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Abstract: Krylov-Bogoliubov-Mitropolskii method is modified and applied to certain damped nonlinear systems with 

slowly varying coefficients. The results obtained by this method show excellent coincidence with those obtained by nu-

merical method. The method is illustrated by an example. 
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1. Introduction 

The Krylov-Bogoliubov-Mitropolskii (KBM) method 

[1-3] is well known in the theory of nonlinear oscillations. 

The method was originally developed by Krylov and Bogo-

liubov [1] for obtaining the periodic solution of non linear 

systems with small nonlinearities. Then the method was 

amplified and justified by Bogoliubov and Mitropolskii [2]. 

Mitropolskii [3] has extended the method to nonlinear dif-

ferential system with slowly varying coefficients. On the 

other hand, Popov [4] extended the method to nonlinear 

damped oscillatory systems with constant coefficients. 

Murty, Deekshatulu, and Krisna [5] investigated an over 

damped nonlinear system using Bogoliubov’s method. 

Murty [6] presented a unified KBM method for solving 

second order nonlinear systems which cover the un-damped, 

damped and over-damped cases. Shamsul [7] has presented 

a unified method for solving an n-th order differential equ-

ation (autonomous) characterized by oscillatory, damped 

oscillatory and non-oscillatory processes. Hung and Wu [8] 

obtained an exact solution of a differential system in terms 

of Bessel’s functions where the coefficients varying with 

time in an exponential order. Roy and Shamsul [9] found an 

asymptotic solution of a differential system in which the 

coefficient changes in an exponential order of slowly vary-

ing time. Bojadziev and Edwards [10] studied some damped 

oscillatory and purely non-oscillatory systems with slowly 

varying coefficients. Recently Pinakee et.al [11-12] has 

presented extended KBM method (by Popov [4]) for solving 

nonlinear problems in which the coefficients change slowly 

and periodically with time. In accordance to Pinakee et.al 

[11-12] observation, [10]’s solution is not useful for strong 

damping effects. The aim of this article is to find an ap-

proximate solution for strong damping effect with varying 

coefficients in where [10]’s solution is unable to give desired 

results. 

2. Materials and Method 

Let us consider the nonlinear differential system 

2x 2 k ( ) x ( ) x f ( x , x , ),+ τ + ω τ = − ε τɺɺ ɺ ɺ  tετ =  (1) 

where the over-dots denote differentiation with respect to 

t, ε  is a small parameter, )(εΟ=k , f is a given nonli-

near function and )(τω  is known as frequency. For 0=ε  

and 0ττ = = constant, )()( 00 τωτ ik ±  are two eigen 

values of the unperturbed equation of (1) and has the solu-

tion  

))(cos()0,( 000
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tetx
tk

,    (2) 

where 0α  and 0ϕ  are arbitrary constant and 0τ  

represents the value of τ  when 0=ε . 

When 0≠ε  we seek a solution in accordance with the 

KBM method, of the form  
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Confining attention to the first few term 1, 2…m in the 

series expansion of (3) and (4), we evaluate functions 

11 , Au and 
1B such that αɺ  and φɺ  appearing in (3) and (4) 

satisfy (1) with an accuracy of 1+mε . In order to determine 

these unknown functions it was early assumed by Murty [6], 

Shamsul [7] that the functions 
1u exclude all fundamental 

terms, since these are included in the series expansion (3) at 

order 0ε . 

Now differentiating (6) twice with respect to t, substitut-

ing for the derivatives xɺɺ , xɺ  and x in (1), utilizing relation (4) 

and comparing the coefficients of ε , we obtain  
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where ),( 00

)0(
xxff ɺ= and φα cos0 =x  

It is assumed that both 
)0(f  can be expanded in Fourier 

series [7] 
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Substituting the expression for 
)0(f  and 

1u  in (8), we 

obtain the following equations for 
11 , BA  and 

1u  as  
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The particular solution of (8)-(10) gives three unknown 

functions
11 , BA and 

1u  which complete the determina-

tion of the first order Bojadziev and Edwards [10] solution 

of (1). It is clear that both functions 
1A  and 

1B  is inde-

pendent of phase variable φ  and 
1u  excludes all first 

harmonic terms. In accordance to [7] assumption 
11 , BA

and 
1u  satisfy the following equations (instead of (8)-(10)) 
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The particular solution of (11)-(13) gives three unknown 

functions
111 , uandBA . Thus the determination of the first 

order solution is clear. In this case 
1A  and  

1B  depend on 

both α  and φ  and 
1u  is not independent of first har-

monic terms. 

