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Abstract: The general approach to finding the form factor of a compound particle and a system of particles in the Ray-

leigh-Gans-Debye (RGD) approximation is considered. The rotational-translational properties of light scattering amplitude in 

the RGD approximation are formulated. Using such properties, the analytical expressions for the amplitude of light scattering 

by a prism and pyramid with an arbitrary polygonal base in the RGD approximation are obtained. The phase functions of light 

scattering by a prism and pyramid in the RGD approximation are computed. 
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1. Introduction 

The light scattering and absorption of electromagnetic 

radiation is widely used in different branches of science and 

engineering for the study of structure and properties of in-

homogeneous media. In recent years because of great sig-

nificance such applications as optics of atmosphere and 

ocean, radio wave propagation, radio communication, 

physical chemistry of solutions and colloids, biophysics, 

laser biomedicine the theory and practice of light scattering 

techniques have been sufficiently developed [1-7]. Cloud 

droplets and atmosphere aerosols have a spherical shape in 

most cases, although particles of other shapes can exist due 

to various external influences [3, 5]. For a spherical particle 

the well-known analytical solution or the Mie theory have 

been obtained by a separation of variables [1, 2]. However, 

dust and soot particles, ice crystals of clouds have a strong 

nonspherical shape. For example, ice crystals of cirrus 

clouds are modeled by hexagonal prisms. In general, par-

ticles encountered in new practical applications are no 

longer considered spherical; they are nonspherical, nonro-

tational symmetric, inhomogeneous, coated, chiral or ani-

sotropic. But if a particle has other than a regular geome-

trical shape, then it is difficult or impossible to solve the 

scattering problem analytically in its most general form that 

oblige to use numerical and approximate analytical me-

thods. 

Therefore, if particles of dispersion media are optically 

“soft” m-1<<1, where m is a relative refractive index of 

light scattering particle (or particles are suspended in a me-

dium with similar optical properties), then we can use suit-

able approximate methods of Rayleigh-Gans-Debye (RGD) 

or Anomalous Diffraction (AD) [1, 2, 4-9]. Note that the 

domain of validity of the RGD approximation is differed 

from the AD approximation [2, 4, 7]. The equations for the 

scattering and absorption properties of a column or prism 

with an arbitrary polygon base in the AD approximation 

have been obtained earlier [10, 11]. 

There have been some attempts to apply the RGD ap-

proximation to a particle of completely arbitrary shape and 

size, none of these has been truly satisfactory [12, 13], be-

cause of it leads us to a numerical solution by means of 

Fourier transformation. The analytical expressions are pre-

ferred by reason of they have more precise results and can 

serve as a basis for rigorous solution [14, 15]. 

Therefore, the purpose of this work is to give analytical 

expressions for the light scattering characteristics of a 

prism and pyramid with an arbitrary polygon base in the 

RGD approximation. 

The paper consists of six sections. Section 2 contains a 

formulation of the light scattering problem, the main ideas 

of the method, and a brief description of the general ap-

proach for a composite or compound particle. Sections 3 

and 4 contain some earlier results for a hexagonal cylinder 

and cone as particles similar to prism, pyramid, respectively, 

and a simple illustration of general approach for a system of 
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several particles. Section 5 contains substantial and new 

results for a prism and pyramid in the RGD approximation. 

Section 6 contains concluding remarks. 

2. The Amplitude and Form Factor of a 

Compound Particle and System of 

Particles. General Approach 

Consider that a particle illuminates by a plane electro-

magnetic wave. Use integral expression of amplitude of 

light scattering in the RGD approximation (or the first Born 

approximation) in a scalar form [7, 16]: 
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where i , s  are unit vectors along directions of the inci-

dent and scattering light respectively, r  is the radius-vector 

of a point inside the particle, ( )siks −k= , k=2π/λ is the 

wave number, λ is the wavelength of light, ( )
2

sin2= θksk , 

θ is the angle between vectors i  and s , β is the angle be-

tween axis z and vector sk , ( )[ ]iessP ××−= , ie  is the 

unit vector along direction of the incident light polarization, 

(forth for brief text in a scalar form 1=P ). 

