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Abstract: Polynomial solution to the Dirichlet boundary value problem for the nonhomogeneous 3-harmonic equation in 

the unit ball with polynomial right-hand side and polynomial boundary data is constructed. Representation of the Green’s 

function of the Dirichlet boundary value problem in the unit ball in the case of polynomial data is found. 
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1. Introduction 

The classical Almansi representation [1] for a 

polyharmonic function ( )Q x  has the form 

2 2
0 1( ) ( ) | | ( ) | | ( ),s s

sQ x H x x H x x H x= + + +⋯    (1) 

where ( )kH x  are harmonic functions. This representation 

is successfully used to construct solutions to model 

boundary value problems for the biharmonic and 

polyharmonic equations. In numerous studies the Almansi 

representation is generalized to partial differential operators 

other than the Laplace operator (see, for example, [2-4]. In 

this paper, the Almansi representation (1) is first used to 

construct a solution of the homogeneous Dirichlet boundary 

value problem for the inhomogeneous 3-harmonic equation 
3 ( ) ( )u x Q x∆ =  (Section 2) and then to construct a solution 

of the full Dirichlet boundary value problem for the 

inhomogeneous 3-harmonic equation in the unit ball: 

3 ( ) ( ),u x Q x x∆ = ∈Ω ; 

| 0u f∂Ω = , 1
|

u
f

ν ∂Ω

∂ =
∂ , 

2

22
|

u
f

ν ∂Ω

∂ =
∂

, 

where { :| | 1}nx xΩ = ∈ <ℝ  and ν - is outside normal to 

∂Ω  (Section 3). 

To construct polynomial solution to a particular Dirichlet 

boundary value problem for the 3-harmonic equation by the 

traditional method (see, for example, [5; p.200]) with 

polynomial boundary data ( 0f , 1f  and 2f  - are the traces 

of polynomials of degree k ) the following scheme is used. 

Let ( )i
jG x , 1, , ij h= … , where 

3
(1 2 / ( 2))

3
i

i n
h i n

n

 + 
 


−
= +

− 
− (for example, the system 

from [6]) be a full system of orthonormal on the unit sphere 
n∂Ω ⊂ ℝ  homogeneous harmonic polynomials of degree 

i k≤ . Taking 3-harmonic polynomials of the form ( )i
jG x , 

2| | ( )i
jx G x  and 

4| | ( )i
jx G x  a solution of the Dirichlet 

boundary value problem is represented in the form  

2 4

0 1

( ) | | | | ( ).( )
ihk

i i i i
j j j j

i j

u x C D x E x G x

= =

= + +∑∑  

Unknown coefficients 
i
jC , 

i
jD , and 

i
jE  for each 

1, , ij h= … , and 0 i k≤ ≤  are easily defined from the 

algebraic system  

0( ) ( ) ,
i i i i
j j j jC D E G s f s ds

∂Ω
+ + = ∫  
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1( 2) ( 4) ( ) ( )
i i i i
j j j jiC i D i E G s f s ds

∂Ω
+ + + + = ∫  

( 1) ( 2)( 1) ( 4)( 3)i i i
j j ji i C i i D i i E− + + + + + +  

2( ) ( )
i
jG s f s ds

∂Ω
= ∫                 (2) 

because a determinant of this system is the Vandermound 

determinant [ , 2, 4]W i i i+ +  with factorial powers 

[ ] ( 1) ( 1)kt t t t k= − − +⋯  [7]. If dimension n  and 

polynomial's degree k  are large then this procedure is quite 

hard work even for the simple polynomials 0f , 1f  and 2f  

because 2~ 2 / ( 2)!n
kh k n− − , k → ∞  and we have to 

calculate a lot of surface integrals from (2). In this paper we 

offer a different method for constructing polynomial 

solutions to the Dirichlet boundary value problem, which is 

used a calculation of powers of the Laplace operator on 

some auxiliary polynomials. Construction of solutions of the 

Dirichlet boundary value problem in closed form is the 

prime object of the paper. 

In paper [8] with the help of Almansi representation (1) 

polynomial solutions of the Poisson's equation 

( ) ( )u x Q x∆ =  and the polyharmonic equation 

( ) ( )mu x Q x∆ = , where ( )Q x  is an arbitrary polynomial are 

constructed. On this base in [9] polynomial solution of the 

Dirichlet boundary value problem and a generalized third 

boundary value problem for the Poisson's equation are 

constructed. In [10] the Dirichlet boundary value problem 

for the biharmonic equation in the unit ball Ω  is 

considered. In [16] solvability conditions of the Neumann 

boundary value problem for the biharmonic equation in the 

unit ball are given and its polynomial solution is constructed. 

The present paper is a continuation of those investigations 

for the 3 -harmonic equation 3 ( ) ( )u x Q x∆ =  in the unit 

ball Ω . It hopefully allows to solve the Dirichlet problem 

for the polyharmonic equation in Ω . It is necessary to 

mention the papers [12-13] devoted to this research area. 

