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Abstract: Energy-momentum conservation laws in Compton scattering are analyzed. The conservation of total angular 

momentum is applied to a general formula that describes the variation of the light angular momentum. The Compton scattering 

model of a vortex beam is generalized to describe the momentum exchange beyond the well-known photon wave number shift. 

The illustrated analysis indicates that the light angular momentum may vary due to Compton scattering. 
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1. Introduction 

Compton Scattering satisfies conservation both energy and 

momentum in inelastic collision between a photon and an 

electron. It states that a certain shift to the linear momentum 

of the photon is associated with the scattering deflection. The 

wave number of the photon decreases due to transfer of some 

its energy and momentum to an initially stationary electron 

[1]. However; Compton scattering can be generalized to 

include the conservation of angular momentum too. 

Vortex Light beam does have phase singular corresponds to 

a wave with helical phase structure at the center of the beam 

the intensity vanishes due to singularity [2]. Orbital angular 

momentum, of a single photon, is quantized by an integer 

number called the topological charge of the vortex beam [3]. 

Vortex light beam carry also spin angular momentum that 

associates with polarization states. Light angular momentum 

fundamentally composites of orbital and spin parts. 

Several studies have been recently described variation in light 

angular momentum at Compton scattering in ultra-relativistic 

considerations [4, 5]. Moreover, a non-relativistic framework 

has been implemented in the density matrix theory to inform 

changes of angular momentum at Compton scattering [6, 7]. 

This study describes the Compton effect of a vortex light 

beam which carries both angular and spin angular momentum 

in form of two components: orbital and spin. We evaluate 

general analytical expression of Compton scattering for a 

vortex light. The expression is valid for any axial symmetric 

beam carries angular momentum such as Laguerre Gaussian 

and Gaussian Bessel modes [8]. 

Details are provided on the change of the light angular 

momentum. Physical explanation as well as geometric 

interpretation are illustrated. Our analysis is important to 

understand angular momentum transfer between a photon 

and an electron or any massive particle. 

2. Theory 

Fundamentally, the angular momentum ( J
�

) of a light 

beam is composed of orbital part ( L
�

) associated with the 

azmithual phase at a wave front, and a spin part ( S
�

) 

associated with the polarization [9]: 

J L S= +
�� �

                                     (1) 

In what follows Compton scattering conservation laws are 

analyzed for a photon vortex beam possessing angular 

momentum J
�

 and wave number k colliding with a free 

electron initially at rest. We assume the electron could 

possess orbital and spin angular momentum as well [10]. 

The schematic diagram of the examined Compton 

scattering is shown at figure 1 which illustrates the scattered 

photon`s wave number and momentum by primed 

parameters, while the associated momentum of the recoil 



2 Mazen Nairat et al.:  Compton Scattering of a Vortex Light Beam  

 

electron is indicated by subscript letter e. The scattering 

angle (θ) is defined as the angle between the initial 

propagation axis and the scattering direction. 

 

Figure 1. Schematic of Compton scattering with associated parameters. 

It is very important to mention that this study particularly 

considers vortex light beams which are cylindrically 

symmetric along the propagation axis. Our analysis focuses 

on three main cases for the vortex light beam: first when it 

possesses well define orbital angular momentum states, then 

when it possesses both spin and orbital angular momentum 

that are separately conserved during free propagation, finally 

when the orbital and spin angular momentum couple during 

free propagation. The following sections analyze Compton 

scattering for each case respectively. 

2.1. Linearly Polarized Light Beam with Orbital Angular 

Momentum 

A linearly polarized vortex light beam can be modeled as a 

cylindrically symmetric beam that possesses well-defined orbital 

momentum states. There are no spin states projected along the 

symmetric axis in this particular case. The associated linear (P) 

and orbital momenta (L) are directed along the propagation axis 

due to the symmetry, so they are linearly proportional to each 

other by a proportionality constant (α) [11], i.e.: 

α== lkLP //                      (2) 

where l is the index of the angular momentum state. 

Conservation of energy and angular momentum through 

Compton scattering leads to the following equations: 

)(22222222 LLmcLLLLLee
′′−+′′−′′+= ααααααα                                        (3) 

θcos2222 LLLLLe
′−′+=                                                                      (4) 

where m is the rest mass of the electron, and c is the speed of light. Combination of equations (3) and (4) leads to a general 

formula for Compton scattering of a vortex beam with variation of angular momentum states: 

)cos`(2)(2)1()1( 2222 θηηηη
α

ηη −′=′′−+′−′+− LLLL
mc

LL
e

                                (5) 

where η is the normalized dimensionless ratio of linear to 

angular momentum, defined by / eη α α= . 

Equation (5) provides many details about the scattering 

process; however, it is important to check its validity in 

limiting case before going over the details. In the special case 

` 1η η= = , when the ratio of linear momentum to angular 

momentum never changes through the collision between a 

photon and an electron, equation (5) reduces to the convential 

Compton scattering formula: 

Generally, when the normalized momentum ratio η η ′=  is 

constant through Compton scattering the photon`s momentum 

ratio keeps constant. When there is no change in the photon`s 

orbital momentum due to scattering ( L L′= ), equation (5) 

then reads 2sin( / 2)η η θ′− = , which indicates a shift in the 

corresponding linear momentum ( P P′≠ ). In the meanwhile, 

if there is no change in the photon`s linear momentum, the 

orbital angular momentum does not vary according to equation 

(5). But if the linear momentum changes, the angular 

momentum could still be invariant in Compton scattering. 

These results are in agreement with previous studies [5, 6] 

concerning the invariance of orbital angular momentum states 

for forward/backward Compton scattering. 

