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Abstract: The principal component analysis (PCA) is the most common attribute optimization analysis techniques, but it is a 

linear method and exists the problem of lack of probability model and the absence of higher-order statistics information. It has 

poor comprehensive ability to complex non-linear attributes. Therefore, in order to overcome two shortcomings of the principal 

component analysis (PCA) and improve the effect of attribute optimization, this paper studies the probability kernel principal 

component analysis (PKPCA) method which is based on Bayesian theory and kernel principal component analysis (KPCA). First, 

the sample data are mapped to the high dimensional feature space, then define probability model of the data in high-dimensional 

space, and finally, expectation maximization (EM) estimated is used to get the best results. This method has both the advantage 

of probability analysis and kernel principal component analysis (KPCA). It is able to effectively adapt to more complex reservoir 

conditions and can realize the non-linear probability analysis. The probability kernel principal component analysis (PKPCA) 

method is applied to reservoir prediction of the Southern oil fields in China. The predicted results show that the method can 

improve the precision of the attribute optimization, while improving the accuracy of the forecasts of reservoir. 

Keywords: Kernel Principal Component Analysis, The Probability Analysis, Kernel Function,  
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1. Introduction 

In recent years, seismic attribute analysis has become an 

important mean for people to understand and monitor oil and 

gas reservoirs, mainly because it can effectively reflect the 

lithology and physical properties (such as porosity, 

permeability, shale content, oil saturation, etc.) information 

contained in seismic data. The sensitivity of different seismic 

attributes to different lithologic reservoir parameters is 

different, and the role of different seismic attributes in 

describing different objects is also different. In the process of 

seismic reservoir prediction, various seismic attributes related 

to reservoir prediction are usually introduced, but the infinite 

increase of attribute types will also bring adverse effects on 

reservoir prediction [1-2]. Therefore, it is necessary to select 

the least number of seismic attributes or their combinations 

which are most sensitive (or most effective and representative) 

to solve specific problems, enhance the prediction accuracy of 

seismic reservoirs, and improve the effect of processing and 

interpretation methods related to seismic attributes, which is 

called "seismic attribute optimization". 

Among many attribute optimization methods, principal 

component analysis (PCA) is the most widely used statistical 

analysis technology, such as data compression, feature 

extraction and pattern recognition. However, PCA has two 

drawbacks [3, 4]: (1) lack of probabilistic model structure, 

which is often very important for many research objects, such 

as hybrid simulation and Bayesian decision, (2) linear nature, 

discarding the information of higher-order statistics. 

In order to overcome these two shortcomings of PCA, 

people have proposed a series of improvement methods. For 

example, Tipping et al. [5] first proposed the Probabilistic 

Principal Component Analysis (PPCA) method. It allowed the 

noise components to have an isotropic structure, and used the 

maximum likelihood estimation (MLE) method to add the 
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parameter probability learning stage to the model, which 

overcomes its first shortcoming. Subsequently, Schölkopf [6] 

proposed the kernel principal component analysis (KPCA) 

method to overcome its second shortcomings. The key idea of 

KPCA is to use kernel function to avoid calculating inner 

product in high-dimensional feature space directly. Although 

it uses implicit form to do nonlinear mapping, it can capture 

high-order statistical information [7]. 

For the two shortcomings of PCA, this paper focuses on the 

method of probability kernel principal component analysis 

(PKPCA), which captures the statistical features of nonlinear 

high-dimensional feature space by the Bayesian probability 

model. And it combines the advantages of PPCA and KPCA. 

Based on this theory, the attribute feature optimization 

analysis of actual data is carried out. The results fully prove 

the superiority and practicability of PKPCA method. 

2. The Basic Principle of Probabilistic 

Kernel Principal Component Analysis 

(PKPCA) Method 

2.1. Kernel Principal Component Analysis (KPCA) 

The basic idea of kernel principal component analysis (KPCA) 

is to project each sample vector xk in the input space R
N
 into the 

high-dimensional feature space F by introducing a nonlinear 

function φ, and then Principal Component Analysis is performed 

in high dimensional space [8-10]. Duo to the high dimensional 

characteristics of the feature space, the nonlinear mapping and 

the decomposition of characteristic variables become very 

difficult, but the nonlinear mapping can be avoided by 

introducing the kernel technique [11-13], and the point product 

of the original space variables is only needed to be calculated [6]. 