In Section 2 of the present paper basing on the properties 

of the Almansi representation described in Lemmas 1-3, in 

Lemma 5 the solution of the homogeneous Dirichlet 

boundary value problem for nonhomogeneous 3-harmonic 

equation with a simple right-hand side is constructed. Then 

in Theorem 1 the solution of the same boundary value 

problem with arbitrary right-hand side is given. In Theorem 

2 this solution is simplified. In Theorems 2 and 3 formulas 

(16) and (18) are derived to simplify calculates of the 

polynomial solution of the homogeneous Dirichlet boundary 

value problem for the nonhomogeneous 3-harmonic 

equation. In Section 3, in Theorem 6, on the base of 

Theorems 3, 4 and 5 the formula (34) for representation of 

polynomial solution to the full Dirichlet boundary value 

problem for the 3-harmonic equation with polynomial data 

is derived. Solutions to all considered boundary value 

problems are illustrated by Examples 2-4. To represent the 

obtained polynomial solutions in the usual form we need to 

compute powers of the Laplace operator on some special 

polynomials, defined by the polynomial data of the 

considered boundary value problem. This procedure can be 

easily eliminated by applying symbol calculations with the 

software package “Mathematica” (see Examples 1 and 5). 

2. Polynomial Solution of the 

Homogeneous Dirichlet Boundary 

Value Problem for the 

Inhomogeneous 3-Harmonic 

Equation 

Consider the following boundary value problem for the 

inhomogeneous 3-harmonic equation in the unit ball 

{ :| | 1}nx xΩ = ∈ <ℝ  

3 ( ) ( ), ;u x Q x x∆ = ∈Ω              (3) 

2

| 2
| |

0, 0, 0
u u

u
ν ν∂Ω

∂Ω ∂Ω

∂ ∂= = =
∂ ∂

    (4) 

with polynomial right-hand side ( )Q x  and for 2n > . It 

was proved in [8, Theorem 3] that some polynomial solution 

of the 3-harmonic equation (3) can be written in the form  

6 2
1

2

0
0

/2 1

| | | |
( ) (1 )

2? !! (2 )!!(2 6)!!

( ) ( ) .

k
k

k

k n k

x x
u x

k k

Q x d

α

α α α

∞
+

=

+ −

= −
+

× −∆

∑ ∫
    (5) 

Let us assume that ( ) ( )mQ x Q x=  be a homogeneous 

polynomial of degree m . It was shown in [8, Theorem 4] 

that solution (5) can then be written as 

2 6

3 30

( 2)( 1) | | ( )
( ) ( 1) ,

2(2,2) (2 2 ,2)

s s
s m

s ss

s s x Q x
u x

m s n

∞ +

+ +=

+ + ∆
= −

− +∑    (6) 

where ( , ) ( ) ( ( 1) )ka b a a b a k b= + + −⋯  is the generalized 

Pochhammer symbol with 0( , ) 1a b = . For example, 

(2,2) (2 )!!k k= . Note that the denominator of the fraction in 

the sum involves 3(2 2 ,2) (2 2 )sm s n m s n+− + = − + ⋯  

(2 4)m n+ + , which does not vanish since 2s m≤ . In [8, 

Theorem 1] it was shown that polynomial solution of the 

Poisson's equation ( )v Q x∆ =  has the form 

2 2
1

0
0

/2 1

| | | |
( ) (1 )

2 (2 )!!(2 2)!!

( ) ( ) .

k
k

k

k n k

x x
v x

k k

Q x d

α

α α α

∞

=

+ −

= −
+

× −∆

∑ ∫
    (7) 

Besides, it was shown in [8, Theorem 2] that for 

( ) ( )mQ x Q x=  the solution (7) can be written in the 

different form 



 Pure and Applied Mathematics Journal 2012; 1(1): 1-9  3 

 

2 2

1 10

| | ( )
( ) ( 1) .

(2,2) (2 2 ,2)

s s
s m

s ss

x Q x
v x

m s n

∞ +

+ +=

∆
= −

− +∑     (8) 

Consider the following operator 

2 2

0

| | | |

2(2 2)!! (2 )!!(2 2 )!!

m k

m

k

x x

m k k m

∞

−
=

∆ =
− +∑  

1
1 /2 1

0
(1 ) ( ) ? )k m k n k x dα α α α+ − + −× − −∆∫  

It was proved in [8,Theorem 3] that the polynomial 

( ) ( )ku x Q x−= ∆  is a solution to the polyharmonic equation 

( )
k
u Q x∆ = , i.e. ( ) ( )

k
kQ x Q x−∆ ∆ = . Thus the solution (5) 

can be written in the short form 3( ) ( )u x Q x−= ∆ . 

Lemma 1. Let ( )lQ x  be a homogeneous polynomial of 

degree l , then the following equality holds 

2
1

0

1
( ) ( ) | | ( 1)

1

m m k
l

k

k m
Q x x

m

∞

−
=

+ − 
 


∆ = −
− 

∑  

2| | ( )

(2, 2) ( 2 2 ,2)

k k
l

k m k m

x Q x

n l k+ +

∆
×

+ −
 

In [10, Lemma 1] it was proved that Lemma 1 holds true 

for 2m =  and in [8, Theorem 2] is obtained that it is true 

for 1m =  also. 

