that PHPn (the Pigeonhole Principal 

Tautologies), Tsmodp(n) (Tseitin modp Tautologies), 

Cliquen,k (the Clique-coloring Principle Tautologies) 

require exponential t – complexities and ℓ– complexities in 

R [7]. 

Basing on presentation of mentioned formulas as some 

collections of disjuncts of linear equations and using in 

addition the “+ resolution” rule, authors of [8] show, that 

they have polynomially bounded proof-complexities in 

R(lin). 

On the next section we investigate the sequence of 

tautologies, CNF of negations for every of which, 

translated into unsatisfiable collection of disjuncts of linear 

equations, as well as some other presentations of these 

contradictions also as collection of disjuncts of linear 

equations, require exponential proof-complexity in R(lin). 

This fact points on some weakness of R(lin). 

3. Sample of Hard-Determinable 

Tautologies 

In [1] the following notes were introduced. 

We call a replacement-rule each of the following trivial 

identities for a propositional formula ψ: 

0 & ψ = 0, ψ & 0  = 0, 1 & ψ = ψ, ψ & 1 = ψ, 

0 � ψ = ψ, ψ � 0  = ψ, 1 � ψ = 1, ψ � 1 = 1, 

0 ⊃ ψ = 1, ψ ⊃ 0 = ψ�, 1 ⊃ ψ = ψ, ψ ⊃ 1 = 1, 

0> = 1, 1> = 1, ψ? = ψ.  

Application of a replacement-rule to some word consists in the 

replacing of some its subwords, having the form of the left-hand 

side of one of the above identities, by the corresponding right-

hand side. 

Let φ be a propositional formula, P = 'p�, pA, … , pB* be the set 

of all variables of φ, and let 

P‘= Cp�4 , p�3 , … , p�DE (1 ≤ j ≤ m) be some subset of P. 

Definition 6 Given σ = 'F�, … , F)* � E
m
, the conjunct 

K
σ
 = GH�4I4 , H�3I3 , … , H�JIJK  is called φ-1-determinative (φ-0-

determinative) if assigning σj (1 ≤ j ≤ m)  to each H�L  and 

successively using replacement-rule, we obtain the value of 

φ (1 or 0) independently of the values of the remaining 

variables. 

In further consideration the following tautologies 

(Topsy-Turvy Matrix) play key role 

TTMB,O  �  �  
I4,…,I9� � P9 &�R�) � ���IS��R�    

(n ≥ 1, 1 ≤ m ≤ 2
n
 -1). 

For all fixed n ≥ 1 and m in above-indicated intervals every 

formula of this kind expresses the following true statement: given 

a 0,1-matrix of order n x m we can “topsy-turvy” some strings 

(writing 0 instead of 1 and 1 instead of 0) so that each column will 

contain at least one 1. 

Definition 7 We call the minimal possible number of 

variables in a φ-determinative conjunct the determinative 

size of φ and denote it by d(φ). 

Obviously, d(φ) < |φ|  for every formula φ, and the 

smaller is the difference between these quantities, the 

“harder” can be considered the formula under study. 

Definition 8 Let φn (n ≥ 1) be a sequence of minimal 

tautologies. If for some n0 there is a constant c such that 

∀ n ≥ n0  (d(φn))
c
 ≤ |φB| < (d(φn))

c+1
 

then the formulas φ�U , φ�UV�, φ�UVA, … are called hard-

determinable. 

Let φn = TT MB,AWX�  for all n ≥ 1. Taking into 

consideration that |φB| = n(2
n
-1)2

n
 and d(φn) = 2

n
, it is not 

difficult to see, that φ3, φ4, … are hard-determinable.  

Note that the formulas PHPn and “Cliquen,k” are not 

hard-determinable for all values of n since d(PHPn) = 2 and 

d(“Cliquen least,k”) = 3.It is not difficult to see that the 

formulas Tsmodp(n) are also not hard-determinable. 

In [3] it is proved that CNF of ¬TTMn,m has at least 2
m

 

disjuncts, every of which contains m literals,  therefore we 

have  

1Y9Z  > 2A9X� (at least 2A9X�   axioms),  
ℓY9Z  > (2�-1) 2A9X�. 

If we take above described translation of CNF of ¬φn 

into collections of disjuncts of linear equations, then the 

number of axioms, which must be used in R(lin) refutation 

is at least 2A9X�, therefore 

1Y9Z
\���
 > 2A9X�,  ℓY9Z
\���

 > (2�-1) 2A9X�. 
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But we can consider the other presentation for CNF of 

¬φn also as unsatisfiable collections of disjuncts of linear 

equations. 