Note that the amplitude can be expressed another way in 

terms of the angles in spherical coordinates pointed direction 

of the incident θi , φi and scattering light θs , φs separately: 
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The form factor in the RGD approximation [1, 2, 4] for a 

homogeneous particle with the volume V may be written as 
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Before we give some properties of light scattering am-

plitude note that the RGD approximation is valid when 

so-called “phase shift” of central ray ∆ is much smaller 

compared with unity (∆=2kam-1<<1, where a is the 

longest dimension through the particle) [1, 2, 4, 7]. 

Firstly, for a composite particle, containing q layers or 

distinct nonoverlapping regions [1, 2], we get 
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where j is the number of layer (or region), mj is the rela-

tive refractive index of the j th layer, Vj is its volume, Φj(θ,β) 

is the form factor of the j th layer. 

Secondly, if a particle with the form factor Φ0(θ,β) shifts 

from center of coordinates to the position pointed by a vector 

Mr , then we can obtain the form factor as a multiplication by 

( )
Ms rk ⋅iexp : 

( ) ( )( )
( ) ( ).,exp=

exp
1

=,

0 βθ
βθ

Φ⋅

+⋅Φ ∫
Ms

Ms

rk

rrk

i

dVi
V V

M  (4) 

Thirdly, if a particle rotates, for example, about axis OZ 

on Eulerian angle γ and because Jacobian of transformation 

for such rotation in Eq. (2) is equal to 1, then we can obtain 

the form factor by transforming only expressions of k1, k2 

into new position k1(γ), k2(γ) as follows: 
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Thus, we establish rotational-translational properties of 

light scattering amplitude (not available in literature for the 

RGD approximation): shift or translation in Eq. (4), rotation 

(see Eq. (5)). Eqs. (3)-(5) provide us a convenient way to 

construct form factor in the RGD approximation for a 

compound particle and for a system of particles if the form 

factors of every particle are known. 

3. Circular and Hexagonal Cylinder 

The formulas for the calculation of light scattering cha-

racteristics: amplitude, phase function and others for a cy-

linder with a hexagonal section in the RGD approximation 

are obtained earlier by author [17, 18]. For a homogeneous 

cylinder with height H and radius R the amplitude of light 

scattering [1, 4, 17] is a well-known and may be written as 
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where 
HRVCYL

2=π  is the volume of a circular cy-

linder, J1(x) is a Bessel function of first order, j0(x)=sin x/x is 

a spherical Bessel function of zero order. 

For a hexagonal cylinder (or a prism with hexagonal base) 

[17] the amplitude of light scattering is 
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For instance, let us assume that a system of three identical 

cylinders (not compulsory circular) paralleled OZ axis are 

illuminated along OY axis (see Fig. 1). Using Eqs. (4), (6), 

first cylinder of system located in the center of coordinates 

has the amplitude of light scattering fCYL, two others dis-

posed on the same distance d along OX axis to the left and to 

the right of first have the amplitude of light scattering 

exp(-ik1d)fCYL and exp(ik1d)fCYL, respectively. Thus, using 

Eq. (3), the amplitude of a system of three identical cylinders 

is 

( )( ) .cos21= 13 CYLCYL fdkf +         (8) 

 

Figure 1. Geometry of light scattering by a system of three cylinders. 

4. Cone 

The amplitude of light scattering for a cone (Fig. 2) in 

case k4=0, (in general case only expanded in series is 

available) [19] is 
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Struve functions of zero and first order, k3= ks cos β,  

k4= ks sin β. 

Furthermore, for case k3H=k4R [19] the amplitude of light 

scattering by a cone in the RGD approximation is 
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Where 
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The amplitude of light scattering for a sphere in the RGD 

approximation [1, 2, 4, 6] is  
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Figure 2. Geometry of light scattering by a cone. 

The phase function [or element of scattering matrix f11] 

for natural incident light (unpolarized or arbitrary polarized 

light) is calculated by formula 
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where 
2

)(θf  is a square of modulus of light scattering 

amplitude. 

Further the phase function of light scattering is norma-

lized on the value in a forward direction. And phase func-

tions computed by Eqs. (6), (10), (11) for a cylinder, cone 

and sphere with relative refractive index m=1.1+i0.01 are 

shown in Fig. 3. 