Proof. It is proved in [10, Theorem 3] that  

( 1) 1m m− − − −∆ = ∆ ∆  and therefore by induction 

1( )m
m− −∆ = ∆ . Besides in [10, Theorem 4] is obtained that 

2

0

1
( ) | | ( 1)

1

m k
m l

k

k m
Q x x

m

∞

−
=

+ − 
 


∆ = −
− 

∑  

2| | ( )

(2, 2) ( 2 2 ,2)

k k
l

k m k m

x Q x

n l k+ +

∆
×

+ −
 

Therefore 

2
1

0

1
( ) ( ) ( ) | | ( 1)

1

m m k
l m l

k

k m
Q x Q x x

m

∞

− −
=

+ −
∆ = ∆ =

 
 


−
− 

∑  

2| | ( )

(2, 2) ( 2 2 ,2)

k k
l

k m k m

x Q x

n l k+ ++ −
×

∆
 

Lemma is proved. 

Consider the polyharmonic equation with a particular 

right-hand side 

2| | ? ), ,k m
su x P x x D∆ = ∈           (9) 

where ( )sP x  is a homogeneous harmonic polynomial of 

degree s , and nD ⊂ ℝ  is a star-shaped domain centered at 

the origin. From the results of the paper [9, Theorem 3] it 

follows that solution of the equation 2| | ? )m
sv x P x∆ = , 

written in the form (8) can be also written as 

2 2| | ? )
( )

(2 2)(2 2 )

m
sx P x

v x
m m s n

+
=

+ + +
      (10) 

or 

2 2
2

1

| | ? )
| | ? ) .

(2 2)(2 2 )
( )

m
m s

s

x P x
x P x

m m s n

+

−∆ =
+ + +

 

More general statement is true. 

Lemma 2. The following equality holds 

2 2
2 | | ? )

| | ? ) .
(2 2,2) (2 2 , 2)

( )
m k

m s
k s

k k

x P x
x P x

m m s n

+

−∆ =
+ + +

  (11) 

Proof. As was mentioned above (see Lemma 1) 

( 1) 1k k− − − −∆ = ∆ ∆  

and therefore 

2 2
1| | ? ( ) ( ) | | ?( ) ( )m k m

k s sx P x x P x− −∆ = ∆  

1 2
1 1( ) | | ? ( )( )k m

sx P x−
− −= ∆ ∆  

1 2 2
1( ) | | ? ( )

(2 2)(2 2 )

( )k m
sx P x

m m s n

− +
−∆

=
+ + +

 

2 2| | ? ( )

(2 2,2) (2 2 ,2)

m k
s

k k

x P x

m m s n

+
= =

+ + +
⋯  

Lemma is proved. 

Let us decompose a homogeneous polynomial ( )mQ x  by 

means of Almansi formula (1) into the terms of the form 
2

2| | ( )s
m sx R x−  

2
2

2
2

( ) ( ) | | ( )

| | ( ), 2 0,

m m m

s
m s

Q x R x x R x

x R x m s

−

−

= + +

+ − ≥

⋯
     (12) 

where ( )kR x  are homogeneous harmonic polynomials. If 

we apply to both sides of this equality the operator k−∆  

then, by Lemma 2, the solution of the equation 

( ) ( )k
mv x Q x∆ =  given by formula (6) has the form 

[ /2] 2 2
2

0

| | ( )
( ) ,

(2 2,2) (2 2 ,2)

m s k
m s

k ks

x R x
v x

s m s n

+
−

=

=
+ − +∑     (13) 

where [ ]a  is the integer part of a  and the homogeneous 

harmonic polynomials ( )kR x  are determined by the 



4 Valery V. Karachik and Sanjar Abdoulaev:  Construction of Polynomial Solutions 

 

Almansi formula (12). From the explicit form of 

polynomials ( )kR x , obtained in [11], similarly to formula 

(12) the following assertion is true. 

Lemma 3 [9] The harmonic polynomials 2 ( )m kR x−  in 

the Almansi representation (1) of the homogeneous 

polynomial ( )mQ x  have the form 

2

2 4 2
( )

(2, 2)
m k

k

m k n
R x−

− + −=  

2

10

( 1) | | ( )

(2,2) (2 4 2 2,2)

s s s k
m

s s ks

x Q x

m k s n

∞ +

+ +=

− ∆
− − −

×
+∑ . 

Let us investigate the Dirichlet boundary value problem 

(3)-(4) with 2
2( ) | | ( )s

m sQ x x R x−= . Consider the operator 

1

( ) ( ),
k

n

k x

k

u x x u x

=

Λ =∑  

which is defined on functions from 1( )C Ω . It has the 

following easy to verify properties: if u  is a harmonic 

function in Ω , then function uΛ  is also a harmonic 

function in Ω ; the equality ( )uv v u u vΛ = Λ + Λ  holds; if 

( )mP x  is a homogeneous polynomial of degree m , then 

( ) ( )m mP x mP xΛ = . We formulate one more important 

property of the operator Λ . 