So, ¬TTMn,m expresses the following contradictionary 

statement: 

There exists a 0, 1 – matrix of order n x m (n ≥ 1, 1 ≤ m 

≤ 2�-1) such that by every “topsy-turvy” some strings,  at 

least one column consists only of 0. 

Or the equivalent statement: 

There exists a 0, 1 – matrix of order n x m (n ≥ 1, 1 ≤ m 

≤ 2�-1) such that by every “topsy-turvy” some strings,  at 

least for one column the sum of elements  is 0.  

The statement can be presented by formula  

TTMB,O = &
I4,…,I9� � P9 � 7∑ ^7���IS;��R� � 0;)�R� , 
Where ^7���IS; = _���              F� � 11 ` ���     F� � 0a . 

This presentation is the collection of disjuncts of linear 

equations already. After several arithmetical 

transformations we have more simple equations. 

Let us consider the collection of linear equations for 

¬TTM′A,b. 

cdd
e
ddf

��� � �A� �  0 � ��A � �AA �  0 �  ��b �  �Ab �  0��� �  1 `  �A� �  0  �  ��A �  1 ` �AA � 0                                                                  �  ��b �  1 ` �Ab �  01 `  ��� �  �A� �  0  �  1 `  ��A � �AA �  0                                                                  �  1 ` ��b �  �Ab �  01 ` ��� �  1 ` �A� �  0  �  1 ` ��A �  1 ` �AA � 0                                          �  1 `  ��b �  1 `  �Ab �  0
a 

or 

ce
f��� �  �A� �  0 �  ��A � �AA � 0 �   ��b �  �Ab �  0�A� `  ��� � 1 �  �AA ` ��A � 1 �  �Ab `  ��b �  1 ��� `  �A� � 1 � ��A ` �AA � 1 � ��b `  �Ab �  1��� �  �A� �  2 �  ��A � �AA � 2 � ��b �  �Ab �  2

a    
1� 

It is not difficult to see that the system (1) is unsatisfiable. 

As R(lin) axioms for refutation of collection (1) we must 

take each of linear equations from collection (1) and for 

every variable ���  (i = 1,2; j = 1,2,3) the axiom 

���  = 0 � ���  = 1 

In order to refute collection (1) we must obtain from 

mentioned axioms the equation 0 = k for some integer k, 

therefore after some steps of refutation we must obtain 

shorter unsatisfiable equations. It is not difficult to see that 

every application of inference rule to mentioned axioms 

gives either satisfiable equation, or longer  equation, hence 

in order to refute collection (1) we must use the following 

statement (Lemma 4 from [8]) 

Let K be a collection of disjunctions of linear equations, 

and let z abbreviate some linear form with integer 

coefficienst. Letg�, gℓ be ℓ disjunctions of linear equations. 

Assume that for all + � $ℓ& there is an R (lin) derivation of 

Ei from z = ai and K with size at most s where a1, …, �ℓ  

are distinct integers. Then, there is an R(lin) proof of � g�ℓ�R�  from K and (z = a1) � … � (z = �ℓ ), with size 

polynomial in s and ℓ. 

In particular, if we can prove some contradiction from 

some collection K and xi = 0 as well as from K and xi = 1, 

then we can prove the contradiction from K and axiom xi = 

0 � xi = 1 of R(lin). 

The use of this statement “allows to substitute” 0 or 1 

instead of variable xi in collection K, but in order to prove 

contradiction from collection (1) we must do the 

substitution at least instead of 3 (m in common case) 

variables. 

This statement is true for every n ≥ 1 and m from 

interval $1, 2B ` 1& , therefore if we denote by ¬ φ′B  the 

collections of ¬TTM′B,AWX� (corresponding to collection (1) 

for φ′A), we have  

ℓφ′9
Z
\���

 ≥ 1φ′9
Z
\���

 ≥ 2A9X�. 

So, both representations of hard-determinable tautologies φB  as collections of disjuncts of linear equations require 

exponential proof complexities in R(lin). 

4. Refutation in System R (lin) +Renaming 

Here we add some new inference rule to R(lin) and show 

that collections, constructed by analogy to (1) for  

¬φ′B = ¬TTM′B,AWX� have polynomially bounded proofs in 

supplemented system. 

Renaming rule is given by figure β = 7hL4,hL3 ,…,hLihS4,hS3,…,hSi ; [2] 

and application of this rule to some disjuncts of linear 

equations consists in the replacing of variables ��j (1 ≤ s ≤ 

k) everywhere by the variables ��j (1 ≤ s ≤ k) (note that the 

renaming rule is not sound). 

y R(lin)+renaming we denote the system R(lin), the set 

of inference rules of which is augmented by renaming rule. 