Setting up {x1,…, xN} is a spatial sample of Rd. 

Nonlinear mapping is Rd→Rf, The spatial sample Rf is as 

follows: Фf×N=[φ1,…, φN], φn=φ(xn)∈Rf. The mean of 

samples is defined as φ0 =Фe, 
1

1Ne N −
× = l . Then the 

covariance matrix of the high-dimensional space data φ1,…, 

φN can be expressed as: 

Σ=ΦJJTΦT=ΨΨT
 
               (1) 

Where, 
1/ 2 T( )NN e−= −J I 1 ; =ψ ΦJ ; The first 

principal eigenvector of Σ can be expressed as matrix form: 

1/ 2

1 2[ , , , ]q q q qu u u −= =⋯U ΦJV Λ         (2) 

Where, 
1 2

[ , , , ]
q q

v vν= ⋯V ,
1

diag( , , )
q q

λ λ= ⋯Λ , 

And 
1{( , )}q

n n nvλ =  is the first q eigenvector and eigenvalue 

of matrix T=K J KJ . T=K Φ Φ . 

2.2. Probabilistic Kernel Principal Component Analysis 

Probabilistic principal component analysis (PPCA) is an 

extension of traditional principal component analysis (PCA). 

It defines an appropriate probability model for data (Figure 1), 

which effectively overcomes the shortcoming that the PCA 

transform assumes that the data satisfy ellipsoidal distribution. 

With the constraint of probability model, PPCA can find the 

direction of principal component more effectively from 

high-dimensional data or a large number of data points. Then 

the optimal probabilistic model (optimal solution) is obtained 

by estimating the model parameters with the maximum 

likelihood function or expectation maximization (EM) 

algorithm. PCA or PPCA is still an effective optimization 

method to deal with linear relation data, but it is not effective 

to deal with nonlinear relation variable data. Probabilistic 

Kernel Principal Component Analysis (PKPCA) defines the 

PPCA model in the high-dimensional feature space by 

nonlinear mapping (Figure 1 below), which is the extension of 

PPCA in the kernel space [14]. It effectively overcomes the 

lack of probability model and high-order statistics information 

in PCA. Therefore, PKPCA analysis can effectively deal with 

data variables with nonlinear relationship. 

 

Figure 1. Basic thinking of PKPCA. 

In probability analysis, it is assumed that the data ( )xφ in 

the high dimensional feature space conform to a special factor 

analysis model [15], which makes the relationship between 

the f-dimensional data and the implied q-dimensional variable 

z be expressed as: 

( )x zφ µ ε= + +W               (3) 

Where: (0, )qz N I∼ , (0, )fNε ρI∼ , W is a f r×
dimensional load matrix. Then the random probability 

distribution of high dimensional feature space data ( )xφ  

varying with implied variable Z can be obtained by factor 

analysis model. 

22 /2

2

1
( ( ) | ) (2π ) exp ( )

2

fP x z x zφ σ φ µ
σ

−  = − − − 
 

W    (4) 

Further, suppose the prior model of implied variable Z is 

Gauss distribution. 
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/ 2 T1
(z) (2π) exp

2

qP z z−  = − 
 

         (5) 

The random probability distribution of data ( )xφ  is 

1/ 22 / 2 T 1

( ( )) ( ( ) | ) ( )

1
(2π ) exp ( ( ) ) ( ( ) )

2

f

P x P x z P z

x x

φ φ

σ φ µ φ µ−− −

=

 = − − − 
 

∫

S S
   (6) 

Here S is the covariance matrix of the model. 

T

f
ρ= +S WW I  

Then the maximum likelihood function of data ( )xφ  is 

{ }

{ }
1

1

ln [ ( )]

ln(2π) ln tr( )
2

N

n

L p x

N
f

φ
=

−

=

= − + +

∑

S S K

   (7) 

Here, K is the sampling covariance matrix of data ( )xφ . 

Estimated values of µ 、W and ρ  are obtained from 

maximum likelihood estimation. 