Lemma 4. On the unit sphere ∂Ω  the following equality 

holds 

[ ]
|

|

,
k

k

k

u
u

ν ∂Ω
∂Ω

∂ = Λ
∂

 

where factorial power is defined by the equality 
[ ] ( 1) ( 1)kt t t t k= − − +⋯  [7]. 

Let 

0

( )

k
s

k s

s

P t c t

=

=∑  be a polynomial. We define a 

factorial polynomial, associated to the polynomial ( )kP t  by 

the equality 
[ ]

[ ]

0

( )

k
s

k s

s

P t c t

=

=∑  [14]. 

Corollary 1. The following equality holds 

| [ ] |( ) .( )k kP u P u
ν ∂Ω ∂Ω
∂ = Λ

∂
 

To prove this statement we apply Lemma 4 to the each 

term of the polynomial |( )kP u
ν ∂Ω
∂

∂
. 

It is not hard to prove the following statement. 

Lemma 5. The solution ( )sv x  of the homogeneous 

Dirichlet boundary value problem (3)-(4) with 

2
2( ) | | ( )s

m sQ x x R x−=  has the form 

2 6
,

( 1)
(

( 2)
( ) | |

2

s
s m s

s s
v x C x + + += −  

2 4
2

( 2)( 3)
( 1)( 3) | | | | (

2
) )m s

s s
s s x x R x−

+ ++ + + −  (14) 

where , 3 31/ (2 2, 2) (2 2 , 2)m sC s m s n= + − + . 

We transform the obtained solution 0 ( )u x . 

Theorem 1. Let / 2A m n= +  and 

, ( 1)( 2)( 2 2 1)( 2 3)sA s s A s A sα α α α α= − + − + − + − − + −  

( 2 2) 2( 2) ( 2 2 3)A s s A sα α α α× − + − + − + − + −  

( 2 3)( 2 2 3)( 2 3)A s A s A sα α α× − + − − + − − + −  

( 2) ( 1)( 2 2 5)A s A sα α α α× − + + + − − + −  

( 2)( 1)A s A sα α× − + + − + +  

then the following equality holds 

1 23
,

0 3
60 0

( 1) | |( )
( ) ,

!( 3)!( 2 3)2?

ss
sm

s
ss

A xQ x
u x

s A s

α α
α

α α α α

+∞ +

+
+= =

−∆
=

− + − + −∑ ∑  (15) 

where ( ) ( 1) ( 1)sa a a a s= + + −⋯  is the Pochhammer 

symbol. 

From the obtained formula (15) we cannot see that the 

polynomial 0 ( )u x  obtained from (15) satisfies to the 

homogeneous conditions (4)  

0 | | 1( ) 0xu x = = , 
0

| | 1

( )
0

x

u x

ν =

∂
=

∂ , 

2
0

2
| | 1

( )
0

x

u x

ν =

∂
=

∂
. 

Theorem 2. The solution 0 ( )u x  of the problem (3)-(4) 

with ( ) ( )mQ x Q x=  can be written as 

2 3
0 3

0

( 1)( 2) ( )
( ) (| | 1)

2?

s
m

s
s

s s Q x
u x x

s

∞

+
=

+ + ∆
= −

+∑  

2

30

| |
( 1) ,

( 2 )

s k
k

sk

s x

k A s k +=

 
 ×

− + 
−∑        (16) 

where we used / 2A m n= +  for short as in Theorem 1. 

Proof of this Theorem is similar to proof of Theorem 2 

from [10]. 

Lemma 6. Let the function ( )v x , defined in Ω  be 

written in the form 2
0 ( ) (| | 1) ( )

l
v x x S x= − , where 

1
( ) ( )

l
S x C

−∈ Ω  and l ∈ℕ . Then it satisfies the condition 

1 |( ) 0,( )lP v x
ν− ∂Ω
∂ =

∂
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where 1( )lP t−  is an arbitrary polynomial of degree 1l −  

and hence ( )v x  satisfies the homogeneous Dirichlet's 

conditions on ∂Ω  

1

| 1
| |

0, 0, , 0.
l

l

v v
v

ν ν

−

∂Ω −∂Ω ∂Ω

∂ ∂= = =
∂ ∂

…  

Proof. Indeed because of equality ( )uv v u u vΛ = Λ + Λ  

we can write 

2
( ) (| | 1) ( )

l
v x x S xΛ = Λ −  

2 1 2 2
( )(| | 1) (| | 1) (| | 1) ( )

l l
lS x x x x S x

−= − Λ − + − Λ  

2 1 2
(| | 1) (2 ( ) | |

l
x lS x x

−= −  

2 2 1
1(| | 1) ( )) (| | 1) ( )

l
x S x x S x

−+ − Λ ≡ −  

where 2
1( ) ( )

l
S x C

−∈ Ω  and therefore |( ) 0v x ∂ΩΛ = . If we 

continue similarly then we obtain 1
( )

l
v x

−Λ =
1 2 2

1(| | 1) ( ) (| | 1) ( )
l l

lx S x x S x
−

−= Λ − = − , where 

1( ) ( )lS x C− ∈ Ω  and then 
1

|( ) 0l v x−
∂ΩΛ = . Therefore if 

1( )lP t−  - is an arbitrary polynomial of degree 1l −  then by 

Corollary 1 we have 

1 | [ 1] |( ) ( ) ( ) 0.( )l lP v x P v x
ν− ∂Ω − ∂Ω
∂ = Λ =

∂
 

Lemma is proved. 

