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Abstract: Krylov-Bogoliubov-Mitropolskii method is modified and applied to certain damped nonlinear systems with
slowly varying coefficients. The results obtained by this method show excellent coincidence with those obtained by nu-
merical method. The method is illustrated by an example.
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1. Introduction

The Krylov-Bogoliubov-Mitropolskii (KBM) method
[1-3] is well known in the theory of nonlinear oscillations.
The method was originally developed by Krylov and Bogo-
liubov [1] for obtaining the periodic solution of non linear
systems with small nonlinearities. Then the method was
amplified and justified by Bogoliubov and Mitropolskii [2].
Mitropolskii [3] has extended the method to nonlinear dif-
ferential system with slowly varying coefficients. On the
other hand, Popov [4] extended the method to nonlinear
damped oscillatory systems with constant coefficients.
Murty, Deekshatulu, and Krisna [5] investigated an over
damped nonlinear system using Bogoliubov’s method.
Murty [6] presented a unified KBM method for solving
second order nonlinear systems which cover the un-damped,
damped and over-damped cases. Shamsul [7] has presented
a unified method for solving an n-th order differential equ-
ation (autonomous) characterized by oscillatory, damped
oscillatory and non-oscillatory processes. Hung and Wu [§]
obtained an exact solution of a differential system in terms
of Bessel’s functions where the coefficients varying with
time in an exponential order. Roy and Shamsul [9] found an
asymptotic solution of a differential system in which the
coefficient changes in an exponential order of slowly vary-
ing time. Bojadziev and Edwards [10] studied some damped
oscillatory and purely non-oscillatory systems with slowly
varying coefficients. Recently Pinakee et.al [11-12] has

presented extended KBM method (by Popov [4]) for solving
nonlinear problems in which the coefficients change slowly
and periodically with time. In accordance to Pinakee et.a/
[11-12] observation, [10]’s solution is not useful for strong
damping effects. The aim of this article is to find an ap-
proximate solution for strong damping effect with varying
coefficients in where [10]’s solution is unable to give desired
results.

2. Materials and Method

Let us consider the nonlinear differential system

X+ 2k(D% + 0’ (1)x = —ef(x,x,1), T =& (1

where the over-dots denote differentiation with respect to
t, € isasmall parameter, k = O(&), fis a given nonli-
near function and &/(7) is known as frequency. For & = ()
and T =T,=constant, kK(7,)*iaXT,) aretwo eigen
values of the unperturbed equation of (1) and has the solu-
tion

x(2,0) = aye ™"

cos(w, (Tt +@,)., (2
where @, and ¢0 are arbitrary constant and 7

represents the value of 7 when £ =0.

When & Z (0 we seck a solution in accordance with the
KBM method, of the form
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x(t,e)=acosd +eu (a,p,1)+¢’ 3)
where @ and ¢ satisfy the equations

a=-k(r)+ed,(a,p,T)+ & .., @
@=w (1)+eB,(a,p.T)+ &%,

Confining attention to the first few term 1, 2...m in the
series expansion of (3) and (4), we evaluate functions

u, A1 and B, suchthat ¢ and ¢ appearing in (3) and (4)
satisfy (1) with an accuracy of £”*!. In order to determine
these unknown functions it was early assumed by Murty [6],
Shamsul [7] that the functions %, exclude all fundamental
terms, since these are included in the series expansion (3) at
order £°.

Now differentiating (6) twice with respect to t, substitut-
ing for the derivatives X , x and x in (1), utilizing relation (4)
and comparing the coefficients of £, we obtain

5]
ka—A, - kA
w, O sin ¢ oa ! " |cosd
-2w,aB,
d
-ka*—B
-sin ¢ da ' |+
+2W A, (5)
P 3 ) —k(Xai
(—ka—+—] u, +2k a u,
da  0¢ +i+w2
0¢
=-f9(a,9,1),

where £ = f(x,,%,) and X, = cos@

It is assumed that both f " can be expanded in Fourier

series [7]
f<°):zm:Fn(a)cos ng+ G, (a)sin ng, (6)
n=0
and

u,(a.9)=U,(a)+> U,(a)cosnd

+V,(a)sinn¢

(7

Substituting the expression for f " and u, in(8), we

obtain the following equations for A4, B, and u, as

k'a - ka Z‘Z‘ +kA, -2w,aB, = - F, ®)

5i- 6

—w,a - 2w, A4, + ka® —-
oa

and

(10)
= -F, —Z F (a)cosnd + G (a)sinnd

n=2

The particular solution of (8)-(10) gives three unknown
functions 4,, B, and u, which complete the determina-
tion of the first order Bojadziev and Edwards [10] solution
of (1). It is clear that both functions A, and B, is inde-

pendent of phase variable ¢ and u, excludes all first
harmonic terms. In accordance to [7] assumption 4, B,

and u, satisfy the following equations (instead of (8)-(10))

a4,

k'a —kaa—a+kA1 -2w,aB, = —F,cos*(gp-wt) (11)

-wa-2w 4, +ka’ % =-G, cos’(p-ax) (12)

U—kai+i+kj +m§]u1
da 00
= —F, - (F, cos ¢ + G, sin ¢)sin’ (¢ - wt) = (13)