 

0

1/ 2

1

ˆ

ˆ ˆ( )

ˆ ( ) [tr( ) tr( )]

q q q

qf q

µ φ

ρ

ρ −

=

= −

= − −

W U Λ I R

S Λ

       (8) 

R is an arbitrary orthogonal matrix q q×  

Because the dimension f  of kernel space is usually 

unknown, the ρ̂  value is difficult to obtain accurately. In 

general, the f value is very large and the value ρ̂  is very 

small, so it can be given a small fixed value according to 

experience[16]. 

Substituting the 
qU  expression (formula 2) into Ŵ : 

ˆ =W ΦJQ                   (9) 

Where, 
1 1/ 2ˆ( )

q q q
ρ −= −Q V I Λ R  

Because Q  links the load matrix with the empirical data, 

it is called the empirical load matrix. Finally, the EM iterative 

algorithm is applied to get the estimated values Q  and ρ . 

T

1 T

2
( ) ( ) ( ) 1 ( ) ( ) 1

( ) ( ) ( ) ( )

( )

1
tr( )

j i j j j j

q

j i j j j i

f

ρ

ρ
−

+ − −

+ +

= +

= −

Q KQ I M Q K Q

K KQ M Q K
   (10) 

Where, 
Tˆ ˆˆ

qρ= +M I W W , Substituting the expression of 

Ŵ  to get M :
T

q=M R Λ R  

Similar to KPCA expression, the following formula can be 

applied in PKPCA to obtain the eigenvector ẑ  of the 

high-dimensional space. 

�
1 Tˆˆ ( ( ) )xφ µ− −z = M W          (11) 

The eigenvector of the observed sample xφ（ ） can be 

represented by a posteriori mean corresponding to the z

variable. Then substituting ˆ,M W  and µ̂ , the formula can 

be got as following: 

T 1 Τˆ ( ) ( )t

q

− −z = R L R JQ K Ke      (12) 

Where the thi element of tK  is T( ) ( ) ( , )i ix x k x xφ φ =
( 1,2, , )i N= ⋯ . The dimension q  of the eigenvector ẑ  can 

be smaller than N , so that the low-dimensional vector can be 

used to represent the high-dimensional original eigenvector, 

thereby achieving the purpose of data dimensionality reduction. 

2.3. PKPCA Algorithm Implementation 

The implementation of the PKPCA algorithm has the main 

steps as following: 

(1) Standardized preprocessing of data: To overcome the 

differences in dimension and magnitude between various 

seismic attributes, the original seismic data is standardized 

and preprocessed to ensure the objectivity and accuracy of the 

optimization results. There are many methods for 

standardizing data. Here, standard deviation methods are used 

to preprocess seismic attribute parameters. 

(2) Selecting kernel function: The choice of kernel function 

in practical applications is very important. The success of the 

kernel function selection directly affects the prediction results 

of the KPCA and PKPCA methods. In this paper, a polynomial 

kernel function and a Gaussian radial basis kernel function are 

used. In addition, the choice of the kernel function parameters 

is also very important, and sometimes the choice of kernel 

function parameters is even more important than the choice of 

the type of the kernel function itself. 

(3) High dimensional space covariance matrix and its 

decomposition: Under the action of the selected kernel 

function, a covariance matrix is obtained by applying formula
T=K J KJ . And then he feature value 

1diag( , , )q qλ λ= ⋯Λ  and the feature vector 

1 2[ , , , ]q qv vν= ⋯V  is obtained by eigenvalue 

decomposition. 

(4) Estimating Q  and ρ : The MLE algorithm can be 

used to calculate the initial value by using the formula (8), and 

then the eigenvalue and the feature vector obtained in step (3) 

are substituted into the iterative formula (10) of the EM 

algorithm. At last, the estimated values of A and B can be 

calculated quickly and accurately. Or directly apply the EM 

algorithm, that is, first give the initial value, and then 

gradually iterate to obtain the exact sum and estimate. 

(5) Feature extraction: Apply (12) to extract the feature vector 

ẑ , and obtain a new component that characterizes the main 

features of the original attribute. Based on the characteristics of 
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these new attributes, the comprehensive geological interpretation 

analysis of the target reservoir is carried out. 