On the base of Lemma 6 the polynomial 0 ( )u x  from 

Theorem 2 satisfies the homogeneous Dirichlet's conditions 

(4). 

Remark 1. Formulas defined solution of the 

homogeneous Dirichlet problem for the harmonic equation 

1( )u x  [9], biharmonic equation 2 ( )u x  [10] and 3

-harmonic equation 3 ( )u x  (16) very similar each other and 

can be written for 1,2,3l =  in the one form 

2

0

1 ( )
( ) (| | 1)

1 4 ( )!

s
l m

l s l
s

s l Q x
u x x

l s l

∞

+
=

 


+ − ∆
= −

− +



∑  

2

0

| |
( 1)

( 2 / 2)

s k
k

s lk

s x

k m s k n +=

× −
− + +

 
 
 

∑ . 

Example 1. The solution of the Dirichlet problem (3)-(4) 

with 3 2
6 1 2 3( )Q x x x x= , written in the form (16) can be easily 

calculated with the help of symbolic package “Mathematica” 

and has the form 

2 2 2 3
1 2 1 2 3

1 2 3

( 1)
( , , )

4655851200

x x x x x
u x x x

+ + −
= −  

4 4 2 4
1 2 3 31292 903 252 4921 3213( x x x x× − + − − + +  

2 2 2 2 2
1 2 3 2 37 ( 133 93 2272 ) 7 (152 423 ) .)x x x x x+ − + − + +  

We again slightly transform polynomial 0 ( )u x  - the 

solution of the Dirichlet problem (3)-(4) with 

( ) ( )mQ x Q x=  in such a way that then to have a possibility 

to obtain a formula for the arbitrary polynomial ( )Q x . 

Lemma 7. It is true that 

2 3

0

(| | 1)
( )

16

x
u x

−=  

2 21
/2 1

0
0

(1 | | ) (1 )
( )

(2 )!!(2 6)!!

s s
s n

m

s

t x t
Q tx t dt

s s

∞ +
−

=

− −× ∆
+∑∫   (17) 

Proof is similar to proof of formula (21) from [9]. 

Let us solve the Dirichlet problem (3)-(4) with an 

inhomogeneous polynomial ( )Q x . 

Theorem 2. The solution of the Dirichlet problem (3)-(4) 

can be written as  

2 3(| | 1)
( )

16

x
u x

−=  

2 21
/2 1

0
0

(1 | | ) (1 )
( )

(2 )!!(2 6)!!

s s
s n

s

x
Q x d

s s

α α α α α
∞ +

−

=

− −× ∆
+∑∫   (18) 

Proof. Let ( )Q x  be an arbitrary polynomial. It can be 

represented as the sum of homogeneous terms 

( ) ( )m

m

Q x Q x=∑ . Denote by ( )mu x  the polynomial 

solution of the Dirichlet problem (3)-(4) with the right-hand 

side ( ) ( )mQ x Q x= . Then obviously the desired solution 

has the form 
( ) ( )m

m

u x u x=∑ . It follows from (17) that  

2 3
(| | 1)

( ) ( )
16

m

m

x
u x u x

−= =∑  

2 21
/2 1

0
0

(1 | | ) (1 )
( )

(2 )!!(2 6)!!

s s
n s

m

s m

x
Q x d

s s

α α α α α
∞ +

−

=

− −× ∆
+∑ ∑∫  

2 3(| | 1)

16

x −=  

2 21
/2 1

0
0

(1 | | ) (1 )
( )

(2 )!!(2 6)!!

s s
s n

s

x
Q x d

s s

α α α α α
∞ +

−

=

− −× ∆
+∑∫  

Theorem is proved. 

Remark 2. The Green’s function (operator) of the 

Dirichlet problem (3)-(4) in the unit ball in the case of 
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polynomial functions ( )Q x  can be written as 

2 3(| | 1)
[ ]( ; )?

16

x
G Q x α −=  

2 2
/2 1

0

(1 | | ) (1 )
( )( )

(2 )!!(2 6)!!

s s
n s

s

x
Q x

s s

α α α α
∞ +

−

=

− −× ∆
+∑  

and then the solution from (18) has the form 

1

0
( ) [ ]( , )u x G Q x dα α= ∫  

Example 2. Let us check the formulas (18) and (15). Let 

( ) iQ x x=  in the Dirichlet problem (3)-(4) and, hence, 

1m = . Then the sum in (18) has the only term indexed by 

0s = . We obtain  

2 3 21
/2 1

0
0

(| | 1) (1 )
( ) ( )

16 2?

n
i

x
u x x d

α α α α−− −= ∫  

2 3(| | 1)

48( 2)( 4)( 6)
i

x
x

n n n

−=
+ + +

. 