Zw: F (a)cosnd +G (a)sinnd

The particular solution of (11)-(13) gives three unknown
functions 4,, B, and u, . Thus the determination of the first

order solution is clear. In this case 4, and B, depend on

both & and ¢ and u, is not independent of first har-

monic terms.
Example: We consider a second order nonlinear system
with constant and slowly varying coefficient

¥4 2k(T)X + aXT)x = —&x°, (14)

Here f=x*, f¥ =a’cos’a :%03(3c0s(p+cos3§0); S0

. 3 1 o
that non-zero coefficients are F| = Z,F3 = 1 Substituting

the values pf £} and F, into (11)-(13) and solving them,
we obtain

r 3 2
A :_k0(+3k0( cos“ ¢,

! 2w, 8w? ’
r 2 2 (15)
-y, 3w,0 cos” §,
2w 8w’

and
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_3a’(-cos @+ w,sin @/k)sin * @,
B 16 ? *

1

a’(—(k* - 2w})cos 3¢ + 3kw, sin 3¢ (16)
16 w? (k> + 4wl)
k' 3ka’
A== o a2 ’
w, 8w
/ : a7
-wW, , 3w,
B, !
2w, 8w
and
_a’(—(k* =24y cos3@+ 3ka, sin3@ %)

“ 160 (k* +4a)

Now substituting the functional values of A1 , B, from
(15) into (4), we obtain

k'a + 3ka’ cos * @,

a =-k(rya - 5 s
w, 8w
r 2 2 (19)
¢ - w(r) - w, + 3w,a " cos @,
2w, 8w’

Therefore, the first order solution of the equation (14) is

x(t, &) =acos@+Eu, (20)

where @ and ¢ are the solution of the equation (19)

u, is given by (16 ). Substituting the values of 4,, B,
from (17) into (4) and solving them, [10] found the solution
of (4) similar to (19). In this paper, we have used the
Runge-Kutta (fourth order) method. Numerically, it is ad-

vantageous; a large step size can be used in the integration
(see [13] for detail).

3. Results and Discussions

In order to test the accuracy of an approximate solution
obtained by a certain perturbation method, one compares the
approximate solution to the numerical solution (considered
to be exact). With regard to such a comparison concerning
the presented KBM method (by Popov [4]) of this article, we
refer to the works of Murty [6] and Shamsul [7]. In our
present paper, for different damping forces, we compare
solution (20) and [10]’s solution.

B
First of all, for damping force k(1) = 0.5e_57 and for

&=.1, X is calculated by (20) with initial conditions
[x(0) =1.00000 x =-0.00000 ]. Then x(&,f) has been
computed by [10]’s solution. Finally the numerical solution
has been obtained and percentage error has been calculated.
All the results are shown in Table 1. From Table 1 it is seen
that errors of the results obtained by solution (20) and [10]’s
solution are less than 1% and on an average percentage
errors of [10]’s solution are less than those computed by

solution (20). Secondly, for damping force (z) = 707, >

and for £ =.1, X is calculated by (20) with initial condi-
tions [x(0) =1.0000( % =-0.00000]. The results are given in
Table 2. Table 2 shows that percentage errors of solution (20)
occur in an order of 1% (except at (¢t =3 and ¢ =8),
while errors of [10]’s are many times greater than 1% and
almost twice of those obtained by solution (20). If the
damping force is increased and strong, solution (20) shows a
good coincidence with the numerical solution. Contrary,
errors of [10]’s solution increase.

Table 1
t X X E% XpE Ep:%
0.0 1.000000  1.00000 0.0000 1.000000  0.0000
1.0 0.642193 0.641101 0.1703 0.641957 0.1335
2.0 0.136156  0.134311 1.3744 0.134611 0.2241
3.0 -0.140639 -0.141801 -0.8195 -0.142327 0.3709
4.0 -0.192790 -0.192868 -0.0404 -0.193747 0.4558
5.0 -0.131988 -0.131299 0.5248 -0.132070 0.5872
6.0 -.050690 -0.049836 1.7136 -0.050253 0.8367
8.0 0.033573  0.033807 -0.6922 0.033981 0.5147
10 0.027473  0.027256  0.7962 0.027513  0.9429
Table 2

t X X,, E% X gp E %
0.0 1.000000  1.000000  0.00000 1.000000  0.00000
1.0 0.678614 0.677989  0.0922 0.684010 0.8881
2.0 0.265293  0.263317 0.7504 0.268888 2.1157
3.0 0.03068 0.031519 4.9145 0.034209 8.5345
4.0 -0.049626 -0.050305 -1.3498 -0.049713 -1.1768
5.0 -0.057106 -0.057181 -0.1311 -0.057548 0.6418
6.0 -0.039592 -0.039411 0.4593 -0.039994 1.4793
8.0 -0.007227 -0.007075 2.1484 -0.007350 3.8869
10 0.002924 0.002941 -0.5780 0.002932  -0.3060

4. Conclusion

Based on the works of extended KBM method an ap-
proximate solution of a second order nonlinear deferential
system with slowly varying coefficients has been found. In
this paper solution (20) gives satisfactory results for the
strong damping effect but Bojadzeiv and Edwards’s [10]
solution fail to give desire result.
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