Example: We consider a second order nonlinear system 

with constant and slowly varying coefficient 

,)()(2 3xxxkx ετωτ −=++ ɺɺɺ        (14) 

Here 3xf = , );3coscos3(
4

1
cos 333)0( φφααα +==f  so 

that non-zero coefficients are 
4

1
,

4

3
31 == FF . Substituting 

the values pf 
1F  and 3F  into (11)-(13) and solving them, 

we obtain  
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Now substituting the functional values of
1A , 

1B  from 

(15) into (4), we obtain 
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Therefore, the first order solution of the equation (14) is  

1cos),( utx εφαε +=    (20) 

where α  and φ  are the solution of the equation (19) 

1u  is given by (16 ). Substituting the values of
1A , 

1B  

from (17) into (4) and solving them, [10] found the solution 

of (4) similar to (19). In this paper, we have used the 

Runge-Kutta (fourth order) method. Numerically, it is ad-

vantageous; a large step size can be used in the integration 

(see [13] for detail). 

3. Results and Discussions 

In order to test the accuracy of an approximate solution 

obtained by a certain perturbation method, one compares the 

approximate solution to the numerical solution (considered 

to be exact). With regard to such a comparison concerning 

the presented KBM method (by Popov [4]) of this article, we 

refer to the works of Murty [6] and Shamsul [7]. In our 

present paper, for different damping forces, we compare 

solution (20) and [10]’s solution.  

First of all, for damping force τ
τ 2

1.

5.0)(
−

= ek and for 

1.=ε , x  is calculated by (20) with initial conditions 

00000.1)0([ =x  00000.0−=xɺ ]. Then ),( tx ε  has been 

computed by [10]’s solution. Finally the numerical solution 

has been obtained and percentage error has been calculated. 

All the results are shown in Table 1. From Table 1 it is seen 

that errors of the results obtained by solution (20) and [10]’s 

solution are less than 1% and on an average percentage 

errors of [10]’s solution are less than those computed by 

solution (20). Secondly, for damping force τ
τ 2

1.

707.)(
−

= ek

and for 1.=ε , x  is calculated by (20) with initial condi-

tions 00000.1)0([ =x  00000.0−=xɺ ]. The results are given in 

Table 2. Table 2 shows that percentage errors of solution (20) 

occur in an order of 1% (except at ( 3=t  and 8=t ), 

while errors of [10]’s are many times greater than 1% and 

almost twice of those obtained by solution (20). If the 

damping force is increased and strong, solution (20) shows a 

good coincidence with the numerical solution. Contrary, 

errors of [10]’s solution increase.  

Table 1 

t  x  
nux  %E  BEx  %BEE  

0.0 1.000000 1.00000 0.0000 1.000000 0.0000 

1.0 0.642193 0.641101 0.1703 0.641957 0.1335 

2.0 0.136156 0.134311 1.3744 0.134611 0.2241 

3.0 -0.140639 -0.141801 -0.8195 -0.142327 0.3709 

4.0 -0.192790 -0.192868 -0.0404 -0.193747 0.4558 

5.0 -0.131988 -0.131299 0.5248 -0.132070 0.5872 

6.0 -.050690 -0.049836 1.7136 -0.050253 0.8367 

8.0 0.033573 0.033807 -0.6922 0.033981 0.5147 

10 0.027473 0.027256 0.7962 0.027513 0.9429 

Table 2 

t  x  
nux  %E  BEx  %BEE  

0.0 1.000000 1.000000 0.00000 1.000000 0.00000 

1.0 0.678614 0.677989 0.0922 0.684010 0.8881 

2.0 0.265293 0.263317 0.7504 0.268888 2.1157 

3.0 0.03068 0.031519 4.9145 0.034209 8.5345 

4.0 -0.049626 -0.050305 -1.3498 -0.049713 -1.1768 

5.0 -0.057106 -0.057181 -0.1311 -0.057548 0.6418 

6.0 -0.039592 -0.039411 0.4593 -0.039994 1.4793 

8.0 -0.007227 -0.007075 2.1484 -0.007350 3.8869 

10 0.002924 0.002941 -0.5780 0.002932 -0.3060 

4. Conclusion 

Based on the works of extended KBM method an ap-

proximate solution of a second order nonlinear deferential 

system with slowly varying coefficients has been found. In 

this paper solution (20) gives satisfactory results for the 

strong damping effect but Bojadzeiv and Edwards’s [10] 

solution fail to give desire result. 
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