Is this the solution of our problem? According to Lemma 

6 the homogeneous conditions (4) are fulfilled. Using 

equality (see [11]) 

( )2 2 2| | ( ) 2 | |s sx P x s x −∆ =
 

( ) 22 2 2 ( ) | | ( )ss n P x x P x× Λ + + − + ∆      (19) 

with ( ) iP x x= , 3s =  and the properties of the operator 

Λ  we obtain  

6
3 3

0

| |
( )

48( 2)( 4)( 6)

ix x
u x

n n n
∆ = ∆

+ + +
 

4
2 6( 6) | |

48( 2)( 4)( 6)

in x x

n n n

+
= ∆

+ + +
 

2 24( 4) | | 2( 2) | |

8( 2)( 4) 2( 2)

i i
i

n x x n x x
x

n n n

+ +
= ∆ = =

+ + +
 

Note that formula (18) by its way of representation of the 

solution is similar to representation of a solution of Cauchy 

problem for ODEs with constant coefficients obtained in 

[15]. 

3. Polynomial Solution of the 

Inhomogeneous Dirichlet Boundary 

Value Problem for the Homogeneous 

3-Harmonic Equation 

Now consider the following Dirichlet problem for the 3

-harmonic equation in the unit ball { :| | 1}nx xΩ = ∈ <ℝ  

3 ( ) 0, ;u x x∆ = ∈Ω                (20) 

2

| 2
| |

( ), 0, 0,
u u

u P x
ν ν∂Ω

∂Ω ∂Ω

∂ ∂= = =
∂ ∂

  (21) 

where ν  is outside normal to ∂Ω , with a polynomial 

boundary value ( )P x  and for 2n > . 

Together with the polynomial ( )P x  consider two 

associated with it polynomials 

2

(0)

1 | |
( ) ( ) ( )

2

x
P x P x P x

−= + Λ  

2 2
2(1 | | )

( 2 ) ( )
8

x
P x

−+ Λ + Λ ,       (22) 

,
(1) ( )sP xα = 2 21

( 2 ) 2
2 4

(
s

α−∆ Λ + Λ − ∆ Λ
+

 

2
3(1 )

( )
(2 4)(2 6)

)P x
s s

α−+ ∆
+ +

       (23) 

where [0,1]α ∈  and 0 {0}s ∈ ≡ ∪ℕ ℕ . The result below 

complements Theorem 3. 

Theorem 4. The solution of the problem (20)-(21) can be 

written in the form  

2 3

(0)

(1 | | )
( ) ( )

16

x
v x P x

−= +  

21
, /2 1

(1)
0

0

(1 | | ) (1 )
( )( )

(2 )!!(2 2)!!

s s
s s n

s

x
P x d

s s

αα α α α α
∞

−

=

− −× ∆
+∑∫   (24) 

Example 3. Let 
2( ) jP x x=  in the problem (20)-(21). 

Then the sum in (24) has the only term indexed by 0s = . 

Since 
2 22j jx xΛ =  and 

2 2jx∆ = , then  

(0) ( )P x =
2 2 2

21 | | (1 | | )
( ) ( ) ( 2 ) ( )

2 8

x x
P x P x P x

− −+ Λ + Λ + Λ  

2 2 2 2(1 (1 | | ) (1 | | ) ),jx x x= + − + −  

2
,0 2 2 3

(1)

1 (1 )
( ) ( 2 ) 2 ( )

4 4? 6
( )P x P xα α α− −= ∆ Λ + Λ − ∆ Λ + ∆  

16= . 

By formula (24) we find  
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2 3 1
2 2 4 /2 1

0

(1 | | ) 1
( ) (3 3 | | | | ) ? 6

16 2

n
j

x
v x x x x dα α−−= − + + ∫

2 2 4 2 31
(3 3 | | | | ) (1 | | )jx x x x

n
= − + + + −  

2 2 2 2 43 3 | | | |j j jx x x x x= − +  

6 4 21
(| | 3 | | 3 | | 1)x x x

n
− − + −        (25) 

Let us check that the obtained polynomial ( )v x  is really 

the solution of the problem (20)-(21) with 
2( ) jP x x= . Using 

(19) we obtain 

2 2( ) 6 6( 4) 6 | |jv x n x x∆ = − + − 2 2 44( 6) | | 2 | |jn x x x+ + +  

4 2
(6( 4) | | 12( 2) | | 6 ) /n x n x n n− + − + +  

Then 

2 2( ) 12( 4) 12 8( 6)( 4) jv x n n n n x∆ = − + − + + +  

2 2
8( 6) | | 8( 2) | |n x n x++ + +  

2
(24( 4)( 2) | | 24( 2) ) /n n x n n n− + + − +  

and therefore polynomial ( )v x  is a 3-harmonic 

polynomial: 

3
( ) 16( 4)( 6)v x n n∆ = + + +  

48 ( 2)( 4)
16 ( 2) 16 ( 6)

n n n
n n n n

n

+ ++ + + −  

16( 4) ( 6) 32 ( 4) 48( 2)( 4)n n n n n n= + × + + + − + +  

16( 4)( 6 2 3 6) 0n n n n= + + + − − =       (26) 

In addition, from (25) it follows that ( )v x  satisfies the 

conditions 
2

| | 1 | | 1( )x j xv x= == , 

| | 1
| | 1

x
x

v
v

ν =
=

∂ = Λ =
∂  

6 4 2
2 2 2 2 4

| | 1

| | 2 | | | |
6 2 | | | | 0,( )j j j x

x x x
x x x x x

n
=

− +− + − =  

2
2

| | 12
| | 1

x
x

v
v

ν =
=

∂ = Λ =
∂

 

6 4 2
2 2 2 2 4

| | 1

6 | | 8 | | 2 | |
6 2 8 | | 6 | | 0( )j j j x

x x x
x x x x x

n
=

− +− + − =  

Thus the polynomial constructed in (25) is the solution of 

the considered Dirichlet problem. 