 

Figure 3. Normalized phase function (0))/( 1111 ff θ  vs. scattering angle θ  

for sphere, cylinder and cone in the RGD approximation provided kR=2, 

kH=2 and for the direction of incident light along the axis of symmetry (a) 

and perpendicular (b). 
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5. Prism and Pyramid with an Arbitrary 

Polygonal Base 

The analytical equations for the amplitude of light scat-

tering in the RGD approximation by a prism (column) with 

an arbitrary polygonal base may be obtained using Eqs. 

(3),(5). 

First of all, it's necessary to obtain expression of the am-

plitude of light scattering for an elementary polygon seg-

ment wedge (Fig. 4 (a)), having angle γ, radius of circum-

scribed circle R and side a, with full height H. 

 

Figure 4. Geometry of light scattering by a wedge of polygonal prism (a) 

and whole polygonal prism (b), consisting of such wedges (n=10). 

Then, rotating wedges on angle γ-fold and summing am-

plitudes of wedges in new positions, using Eqs. (3),(5), we 

can get general amplitude of light scattering for a whole 

prism (see Fig. 4 (b)). 

Thus, the amplitude for a polygonal prism segment wedge 

(see Fig. 4 (a)) is 
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where γsin
2

1
= 2HRVPM  is the volume of a prism wedge, 

γ=2π/n, γ2=γ/2, 21225 sincos= γγ kkk + , 

21226 sincos= γγ kkk − , R is a radius of circumscribed circle, 

n is a number of segment of polygon, j0(x), h0(x) are 

spherical Bessel and Struve functions of zero order. 

And the amplitude for a polygonal pyramid segment 

wedge (see Fig. 5 (a)) is 

 

Figure 5. Geometry of light scattering by a wedge of polygonal pyramid (a) 

and whole polygonal pyramid (b). 
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6
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= 2HRVPD  is the volume of pyramid wedge, 
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Rotating about axis OZ n-1 times the amplitude of light 

scattering by a wedge prism (11), using Eq. (5) and summing 

all terms, we obtain the amplitude for a whole prism as  
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The special case (n=6, γ=π/3) for the amplitude of a 

hexagonal cylinder obtained from Eqs. (13),(15) is com-

pletely coincided with Eq. (7). 

Analogically, rotating about axis OZ n-1 times the am-

plitude of light scattering by a wedge pyramid (14), using Eq. 

(5) and summing all terms, we obtain the amplitude for a 

whole pyramid as 
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Note that if n tends to infinity (n→∞) then the amplitude 

in Eq. (15) converges to the amplitude of a circular cylinder 

Eq. (6), and the amplitude in Eq. (16) converges to the am-

plitude of a cone (see Eqs.(9), (10)). These main tendencies 

for Eqs. (15), (16) are successfully checked by a direct nu-

merical comparison. 

Thus, the amplitude of light scattering by a square base 

(n=4, γ=π/2) pyramid from (16) yields us 
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And phase functions computed by formulas (15)-(17) for 

particles with relative refractive index m=1.1+i0.01 are 

shown in Fig. 6. 
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Figure 6. Normalized phase function (0))/( 1111 ff θ  vs. scattering angle θ  

for sphere, cylinder, cone, prism and pyramid provided  kR=2, kH=3, n=4 

and for the direction of the incident light along the axis of symmetry (a) and 

perpendicular (b). 

6. Conclusions 

Thus, we were discussed the general approach to obtain-

ing of the form factor for a compound particle in the RGD 

approximation. The addition and rotational-translational 

properties of light scattering amplitude in the RGD ap-

proximation formulated herein allow us to construct the 

form factor for a system of several particles too. As a result 

of application of this technique formulas for the amplitude 

of light scattering by a prism and pyramid with an arbitrary 

polygonal base in the RGD approximation were obtained. 

The formulas obtained earlier for the amplitude of light 

scattering by a hexagonal cylinder and cone in the RGD 

approximation were presented too. In general, these ex-

pressions and technique may be also useful for the analytical 

evaluation of generalized parameters of polydisperse sys-

tems of particles, for the construction of new more precise 

approximations, for the comparisons with other solutions, 

techniques and for the further analysis of the validity's range 

of the RGD approximation. 
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