3. Case Study 

The above method is applied to real data to verify the 

advantages of PKPCA algorithm. The actual data is from 

Southern oil fields in China. Reservoirs in this block are poor 

or tight reservoirs, but they have good porosity and 

permeability in local areas (such as grain chips, oolitic and so 

on) and become favorable reservoir areas. Well logging data 

of J1 well in this area (Figure 3 black spots) is available. The 

lithology of the selected interval is grey dolomite with 

lime-bearing silty sand cuttings, which is comprehensively 

interpreted as gas reservoir by logging. In case, the amplitude 

kurtosis, amplitude torsion, amplitude arc length, effective 

bandwidth and average instantaneous frequency are extracted 

along the target layer of the block (Figure 2). PCA, KPCA and 

PKPCA are used to optimize the attributes, and the final 

comparison is shown in Figure 3. Where, the two kernel 

functions used in the PKPCA optimization method are: 

Kernel function 1 ( )
2

1
, exp

50
k

 × −
= − 

 
 

x y
x y , 

Kernel function 2 ( ) ( )( )2

, 0.5 4k = × ⋅ +x y x y  

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

Figure 2. Original seismic attribute (a) Amplitude Kurtosis, (b) amplitude 

torsion, (c) amplitude arc length, (d) effective bandwidth, (e) average 

instantaneous frequency. 

Figure 3 is a comparison of attribute optimization results 

obtained by various methods. It can be clearly seen that the 

effect of feature extraction by directly using PCA algorithm for 

attribute optimization is not ideal, which can not effectively 

integrate the commonalities of a large number of attributes, and 

does not achieve the purpose of effective attribute optimization. 
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KPCA algorithm based on radial basis function (Figure 3b) can 

extract the approximate range of reservoir, but it is not accurate 

enough. The PKPCA algorithm (Figure. 3C and Figure. 3d) 

gets the best probability solution by adding probability model 

and introducing kernel function, and using the discarded 

principal component as noise variance estimation to constrain 

factor load matrix W. It can delineate accurately the reservoir 

range and coincide with the result of J1 logging interpretation, 

thus achieving the effective attribute optimization. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 3. Comparison of attribute optimization results by different methods 

(a)PCA, (b)KPCA(RBF kernel), (c)PKPCA(RBF kernel), (d)PKPCA 

(Polynomial basis——kernel function 2). 

It can be seen from case study that the optimization results 

of the polynomial kernel function and the radial basis function 

are similar, which can describe the reservoir range well. But 

the optimization results of polynomial kernel function 

describe the range more accurately, and the calculation 

efficiency is higher than that of radial basis function. 

Therefore, the kernel function selection of PKPCA algorithm 

is very important. If not properly selected, it will not only 

waste time, but also seriously affect the accuracy of reservoir 

prediction. 

4. Conclusions 

(1) As an extension of PPCA in high dimensional space, 

PKPCA defines PPCA probability model in high dimensional 

feature space by nonlinear mapping. It not only overcomes the 

shortcoming of lacking probability statistics for PCA linear 

algorithm, but also captures the high-order statistical 

information of attributes, which effectively improves the 

ability of non-linear simulation of attributes and the accuracy 

of attribute optimization. Its additional probability structure 

also provides an effective classification method. 

(2) PKPCA method is applied to optimize and analyze a 

southern oilfield data. Under the same parameters, its 

processing result is better than PCA and KPCA algorithm, 

which is more sensitive to oil and gas reservoirs, can describe 

the favorable distribution range of reservoirs more precisely, 

and is consistent with logging interpretation results, and has 

high accuracy of reservoir prediction. This provides a new 

idea and approach for multi-attribute optimization and 

complex geological reservoir prediction. 

(3) Compared with KPCA and PCA, PKPCA has higher 

computational complexity and lower efficiency, and the effect 

of attribute optimization depends more on the kernel function. 

However, in the case of complex data, the optimization effect 

of PKPCA can not be replaced by other methods. In practical 

application, the optimization algorithm and parameters should 

be reasonably selected according to the complexity of the 
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target area in order to save time and effort and achieve the 

desired results. 
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