Now consider another Dirichlet problem for the 3

-harmonic equation in the unit ball Ω  

3 ( ) 0, ;u x x∆ = ∈Ω                 (27) 

2

|
| |

0, ( ), ( )
u u

u R x S x
ν ν∂Ω

∂Ω ∂Ω

∂ ∂= = =
∂ ∂

  (28) 

with polynomial boundary values ( )R x  and ( )S x  for 

2n > . In addition to the polynomials ( )R x  and ( )S x  

consider associated polynomials 

2 2 2

(0)

1 | | (1 | | )
( ) ( ) (2 1) ( ),

2 8

x x
R x R x R x

− −= + Λ +  

2 2

(0)

(1 | | )
( ) ( )

8

x
S x S x

−=              (29) 

, 2
(1)

1
( ) (2 1) 2 ( ),

2 4
( )s

R x R x
s

α α−= ∆ Λ + − ∆
+

 

(1) ( ) ( )S x S x= ∆                 (30) 

where [0,1]α ∈  и 0 {0}s ∈ ≡ ∪ℕ ℕ . 

Theorem 5. The solution of the problem (27)-(28) can be 

written in the form 

(0) (0)( ) ( ) ( )v x R x S x= − + +  

2 3 21

0
0

(1 | | ) (1 | | ) (1 )

16 (2 )!!(2 2)!!

s s

s

x x

s s

α α∞

=

− − −+
+∑∫  

, /2 1
(1)(1) ( )( )s s s nR S x dα α α α−× −∆ + ∆     (31) 

Proof. Let a biharmonic polynomial 1( )u x  satisfies the 

conditions 

1
1 | | |

|

1
( ) ( ) , ( ( ) ( )) .

2

u
u x R x S x R x

ν∂Ω ∂Ω ∂Ω
∂Ω

∂
= = −

∂

 

Then the following polynomial 

2
1

1
( ) (| | 1) ( )

2
v x x u x= −  

is a 3-harmonic polynomial satisfying the conditions 

| 0v∂Ω =  and 

|
|

v
v

ν ∂Ω
∂Ω

∂ = Λ
∂

2
2

1 1 |

| | 1
| | ( ) ( )

2
( )x

x u x u x ∂Ω
−= + Λ  

1 | |( ) ( ) ,u x R x∂Ω ∂Ω= =  
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2
2

|2
|

( )
v

v
ν ∂Ω

∂Ω

∂ = Λ − Λ
∂

 

2 2
1 1 || | ( ) 2 | | ( )( )x u x x u x ∂Ω= + Λ  

1
| |( ) 2 ( )( )u

R x S x
ν ∂Ω ∂Ω

∂
= + =

∂
 

The polynomial 1( )u x  can be written in the form 

2

1

| | 1
( ) ( ) (2 ( ) ( ) ( ))

4

x
u x R x R x R x S x

−= − Λ + −  

2 2 21
1

0
0

(| | 1) (1 | | ) (1 )

8 (2 )!!(2 2)!!

s s
s

s

x x

s s

α α∞
+

=

− − −+ ∆
+∑∫  

/2 11
2 2 ( )

2 4
( ) nR R S R x d

s

α α α α−−× Λ + − − ∆
+

 

and therefore 

2
| | 1

( ) ( )
2

x
v x R x

−= −
2 2(| | 1)

((2 1) ( )
8

x
R x

− Λ +  

2 3 21

0
0

(| | 1) (1 | | ) (1 )
( ))

16 (2 )!!(2 2)!!

s s
s

s

x x
S x

s s

α α∞

=

− − −− + ∆
+∑∫  

2 /2 11
(2 1) 2 ( )

2 4
( ) nR S R x d

s

α α α α−−× ∆ Λ + − ∆ − ∆
+

. 

Taking into account definitions (29) and (30) we obtain 

formula (31). 

Example 4. Let 2
( ) kR x x=  and ( ) mS x x=  in the 

problem (27)-(28). Then 

2 2 2
2 2

(0)

1 | | (1 | | )
( ) 5 ,

2 8
k k

x x
R x x x

− −= +  

2 2
,

(0) (1)(1)

(1 | | )
( ) ; ( ) 10, ( ) 0

8

s
m

x
S x x R x S xα−= = =  

The sum in (31) has the only term indexed by 0s = . 