)cos1(
1

/1/1 θ−=−′
mc

PP                (6) 

The ratio of linear to orbital light momenta forms, given in 

equation (2), can be interpreted in a certain geometrical 

sense. Light orbital angular momentum is directly 

proportional to linear momentum in such a way L depends on 

the orientation of P along of the propagation axis. For 

instance; the axial momenta at transverse distance (r) away 

the central propagation axis may be illustrated in simple 

diagram as shown in Figure 2 

 

Figure 2a. Schematic of transverse section of a vortex beam with the 

orientation of the associated momenta. 
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Figure 2b. Side view of the alignment of linear and total angular momentum 

along a propagation axis. 

Figure 2a represents orientation of both linear and angular 

momenta of a single photon at transverse section of vortex 

beam. The alignment of both momenta along the propagation 

vector is represented in Figure 2b. 

Geometrically, orbital angular momentum is inclined by φ, 

which can be defined through the momentum ratio constant 

α: 

arctan( )rϕ α=                                (7) 

This interpretation allows one to express the orbital 

angular momentum as a light characteristic that depends on 

the axial linear momentum as well as the radius of the beam. 

It is easy to use equations (2) and (7) to show that orbital 

angular momentum vanishes when the axial linear 

momentum is perfectly aligned with the propagation axis (φ 

= 0). Note that singularity point exists at the center of a 

vortex beam. 

2.2. Circularly Polarized Light Beam with Spin and Orbital 

Angular Momentum 

A circularly polarized beam possesses spin momentum 

states along the propagation axis in addition to orbital 

momentum states. Thus, the ratio of the associated momenta 

is given by [11]: 

P k

J l
α

σ
= =

+
                           (8) 

where σ is the axial spin mode index, analogous to the 

quantum helicity, which defiantly takes values ±1 for left-

handed circularly and right-handed circularly polarized light, 

respectively. 

The Compton scattering formula, Equation (5) may be re-

written in terms of total angular momentum as follows: 

)cos(2)(2)1()1( 2222 θηηηη
α

ηη −′′=′′−+′−′+− JJJJ
mc

JJ
e

                                   (9) 

In case there is no coupling of spin and orbital angular momenta, equation (9) could be split two equations describing 

Compton scattering with variation of each angular momentum component separately, i.e.: 

)cos(2)(2)1()1( 2222 θηηηη
α

ηη −′′=′′−+′−′+− llll

e

ll LLLL
mc

LL ;                              (10) 

)cos(2)(2)1()1( 2222 θηηηη
α

ηη −′′=′′−+′−′+− sss

e

ss SSSS
mc

SS .                           (11)

where ηs and ηl refer to the normalized momentum ratios of 

spin and orbital components respectively. Their combination 

must be equivalent to the total normalized ratio l sη η η= + . 

Equations (10) and (11) provide interesting results by 

examining two opposite cases. One case is Compton 

scattering of a vortex beam with variation only in the spin 

momentum part; equation (10) then predicts a change in the 

wave number of the light beam. The opposite case is 

Compton scattering of a vortex beam in which spin 

momentum does not change but orbital momentum does; 

then equation (11) predicts a shift in the wave number too. 

Mathematically, in the case L L′= , S S ′≠ , equation (11) 

reduces to 2 sin( / 2)ek k lα θ′− = . In the other case L L′≠ , 

S S ′= , equation (12) reduces to 2 sin( / 2)ek k σα θ′− = . 

Consequently; Compton scattering with variation in either 

angular momentum part leads to a change in the linear 

momentum or shift in the wave number. However; the total 

angular momentum might be unchanged by Compton 

scattering. Obviously if there is no change in total angular 

momentum, then equation (9) still predicts a shift in the wave 

number. 

2.3. Vortex Light Beam with Spin-Orbital Momentum 

Coupling 

Spin and orbital angular momentum of a vortex beam 

could be coupled during free propagation [12]. Their 

coupling is associated with the ratio of total angular 

momentum to linear momentum that is 

c
l

k

J

P α
σ

==                            (12) 

Compton Scattering of this case is supposed to be 

described by total angular momentum (Jc) which associates 

with the coupling of spin and orbital momenta states: 

 

Propagation 

Axis  
P

J 

φ
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)cos(2)(2)1()1( 2222 θηηηη
α

ηη −′′=′′−+′−′+− cccc

e

ccc JJJJ
mc

JJ                              (13) 

where ηc is the normalized momentum coupling ratio: 

/c c eη α α= . 

Equation (13) clearly shows that regardless of any change 

in either angular momentum part, a variation in coupling of 

angular momentum parts leads to a shift in the wave number. 

Thus; If L L′= , and S S ′= , but c cJ J ′≠  then

2 sin( / 2)ek k lσ α θ′− = . Thus, a change in coupling of 

linear and orbital angular momentum also leads to a shift in 

the wave number even though no variation any part of light 

momentum. 

3. Conclusion 

The Compton Scattering momentum formula is generalized to 

include the conservation of light angular momentum. Specific 

details are provided to describe unconventional Compton 

scattering which may cause the light angular momentum to 

change. A change in any angular momentum part: orbital, spin, 

or even a coupling between the parts produces a change in 

wavenumber and linear momentum of the light. 

Angular momentum and linear momentum of the light 

vortex beam are directly proportional with a ratio that 

determines the momentum alignment with the propagation 

axis. The normal angular to linear momentum ratio is 

consistent for vortex light. The conventional Compton 

scattering, the well-known photon wave number shift, is 

described at α = 0. 
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