For simplification of the proof of our main results we 

introduce some notations and prove some auxiliary 

propositions. Given n ≥ 1 and 1 ≤ j ≤ 2B-1 by �kl  we denote 

the sequence of variables ��� , �A� , …, ��� ,  and for the 

following renaming rule we introduce the notations 

β� �  m ��n, ��n, … ,  ��n�An, �bn, … ,  �A9X�o p 

q 
β� �  r �kl , �kl , … ,  �kn,  �kn, … ,  �kn��n, �An, … , �kX�n , �kV�n , … ,  �A9X�o s for  2 w j w 2B ` 1  

q 
βA9X� �  m �A9X�o ,  �A9X�o , … ,  �A9X�o��n, �An, … ,  �A9XAo p. 
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Given Fy = 'F�, … , F�* � E
n
, 1 ≤ i ≤ n and 1 ≤ j ≤ 2B-1   ∑ ^
���IS���R�  = 0 from ¬ φzB  = ¬ TTMzB,AWX� , can be   

presented as {�I: ��4� + ��3� + … + ��i� - ��i|4� - … - ��9� 

= k, where k (0 ≤ k ≤ n) is the number of “1” in Fy. 

Let for every π (1 ≤ π ≤ 2B -1) F}n  be the binary n-

component presentation of integer π, then the unsatisfiable 

collection for φzB is the system of the following disjuncts 

of linear equations: 

"� : {�IUn
 � {AIUn

 � … � {A9X�IUn
 

"A : {�I4n
 � {AI4n

 � … � {A9X�I4n
                  ((�) q "A9 : {�I39~4o

 � {AI39~4o
 � … � {A9X�I39~4o

 

Theorem. There exists polynomial p() such that  1�9Z
\���V ����)���
 ≤ ℓ�9Z
\���V ����)���

 ≤ p(|(�|). 
Proof. The first 2B-1 step for the refuting of (�  is the 

following: the applications of renaming rules β}  to "}  

(1 ≤ π ≤ 2B-1) give us the collection 

{�IUn
, {AI4n

, … , {A9X�I39~3o
  and  "A9                   (2) 

The next steps are valid in R(lin). 

Now let us prove 3 Lemmas. 

Lemma 1. If some disjunct of linear equations A is 

refutable in R(lin) with the size at most s, then arbitrary 

disjunct of linear equation B  is proved in R(lin)  from A � 

B with the size polynomial in s and |B|. 
Really, repeating all steps of some contradiction (0 = k) 

refutation from A to A � B, we obtain (0 = k) � B, and 

after using simplification rule we prove B. 

Lemma 2. Given ℓ ≥ 1 and c ≥ 1 the equation A: 2x1 + 

2x2 +…+ 2xℓ = 2ℓ + c has refutation in R(lin) with size 2�
ℓ�. 
From xi = 0 (xi = 1) 1 ≤ i ≤ ℓ using “+resolution”, we 

obtain 2xi = 0 (2xi = 2). 

Using “-resolution” to A and 2x1 = 0 (2x1 = 2), we obtain 

A0 : 2x2 + … + 2xℓ = 2ℓ + c 

(A1 : 2x2 + … +  2xℓ = 2(ℓ-1) + c) 

By mentioned Lemma 4 from [8] from A and x1 = 0 ∨ 

x1 = 1 we prove 

A0 ∨ A1 

Similarly from A0 ∨ A1 and x2 = 0 ∨ x2 = 1 we obtain 

A00 ∨  A10 ∨  A01 ∨  A11, where A00 (A10) –is “-

resolution” result from A0 (A1) and 2x2 = 0, A01 (A11) – is 

“-resolution” result from A0 (A1) and 2x2 = 2. 

Doing similar steps for all other variables, we prove 

Lemma 2. 

Lemma 3. Given n ≥ 1 and 0 ≤ k ≤ n the collection 

 x1 + … + xk – xk+1 – … – xn = k 

 x1 + … + xk + xk+1 + … + xn = n 

has R(lin) refutation with size 2�
AW�. 
Proof follows from Lemma 2 after using “+resolution” to 

both equations of given collection. 

In order to finish the proof of Theorem we must use 

“+resolution” to every equation {�I�n
 and j-th equation 

from "A9 , and then the Lemmas 1 – 3. Taking into 

consideration, that  |(�| is O (n 2
n
 (2

n 
- 1)), we prove the 

theorem. 

Corollary. The system R(lin)+renaming has exponential 

speed-up over the system R(lin). 

5. Conclusion 

We show that the strong proof-system R(lin), in which 

many of the outstanding examples of propositional 

tautologies have polynomially bounded proofs, is not super 

system: there exists a sequence of tautologies, which 

require proof complexity exponential in size of tautologies. 

The introduced proof system R (lin) +renaming is 

stronger than R(lin): mentioned sequence of tautologies has 

polynomially bounded proof in this system. 
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