Then we write 

2 2 2
2 2| | 1 (| | 1)

( ) ( 5 )
2 8

k m k

x x
v x x x x

− −= + −  

2 3 1
/2 1

0

(| | 1)
5

16

nx
dα α−−+ ∫  

2 2 2 2 3
2 2| | 1 (| | 1) (| | 1)

( 5 ) 5 .
2 8 8

k m k

x x x
x x x

n

− − −= + − +  

Let us verify that the obtained polynomial ( )v x  is really 

the solution of the problem (27)-(28) with 2
( ) kR x x=  and 

( ) mS x x= . Using formula (26) from Example 3 we can 

conclude that the polynomial ( )v x  is a 3-harmonic 

polynomial 

6
3 3 2 45 | |

( ) | | 0.
8

( )k

x
v x x x

n
∆ = − ∆ − =  

In addition to this, the polynomial ( )v x  satisfies the 

conditions (28) with 2
( ) kR x x=  and ( ) mS x x= . Indeed  

| | 1 0xv = = , 

| | 1
| | 1

x
x

v
v

ν =
=

∂ = Λ =
∂  

2 2
2 2 2 2 2(| | 1) | |

| | (| | 1) ( 5 )
2

( k k m k

x x
x x x x x x

−+ − + − +  

2 2 2 2 2
2 2

| | 1 | | 1

(| | 1) (| | 1) | |
( 10 ) 15 ( ) ,

8 4
)m k x k x

x x x
x x x

n
= =

− −+ − + =  

and by Lemma 4 we find 

2
2

| | 12
| | 1

( ) x
x

v
v

ν =
=

∂ = Λ − Λ =
∂

 

2 2 2 2 4 2 2
| | 1 | | 14 | | 2 | | | | ( 5 ) ( )( )k k m k x k xx x x x x x x x= =+ + − −  

| | 1( )m xx == . 

Therefore the polynomial ( )v x  is the solution of the 

considered Dirichlet problem. 

On the base of Theorems 3, 4 and 5 we can get the 

following general statement. 

Theorem 6. The solution of the Dirichlet problem 

3
( ) ( ), ;u x Q x x∆ = ∈ Ω               (32) 

2

| 2
| |

( ), ( ), ( )
u u

u P x R x S x
ν ν∂Ω

∂Ω ∂Ω

∂ ∂= = =
∂ ∂

  (33) 

in the unit ball Ω  with the polynomial data ( )Q x , ( )P x , 

( )R x  and ( )S x  has the form 

(0) (0) (0)( ) ( ) ( ) ( )u x P x R x S x= − +  

2 3 21

0
0

(1 | | ) (1 | | ) (1 )

16 (2 )!!(2 2)!!

s s
s

s

x x

s s

α α∞

=

− − −+ ∆
+∑∫  

, , , /2 1
(1)(1) (1) (1) ( )( )s s s nP R S Q x dα α α α α α−× − + −     (34) 

where polynomials (0) ( )P x , (0) ( )R x  and (0) ( )S x  are 

defined by (22), (29), polynomial 
,

(1) ( )sP xα
, 

,
(1) ( )sR xα

 and 



 Pure and Applied Mathematics Journal 2012; 1(1): 1-9  9 

 

(1) ( )S x  are defined by (23), (30), and polynomial 
,

(1) ( )sQ xα
 

has the form 

2
,

(1)

(1 )
( ) ( ).

(2 4)(2 6)

sQ x Q x
s s

α α−=
+ +

 

Proof. It is not hard to see that the solution of the problem 

(32)-(33) can be decomposed into the sum of solutions of 

three problems: (3)-(4), (20)-(21) and (27)-(28). The sum of 

these solutions obtained by formulas (18), (24) and (31), 

correspondingly, give us the desired solution (34). 

Example 5. With the help of the software package 

“Mathematica” which make symbol calculations we find by 

formula (34) the solution of the following Dirichlet problem  

3 2 2 3
1 3( ) 2 , ;u x x x x∆ = − ∈ Ω ⊂ ℝ  

4 2 5 6 4 2
| 1 2 2 3 | 1 2 3 |

|

, 2 ,( ) ( )u
u x x x x x x x

ν∂Ω ∂Ω ∂Ω
∂Ω

∂= − = +
∂

 

2
5 2 4

2 3 1 2 |2
|

3( )u
x x x x

ν ∂Ω
∂Ω

∂ = −
∂

 

Defining for short 2 2 2 2
1 2 3| |x x x x= + +  and omitting 

intermediate calculations we have 

4 2 5
1 2 3 1 2 2 3( , , )u x x x x x x x= −  

2
6 4 2 4 2 5
1 1 2 2 3 2 3

| | 1
6 2 6

2
( )x

x x x x x x x
−+ − + +  

2 2
6 4 2 2 4
1 1 2 1 2

(| | 1)
13 48 3

8
(x

x x x x x
−− − +  

4 2 5
2 3 2 326 47 )x x x x+ +  

2 3
4 4
1 2

(| | 1)
71269 870840 210600

665280
(x

x x
−+ + +  

3 2 4
2 3 3 3592200 4715 48960x x x x− + −  

2 2
2 3 3 11800 (253 1645 ) 5x x x x+ + −  

2 2
2 2 3 3( 57979 458064 118440 57888 )x x x x− + + +  

2 2
2 315 (317 74784 ))x x+ + . 
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